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A B S T R A C T   

Background and purpose: Organ motion compromises accurate particle therapy delivery. This study reports on the 
practice patterns for real-time intrafractional motion-management in particle therapy to evaluate current clinical 
practice and wishes and barriers to implementation. 
Materials and methods: An institutional questionnaire was distributed to particle therapy centres worldwide (7/ 
2020–6/2021) asking which type(s) of real-time respiratory motion management (RRMM) methods were used, 
for which treatment sites, and what were the wishes and barriers to implementation. This was followed by a 
three-round DELPHI consensus analysis (10/2022) to define recommendations on required actions and future 
vision. With 70 responses from 17 countries, response rate was 100% for Europe (23/23 centres), 96% for Japan 
(22/23) and 53% for USA (20/38). 
Results: Of the 68 clinically operational centres, 85% used RRMM, with 41% using both rescanning and active 
methods. Sixty-four percent used active-RRMM for at least one treatment site, mostly with gating guided by an 
external marker. Forty-eight percent of active-RRMM users wished to expand or change their RRMM technique. 
The main barriers were technical limitations and limited resources. From the DELPHI analysis, optimisation of 
rescanning parameters, improvement of motion models, and pre-treatment 4D evaluation were unanimously 
considered clinically important future focus. 4D dose calculation was identified as the top requirement for future 
commercial treatment planning software. 
Conclusion: A majority of particle therapy centres have implemented RRMM. Still, further development and 
clinical integration were desired by most centres. Joint industry, clinical and research efforts are needed to 
translate innovation into efficient workflows for broad-scale implementation.   

1. Introduction 

An increasing number of cancer patients worldwide are treated with 
particle therapy (PT), and the number of new PT centres has grown 
remarkably over the last decade [1–3]. PT plans are characterised by 
high target dose conformity and increased healthy tissue sparing 
compared to photon external beam radiotherapy (EBRT). However, the 
quality of the delivered treatment can be substantially affected by inter- 
and intrafractional anatomical changes and organ motion [4–7]. PT 

delivery is more sensitive to intrafraction motion than EBRT with the 
interplay effect being of particular concern [8,9]. 

Many methods for real-time respiratory motion management 
(RRMM) have been proposed and applied to address intrafractional 
motion in PT. Simulations and experiments have shown that rescanning 
[10–12] mitigates the interplay effect, with the degree of efficiency 
depending on patient geometry, motion characteristics and the temporal 
dynamics of the delivery system [13]. However, rescanning cannot 
mitigate the reduction in dose conformity, due to respiratory motion. 
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Therefore, for tumours with large motion, rescanning combined with 
active motion mitigation techniques such as beam gating [14–20] was 
suggested, whereby the use of a small gating window restricts the 
effective motion amplitude and reduces the number of rescans required 
to achieve acceptable dose homogeneity. Gating can be performed in 
breath-hold to minimise respiratory motion, depending on patient 
compliance [21,22]. Gating in free-breathing comes at the cost of pro-
longed treatment times [15], increasing the risk of baseline shifts 
[23,24] and patient fatigue. Moreover, it was proposed to steer the 
particle beam to synchronize the treatment delivery with tumour posi-
tion, referred to as ‘tracking’ [25–28]. 

RRMM effectiveness is patient-, equipment- and facility-specific, 
depending on clinical criteria and commercial or in-house-developed 
approaches [11,13,29]. Most RRMM studies for PT were conducted in 
a research context, based on in-house-developed software solutions, 
with limited commercial availability [30–39]. While RRMM approaches 
like rescanning, gating or breath-hold are commercially available, 
comprehensive tools for realistic 4D evaluation of RRMM techniques are 
still limited. Although the challenges of treating moving targets were 
extensively studied, the actual status of clinical practice is largely un-
known for PT centres. It is unclear how many PT institutions worldwide 
have RRMM capabilities and how many patients are treated with which 
type of technique. A recent study reported on the use of RRMM and 
adaptive radiotherapy in 200 EBRT centres [40,41]. Although the 
challenges are similar in EBRT and PT, the clinical need is even higher in 
PT because of the dosimetric properties of the charged particle beams, 
and the technology (and commercial availability thereof) for motion 
monitoring and mitigation differs widely between EBRT and PT 
[4,5,42,43]. 

