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Abstract—Positioning estimations of wireless sensors can be
enhanced via sensor collaboration. To enable this, various
methods have been proposed; yet, most do not leverage the
entire collective knowledge, which also involves the estimation’s
uncertainty. In this article, we introduce Anchor-free Ranging-
Likelihood-based Cooperative Localization (ARLCL); a novel
anchor-free and technology-agnostic localization algorithm that
utilizes inter-exchanged ranging signals from sensors to enable
their simultaneous positioning. Ranging technologies with easy-
to-model propagation properties, such as UWB or LiDAR are
among the first beneficiaries that ARLCL is targeting. To examine
its applicability, however, even to signals that are noisier and often
unsuitable for ranging, we assess ARLCL with real-world BLE
RSS measurements. At the same time, we consider deployments
that typically induce flip-ambiguity, being a major problem in
cooperative localization. We provide an extensive comparison
against the most widely-adopted optimization method (Mass-
Spring) but also against the recent likelihood-based approach
(Maximum Likelihood - Particle Swarm Optimization). The
results showed that ARLCL outperformed the baselines in almost
all scenarios. Our gain in positioning accuracy is also found to
be positively correlated to both the swarm’s size and the signal’s
quality, reaching an improvement of 40%.

Index Terms—Cooperative Localization, Network Localization,
Mesh ranging, Relative Positioning, Wireless Sensor Networks

I. INTRODUCTION

The ability to know accurately where an entity is situated
in space is gaining increasing importance. Localization tech-
nologies are being progressively adopted and standardized,
providing positioning via different techniques. In this work, we
focus on Cooperative Localization (CL) technologies. These
are of great interest as they leverage noisy, yet redundant spa-
tial information to provide estimations of increased accuracy.
Such systems have broad applications, from Vehicular Ad-
hoc Networks (VANETs) and swarms of Unmanned Aerial
Vehicles (UAVs) to submarines and extraterrestrial drones.

In CL systems, for each node to be referenced to a ge-
ographic coordinate system, connectivity is required towards
anchor nodes whose positions are already known. Otherwise,
the swarm’s relative positions become geographically unref-
erenced and invariant under isometric transformations. The
existence of anchors is a requirement in most CL solutions.
However, in many cases, the exact geographic coordinates
of nodes are not of major importance. Instead, the relative
positioning and distances remain the prime interest.

At the same time, CL systems remain highly susceptible to
flip-ambiguities. Viewing the system as a graph, rigidity theory
shows that flip-ambiguity occurs when a sub-graph flips across

an axis without edge constraints violations [1]. In other words,
when sub-groups of correctly positioned nodes (in the sub-
group) are connected with other such sub-groups, incorrectly.
Literature acknowledges flip-errors as a major challenge that
becomes prominent in scenarios involving anchor-less systems
and swarms with irregular deployments [2], [3].

Our research aims to increase the performance of services
that localize nodes by measuring the distance (ranging) be-
tween them and, if available, towards other reference sources.
This requires addressing several key challenges in the field,
with arising research questions on how can a CL system
become independent from anchors while remaining robust
against flip-ambiguities, and how can such a system be a gen-
eralized framework that can support any ranging technology.

Having addressed these challenges, we present a novel
anchor-free CL framework that supports ranging with any
signal of modellable uncertainty, from Global Navigation
Satellite Systems, WiFi, and Bluetooth, to acoustic waves.
Likewise, any ranging technique can also be used, including
Time Difference of Arrival (TDoA), Time of Arrival (ToA), or
even Received Signal Strength (RSS). In the case of RSS, its
low acquisition cost and simplicity make its utilization quite
tempting. Yet, its unpredictability due to a plethora of noise
sources such as Non-Line-of-Sight (NLOS) propagation, shad-
owing, etc., often renders it unsuitable for robust solutions.

Our work’s contribution is the synthesis of the following:
1) A novel ranging-likelihood CL method called ARLCL

that is not only independent from anchors and any prior
information about the nodes’ positions but is also technology-
agnostic and, thus, suitable for all ranging technologies.

2) An extensive evaluation against today’s most adopted and
latest approaches, targeting deployments with irregular shapes
and using real-world collected Bluetooth measurements.

3) To facilitate the reproduction of our results and future
comparisons, we openly release ARLCL source code1.

The remainder of this paper is organized as follows: Sec-
tion II provides a review of the most relevant work on ranging-
based CL. Section III presents our system model. ARLCL, our
proposed method for Cooperative Localization, is presented
in Section IV. Section V describes the evaluation framework
for assessing the performance of ARLCL against the most
established CL approach and describes the outcomes. Finally,
conclusions and future works are outlined in Section VI.

1https://doi.org/10.5281/zenodo.7552461



II. RELATED WORK

In a typical CL system, the unknown positions of a swarm
of nodes are estimated based on inter-exchanged signals and
communication with nodes at known positions (anchors). The
localization is performed by a solver function in a centralized
or distributed manner. The estimation technology may vary;
from RSS-based ranging given a path-loss model [4], to
complex ranging approaches such as Doppler frequency [5].
However, due to multipath conditions and environmental dy-
namics, measurements are affected by noise, rendering the
associated problem highly non-convex and often intractable.

