HD 23472: a multi-planetary system with three super-Earths and two potential super-Mercuries

Barros, S. C. C.; Demangeon, O. D. S.; Alibert, Y.; Leleu, A.; Adibekyan, V.; Lovis, C.; Bossini, D.; Sousa, S. G.; Hara, N.; Bouchy, F.; Lavie, B.; Rodrigues, J.; da Silva, J. Gomes; Lillo-Box, J.; Pepe, F. A.; Tabernero, H. M.; Osorio, M. R. Zapatero; Sozzetti, A.; Mascareño, A. Suárez; Micela, G.; ... (2022). HD 23472: a multi-planetary system with three super-Earths and two potential super-Mercuries. Astronomy and astrophysics, 665, A154. EDP Sciences 10.1051/0004-6361/202244293

2209.13345.pdf - Accepted Version
Available under License Creative Commons: Attribution-Noncommercial-Share Alike (CC-BY-NC-SA).

Download (2MB) | Preview
aa44293-22.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (4MB) | Preview

Context. Comparing the properties of planets orbiting the same host star, and thus formed from the same accretion disc, helps in constraining theories of exoplanet formation and evolution. As a result, the scientific interest in multi-planetary systems is growing with the increasing number of detections of planetary companions.

Aims. We report the characterisation of a multi-planetary system composed of five exoplanets orbiting the K-dwarf HD 23472 (TOI-174).

Methods. In addition to the two super-Earths that were previously confirmed, we confirm and characterise three Earth-size planets in the system using ESPRESSO radial velocity observations. The planets of this compact system have periods of Pd ~ 3.98, Pe ~ 7.90, Pf ~ 12.16, Pb ~ 17.67, and Pc ~ 29.80 days and radii of Rd ~ 0.75 , Re ~ 0.82,, Rf ~ 1.13 , Rb ~ 2.01, and, Rc ~ 1.85 R⊕ .Because of its small size, its proximity to planet d’s transit, and close resonance with planet d, planet e was only recently found.

Results. The planetary masses were estimated to be Md = 0.54 ± 0.22, Me = 0.76 ± 0.30, Mf = 0.64−0.39+0.46, Mb = 8.42−0.84+0.83, and Mc = 3.37−0.87+0.92 M⊕. These planets are among the lightest planets, with masses measured using the radial velocity method, demonstrating the very high precision of the ESPRESSO spectrograph. We estimated the composition of the system’s five planets and found that their gas and water mass fractions increase with stellar distance, suggesting that the system was shaped by irradiation. The high density of the two inner planets (ρd = 7.5−3.1+3.9 and ρe = 7.5−3.0+3.9 g cm−3) indicates that they are likely to be super-Mercuries. This is supported by the modelling of the internal structures of the planets, which also suggests that the three outermost planets have significant water or gas content.

Conclusions. If the existence of two super-Mercuries in the system is confirmed, this system will be the only one known to feature two super-Mercuries, making it an excellent testing bed for theories of super-Mercuries formation. Furthermore, the system is close to a Laplace resonance, and further monitoring could shed light on how it was formed. Its uniqueness and location in the continuous viewing zone of the James Webb space telescope will make it a cornerstone of future in-depth characterisations.

Key words: planets and satellites: detection / planets and satellites: composition / planets and satellites: terrestrial planets / stars: individual: HD 23472 / techniques: radial velocities / techniques: photometric

★ Radial velocity observations are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr ( or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/665/A154
★★ Based in part on Guaranteed Time Observations collected at the European Southern Observatory under ESO programme(s) 1102.C-0744, 1102.C-0958, and 1104.C-0350 by the ESPRESSO Consortium.

Item Type:

Journal Article (Original Article)


08 Faculty of Science > Physics Institute > Space Research and Planetary Sciences
08 Faculty of Science > Physics Institute
08 Faculty of Science > Physics Institute > NCCR PlanetS

UniBE Contributor:

Alibert, Yann Daniel Pierre


500 Science > 530 Physics
500 Science > 520 Astronomy
600 Technology > 620 Engineering




EDP Sciences




Alma Hajdarevic

Date Deposited:

02 May 2023 06:43

Last Modified:

12 Jul 2023 11:48

Publisher DOI:


ArXiv ID:






Actions (login required)

Edit item Edit item
Provide Feedback