In this study, we aim to determine the current status of the clinical 
use of RRMM for PT and to identify the barriers to clinical imple-
mentation through a global institutional survey. The survey was fol-
lowed by a DELPHI consensus analysis among the authors to reach 
recommendations on the next steps from research, development and 
clinical implementation aspects. 

2. Materials and methods 

The Patterns Of Practice for Adaptive and Real-Time motion man-
agement in Particle Therapy (POP-ART PT) questionnaire was adapted 
from a survey to EBRT centres [40,41]. The survey was addressed to 
clinical medical physicists and focused on current clinical practice at the 
institutional level, wishes for implementation and barriers to imple-
mentation. All 105 PT centres listed on the website of the Particle 
Therapy Co-Operative Group (PTCOG) as Facilities in Operation in 2020 
[44] were invited to participate. The study was endorsed by the Euro-
pean SocieTy for Radiotherapy and Oncology (ESTRO), European Par-
ticle Therapy Network (EPTN) and PTCOG, and distributed through 
their mailing lists, social media, and personal contacts between July 
2020 and June 2021. 

This paper focuses on RRMM for intrafractional respiratory motion 
management. Plan adaptation to mitigate interfractional anatomical 
changes (APT) is addressed in a parallel paper [45]. Supplementary 
material (Suppl. A) contains the key terminology, questions, and sum-
mary. Responding centres (“responders” thereafter) were included in the 
analysis when they provided a complete response or only isolated 
questions were unanswered. Missing or uninterpretable answers were 
marked as ‘‘not specified”. Multiple answers from a single institution 
were merged and checked for consistency. 

The questionnaire was completed by 70 PT centres from 17 countries 
worldwide, resulting in a response rate of 100% for Europe (23/23), 
96% for Japan (22/23) and 53% for USA (20/38). Four centres from 
China and one centre from Thailand participated. Forty-three percent 
(30/70) of responders were academic clinical centre, and over 50% of 
responders have been in clinical operation for more than 5 years. Details 
on the responders can be found in Suppl. B. Two responders (3%, one in 

Europe and one in other regions) had not yet started clinical operation 
but filled the wish-list questions. 

A three-round DELPHI consensus analysis [46] was performed with 
11 experts (co-authors) to define recommendations for necessary de-
velopments and formulate a 10-year vision. The second and third rounds 
used controlled opinion feedback based on the previous round’s re-
sponses. Experts responded based on their interpretation of survey re-
sults and personal opinions. Full consensus (FC) was reached when all 
experts agreed, and partial consensus (PC) when only one expert dis-
agreed. When more than one expert disagreed, the statement was 
concluded as “no consensus” (NC). The details on the DELPHI process 
are provided in Suppl. C. 

3. Results 

Out of all clinically operational responders (‘clinical responders’ 
hereafter), 85% (58/68) had implemented at least one RRMM modality 
(either rescanning or active RRMM) (Fig. 1a). Here active RRMM are 
defined as techniques where either the patient actively complies 
(breath-hold, some ventilation techniques, gating with visual feedback) 
or treatment delivery is actively modified (gating or beam synchroni-
zation based on real-time motion monitoring). Fifteen percent (10/68) 
were not using any motion mitigation (one centre in Japan, three in 
USA, six in Europe). Sixty-two percent of clinical responders (42/68) 
used rescanning for at least one mobile treatment site, and 16% (11/68) 
planned to implement rescanning for a new treatment site in the next 
two years (Fig. 1b). Regionally (Suppl. B3), 59% (13/22), 70% (14/20) 
and 50% (11/22) of clinical responders in Europe, US and Japan used 
rescanning either alone or in combination with active RRMM. Seven 
clinical responders (three in Japan, three in Europe and one in US) 
cannot apply rescanning due to limitations of their equipment, and 
seven centres (six in Japan and one in Europe) had passive scattering 
systems for which rescanning is not applicable (or needed). Layered 
rescanning (delivering the divided spot weights multiple times for each 
energy layer before moving to the next energy layer) was more 
commonly used than volumetric rescanning (delivering the divided spot 
weights for the whole target volume multiple times). Four clinical re-
sponders used a hybrid rescanning mode. Large variations in number of 
rescans (2 to 6 times-per-field) were observed, in which 11 clinical re-
sponders applied patient-specific values, e.g. by considering max/min 
Monitor Unit per spot. 