Non-Bayesian approaches based on Least Squares (LS) have
been widely used, with recent notable contributions introduc-
ing systems of dynamic ranging models to support changing
environments [4]. These approaches typically make use of
Gauss-Newton, Particle Swarm Optimization [6], or Steepest
Descent methods to iteratively converge to optimal solutions.
However, when the problem becomes highly nonlinear, reach-
ing the global optimum becomes challenging. For that reason,
a relaxation on the objective function using Semi-Definite Pro-
gramming (SDP) [7] and Second-Order Cone Programming
(SOCP) [4] has been suggested. Yet, transforming a non-
convex optimization function into a convex one via relaxation
introduces the risk of converging to a global optimum far from
the initial solution set.

Another non-Bayesian approach where positions are treated
as unknown deterministic parameters is the Maximum Likeli-
hood Estimation (MLE) [8]. Contrary to LS, MLE exploits
the statistical properties of the noise sources, making the
estimation more robust to measurement errors. Although it
is asymptotically efficient when enough measurements are
available, its complexity is increased, with its performance
remaining dependent on the solver’s initialization.

Several Bayesian methods have also been proposed that
consider the positions as a realization of a random variable.
Here, a posterior distribution of positions is determined for the
estimations. One notable example is Sum-Product Algorithm
over a Wireless Network (SPAWN) [9], a framework for the
systematic design of CL algorithms based on factor graphs
and the Sum-Product Algorithm (SPA) [16]. Even though
SPAWN offers high performance and is well generalizable and
applicable not only to Bayesian and classical methods, but also
to both distributed and centralized scenarios, it suffers from
high computational complexity and relies on anchors.

The Generalized Approximate Message Passing (GAMP)
procedure [17] is an alternative to SPAWN. This has been
used in the 3D Geographical Information Enhanced Uni-
versal Cooperative Localizer (3D GIE-UCL) [5] as a more
simplified, but still robust CL approach for VANETs in 3D
space and under varied ranging methods. Moreover, this work
introduces GPU acceleration support and a lightweight impor-
tance sampling (particles) for estimating the marginal posterior
Probability Density Function (PDF) of the nodes’ positions.
Nevertheless, some critical points reflect the need again for
anchors and even building map information.

Soft Range Information (SRI) localization [10], [18] is
based on machine-learning methods. According to SRI, the
solver does not rely solely on the estimation for the most likely
distance, but instead it is able to account for the likelihood
of all possible distances (ranging-likelihood). However, this
method is demonstrated using highly accurate Round Trip
Time (RTT) measurements, while additionally, no assessment
is provided for anchor-free scenarios.

Among the aforementioned works, [7] has been the only
Anchor-Free CL system. This problem is tackled by other
approaches using non-probabilistic Mass-Spring (MS) models
such as the Anchor-Free Localization (AFL) [11], or the
Distributed Anchor-Free Localization (DAFL) [12]. Here, the
distances are depicted as springs of varying equilibrium, con-
necting different node masses [19]. In that sense, the system’s
overall equilibrium state represents a placement solution of
minimum tensions. The most recent Anchor-Free CL approach
assessed with RSS measurements is Particle-Assisted Stochas-
tic Search (PASS) [15]. Unlike MS, PASS is a centralized
Bayesian method based on Maximum Likelihood - Particle
Swarm Optimization (ML-PSO) [6], [20]. Its particles offer
a search mechanism for the non-convex objective posterior
location estimator that can find the global optimum with a
higher probability [20].

Although MS [11] and ML-PSO [6], [20] constitute the
basis for the most adopted and latest RSS-based approaches
respectively, they either neglect the measurement’s uncertainty
or assume a Gaussian positional error. This introduces a
strong assumption since the position error depends on the
distance between nodes following a log-normal law [19].
Moreover, they do not utilize mechanisms to mitigate flip-
ambiguities which, especially in irregular deployments, impose
a great challenge for CL systems [3], [21], [22]. This means
that when the nodes’ deployment does not span towards all
directions (e.g. passengers inside a train), it becomes difficult
for the solver to produce estimations without flips across
the non-extended sides, as there is no spatial information
from neighbors available. ARLCL, on the contrary, respects
these points and is designed to support both centralized and
distributed setups. For the evaluation of our method, we offer
an implementation of these three approaches, and we openly
release the source code as a common base for comparisons.

Table I presents a summary of the discussed related works.

III. SYSTEM MODEL

This section provides a comprehensive understanding of
the system model and lays the foundation for the subsequent
presentation of the proposed methodology and evaluation.
In summary, we consider a network of wireless devices,
each capable of transmitting and receiving data packets. We
outline the true and estimated positions of the devices, the
measurement sets, and the probabilistic signal propagation
model for the radio signals. Finally, we formulate the lo-
calization problem as the minimization of an error function,
aiming to estimate the devices’ positions based on the set of
measurements.