Globally, 65% of clinical responders (44/68) used active RRMM to 
treat at least one mobile treatment site (“active RRMM users” hereafter). 
Between 14 and 55% of clinical responders were applying active RRMM 
by default, depending on the treatment site (Fig. 2). The most common 
treatment sites treated with active RRMM were lung and liver, for which 
89% (39/44) of active RRMM users used it either as default or optional. 
This was 61% (27/44) for pancreas, 57% (25/44) for oesophagus, 57% 
(25/44) for lymphoma and 32% (14/44) for breast. When RRMM was 
used optionally, the inclusion criteria depended on indications, centres 
and regions and included e.g. physician preference, motion amplitude 
from 2 to 10 mm (free-text responses). 

The most common RRMM techniques were voluntary deep inspira-
tion breath-hold (29%) and free-breathing expiration gating (28%) 
(Fig. 3). Except for one user, active RRMM was applied for all liver and 
lung tumour treatments. Fifty percent (22/44) of active RRMM users 
stated their wish to change their current active RRMM routine for at 
least one treatment site. They wished to implement different active 
RRMM approaches for lung (43%), pancreas (34%), oesophagus (34%), 
liver (32%), lymphoma (30%) and breast (18%). Considering all treat-
ment sites, the general trends were to increase active RRMM usage by 
10%-point in average. Meanwhile, users wished to change their active 
RRMM technique to a more situation-specific selection in the future. Ten 
percent of active RRMM users wished to enable tracking/synchroniza-
tion for all mobile treatment sites. 

The three most commonly used motion monitoring signals to guide 
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RRMM were external marker (20%), surface monitoring (18%) and 
breathing volume (17%) (Fig. 4a). Motion monitoring was similar across 
all mobile treatment sites. The motion surrogates used for planning 
4DCT sorting/reconstruction were generally different than those used to 
guide RRMM. An external marker was used by 35% of active RRMM 
users as surrogate for 4DCT reconstruction, while another 21% of users 
used surface imaging (Fig. 4b). 

A dedicated coaching session was used by 55% of active RRMM users 
for at least one mobile tumour indication. For lung and liver, 55% (24/ 
44) and 52% (23/44) of active RRMM users implemented coaching, 
mostly for 30 min. Moreover, 25% of active RRMM users had either 
audio or visual feedback during treatment delivery, with 18% (8/44) 
using both simultaneously (Fig. B5). For lung and liver, feedback was 
applied by more than 50% of active RRMM users. Less than 30% of 
active RRMM users acquired online imaging to verify the validity of the 
surrogate signal, including 16% (7/44) acquiring online verification 
imaging during beam-on for online review, while the other 14% (6/44) 
performed image acquisition for retrospective offline review. The ma-
jority of users doing image verification during beam-on were located in 
Japan and US. 

Globally, 48% (21/44) of active RRMM users planned to expand the 
use of RRMM or change their technique for a treatment site already 
treated with active RRMM in the next two years (4/8 in Europe, 8/13 in 

US, 7/21 in Japan and 2/2 in other region). Priority was given to lung, 
liver and pancreas. All of them ranked the barriers with the top three 
challenges being technical limitations, limited equipment/financial re-
sources and limited human resources (Fig. 5a). Reimbursement was 
lowly ranked both globally and regionally. 

In total, 46% (32/70) of responders wished to implement active 
RRMM for a new treatment site. Of the current 44 active RRMM users, 
30% (13/44) wished to implement RRMM for a new indication, with 
priority given to liver, lung and breast. For non-RRMM user (26/70), 
73% (19/26) stated their wish to implement active RRMM, of which 
42% (11/26) already had concrete plans for implementation in the next 
two years; 19% (5/26) had no wish to implement active RRMM for a 
new indication. The barrier for implementation of active RRMM for a 
new treatment site, were ranked by 63% (44/70) responders. The top 
three barriers were the same as for expanding/changing technique for 
currently treated indications (Fig. 5b). The regional ranking of barriers 
did not differ substantially from the global ranking. 

The most important outcomes with full consensus (FC) from the 
DELPHI analysis were summarized in Fig. 6. More detailed results and 
other no consensus statements can be found in Suppl. C. 

Fig. 1. (a) Overview of RRMM implementation globally (N = 68) and (b) the situation of rescanning implementation (Q11: Are you applying re-scanning for any 
treatment site?). 

Fig. 2. Percentage of active RRMM users (globally, N = 44) using different motion mitigations for various mobile treatment sites (Q13: Do you perform active RRMM 
for any treatment site in your particle facility?/Q14: Which treatment site are you treating with active RRMM?). 

Y. Zhang et al.                                                                                                                                                                                                                                   



Physics and Imaging in Radiation Oncology 26 (2023) 100439

4

4. Discussion 

This study provides a comprehensive picture of the clinical imple-
mentation of RRMM in 70 PT centers across 17 countries worldwide, 
including current status and future plans. While a majority of centers 
have adopted RRMM, many seek further improvements for better clin-
ical integration. The study also outlines a 10-year vision for RRMM 
implementation, emphasizing the need for collaboration across in-
dustry, clinic, and research to translate innovation into clinical practice. 

Globally, 85% of clinical responders used rescanning or active 
RRMM, with 41% using both, emphasizing the importance of motion 
management. Within two years, 78% of responders are expected to use 
rescanning, indicating that all centers capable of treating mobile tumors 
with rescanning will use it. However, the current heterogeneity of 
rescanning parameters necessitates consensus guidelines for effective 
implementation [9]. The DELPHI analysis achieved consensus on the 
need for standardized, individualized rescanning parameters based on 
pre-treatment 4D dose calculation and evaluation. The proton commu-
nity must collaborate to standardize these parameters, considering 
equipment and model diversity. The 4D dose calculation should 
correctly estimate interplay effects by accounting for breathing cycle 
variations beyond standard 4DCT representations [47]. Dynamic beam 

models must also consider institutional scanning characteristics to 
properly individualize rescanning parameters [10–12,23,29]. Although 
this has been addressed by many studies [30–39], not all features are 
clinically available [8]. According to the DELPHI results, the availability 
of 4D dose calculation and corresponding uncertainty evaluation in 
commercial software is a top priority to enable consideration of motion 
variability during 4D evaluation. 

Sixty-four percent of clinical responders were active RRMM users, 
which is comparable to rescanning users (62%). More than 90% of the 
active RRMM users treated lung and liver tumours, with over 50% using 
it as default (Fig. 2). In Japan, 21/22 clinical responders were active 
RRMM users, with over 75% using it as default (Fig. B5), likely due to 
the availability of passive scattering systems readily capable of respi-
ratory gating [19]. In contrast, EU and USA centres are more often 
equipped with active scanning beams, for which active RRMM is not as 
widely clinically available. When active RRMM was used optionally, 
inclusion criteria varied widely among indications and centres. The 
DELPHI analysis highlighted the need to choose the optimal RRMM 
technique based on pre-treatment motion characteristics but no 
consensus was reached on prioritizing a specific RRMM technique. 
Image-guidance, motion monitoring, and active compensation tech-
niques were mentioned, but no clear prioritization emerged. 

Besides compensating for motion (e.g. rescanning, gating and 
tracking), reducing motion (e.g. breath hold [22,48], abdomen 
compression [49,50] or patient selection [51]) can reduce the 
complexity of 4D PT delivery. The survey did not cover patient selection 
or abdominal compression, but 25–35% active RRMM users imple-
mented various breath-hold techniques for different indications, which 
depend on the intra- and interfractional BH reproducibility [52], dura-
tion [53], and patient capability [48]. Reducing treatment time can be 
achieved by decreasing energy switching time (particularly for 
synchrotron-based machine) [54], and by increasing the beam current 
[55] with special plan optimization [56]. 

Breathing surrogates were the main methods for motion monitoring 
in active RRMM, similar to EBRT [40], but only 30% of users reviewed 
verification images online or offline, compared to 43–52% in EBRT [40]. 
The difference may be due to the delay in the implementing advanced 
online image guidance in PT [1]. Technically enabling such feature is 
necessary, including avoiding potential interlock triggers in the beam 

Fig. 3. Status and wishes for the future regarding the RRMM technique for various mobile treatment sites, reported for active RRMM users only (globally, N = 44). 
Comparing two adjacent bars shows the difference between currently applied technique and what active RRMM users wish to implement for a particular treatment 
site. (Q17: Which active RRMM technique do you use currently/would like to use in the future?). 

Fig. 4. Usage of different motion monitoring signals for (a) guiding active 
RRMM delivery and (b) conducting 4DCT reconstruction. (Q20: Which motion 
monitoring signal are you using to guide the active RRMM procedure?/Q21: 
Which motion monitoring signal are you using for 4DCT sorting/ 
reconstruction?). 
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monitor system due to the online x-ray imaging dose detection. Dedi-
cated coaching and online audio/visual feedback which is less techni-
cally demanding can improve the breathing reproducibility, were 
implemented by more than 50% of users. Nevertheless, breathing cycle 
irregularity and baseline tumour drift compromise the stability of the 
correlation, especially in the abdomen [57]. 

Slightly less than 50% of active RRMM users had plans to expand 
their current active RRMM technique to new indications (lung, liver and 
pancreas), the rest had no wish to extend due to limitations from both 
technical and human resource aspects. However, as automatic tech-
niques are emerging [58,59], we believe that human resource limitation 
will become less problematic in upcoming years. Unfortunately, 34% of 
responders did not provide a specific answer here, making the full pic-
ture on further active RRMM implementation incomplete. 

The 64% of active RRMM users in the present study is similar to the 
68% in the 200 EBRT centres [40]. In EBRT, breast was the main 
treatment site for RRMM but only 45% and 29% of responders were 

users of RRMM for lung and liver respectively, whereas these were the 
main treatment site in PT with over 90% of users for both. Several 
similarities between PT and EBRT are to be highlighted. For example, 
gating was the main RRMM method in both EBRT and PT with tracking 
being available only to 10% of EBRT responders and only one PT centre. 
Of note, 62% of POP-ART PT responders used rescanning, but passive 
mitigation was not explicitly surveyed in POP-ART RT. Rescanning 
questions were only included in a general way, without specific ques-
tions by treatment site. Retrospectively, given the heterogeneity of the 
results as discussed above, details by treatment site would have been of 
interest and should be included in future surveys. 

The higher percentage of active RRMM users for lung and liver in PT 
centres compared to EBRT centres may be due to patient selection, 
where PT centres treat moving indications only when a suitable motion 
mitigation strategy is in place [9]. Most EBRT centres must treat lung 
and liver patients, whether active RRMM is available or not. There was a 
large interest in RRMM for lung treatments in both surveys indicating 

Fig. 5. Scoring (median) of the main barriers to (a) extend or change the active RRMM technique for a site currently treated with RRMM and (b) to implement 
RRMM for a new treatment site. 

Fig. 6. Summary of the most important conclusions from 3 round DELHI consensus analysis. Green box summarizes the vision, yellow boxes for general requirements 
and orange boxes for priorities. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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that RRMM is considered important for this indication whatever the 
modality. The similar barriers to implementation in EBRT or PT, despite 
the differences in technology, indicates that common effort could lead to 
solutions beneficial for both EBRT and PT [42,43]. 

The PT community is well aware of the importance of RRMM, which 
has been addressed in recent clinical guidelines [8,60–62] and in the 
annual 4D workshop [4–7,43] Results from POP-ART RT and PT surveys 
are in line with the recent reports of the 4D workshops [6,7], regarding 
standardized guidelines to guarantee consistency between protocols 
applied at different facilities. From this study, we recommend focusing 
primarily on the development of consensus guidelines for rescanning 
parameters and inclusion criteria for active RRMM, while technical 
development and implementation should prioritize direct internal mo-
tion monitoring or frequent/practical verification of surrogate accuracy 
and beam synchronization. 

In conclusion, RRMM with rescanning, active methods or both has 
been implemented by the majority of PT centres. Substantial interests 
were shown to implement more active RRMM, requiring joint efforts to 
address technical limitations and lack of resources. More research and 
development to translate 4D functions integrated in efficient workflows 
are needed to extend the use of RRMM clinically. This will require 
synergistic action from the industry, users and future users to translate 
ongoing research into clinical applications. 
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