TABLE I
SUMMARY OF RELATED WORKS

Method Opt. Approach Ranging AF Distr. Major Contribution

S. Chang et al. [4] LS & SOCP RSS - - Supporting unknown path-loss model
S. Tomic et al. [8] MLE & SDP/SOCP RSS - - Supporting unknown path-loss model
3D GIE-UCL [5] GAMP & Particle-based Diverse - ✓ GPU accelerated for real-time operation

SPAWN [9] Factor Graphs RTOA - ✓ Well generalizable, supporting mobility and sensor fusion
SRI [10] Ranging-Likelihood RTT - ✓ Robust to the non-linearity of ranging noise
AFL [11] MS - ✓ ✓ Became the basis for many future works

DAFL [12] MS RSS ✓ ✓ Complete decentralization compared to AFL
S. Nawaz & S. Jha [13] MS - ✓ - Showed the value of constraints for distant nodes

J. Eckert et al. [14] MS Acoustic ✓ ✓ Good scalability reported
G. Calafiore et al. [7] LS & SDP - ✓ ✓ Use of steepest descent with auto-computed step sizes

PASS [15] Particle-based RSS ✓ - Good convergence of the objective function
ARLCL Ranging-Likelihood RSS ✓ ✓ Robust to the non-linearity of ranging noise

Without loss of generality due to the dimensionality re-
duction in Euclidean space, we consider a scenario in
which N wireless devices, indexed by an ordered set A =
{1, 2, . . . , N ≥ 3} ⊆ N, are located on a bidimensional
plane. Let P = {pi | i ∈ A} denote the set of the devices’
true positions, where ∀i ∈ A : pi ∈ R2. We assume that
∀(i, j) ∈ A2, i ̸= j : pi ⊥⊥ pj . Each device i can receive and
transmit wireless data packets from at least two other devices.
We note that no full connectivity is required with the rest of
the swarm. For each device i, let Bi ⊂ A, i /∈ Bi denote
the set of its neighbors, defined as the set of those devices
that have received at least one data packet from device i. For
every k-th data packet sent by device i and received by j,
device j computes a measurement zi,j,k ∈ RM , where the
value of M and the physical meaning of each component
of the M -dimensional vector depends on the set of the M
different techniques used to compute ranging measurements
(e.g., ToA, Angle of Arrival (AoA), RSS). In this paper, for
sake of clarity, we assume ranging based on RSS signals only
(M = 1, zi,j,k ∈ R). We assume that every device j ∈ Bi
has received Ki,j ∈ N data packets from device i ∈ A.
For each couple of devices (i, j) ∈ A × Bi, we define the
measurement set zi,j = {zi,j,k : k ∈ {1, . . . ,Ki,j} as the
set of all measurements computed by receiver device j for all
Ki,j data packets sent by device i. We define the set of all
measurement sets in the system as Z = {zi,j | i ∈ A, j ∈ Bi}.

ARLCL is not bound to some ranging technology and
has already been verified using Ultra-WideBand (UWB)
transceivers deployed loosely across our building. Yet, for
the current paper’s assessment, we consider Bluetooth Low
Energy (BLE) RSS measurements to assess its performance
even for a technology that is typically unsuitable for ranging.
The signal power of such RF signals decays proportionally to
d−α, where α is a path loss exponent (PLE) that depends on
the environment and d is the distance from the signal source.
For Free-Space Path Loss (FSPL) models, α = 2, while
studies suggest alternative values of α for other propagation
environments [23]. Assuming P ′(0)[W] as the signal power at
the source, the signal power P ′(d)[W] at distance d[m] from
the source is P ′(d) = P ′(0) ·

(
4πd
λ

)−α
, where λ is the signal’s

wavelength. We formulate the signal power P̄ (d) in dBm at
distance d from the source as

P̄ (d) = 10 log

(
P ′(d)

1mW

)
= P0 − 10α log

(
d

1m

)
(1)

where P0[dBm] = 10 log ( P
′(0)

1mW ·
π4m
λ ) is the power at 1m.

We assume that every RSS measurement received by node
i from any node j ∈ Bi is normally distributed with average
P̄ (di,j) and constant variance σ2

dB (2).

zi,j,k ∼ N
(
P̄ (di,j), σ

2
dB

)
, ∀k ∈ Ki,j (2)

∀k ∈ Ki,j we can write zi,j,k as the sum of the expected
power P̄ (di,j), expressed in dBm, and a zero-mean Gaussian
noise ϵi,j , expressed in dB, with variance σ2

dB (3). It is
worth mentioning that P̄ (di,j) depends non-linearly on the
distance di,j between nodes i and j, and that the random
variables {ϵi,j ∼ N (0, σ2

dB) | ∀i ∈ A, j ∈ Bi} are mutually
independent and identically distributed (i.i.d.).

zi,j,k = P̄ (di,j) + ϵi,j , ∀j ∈ Bi,∀i ∈ A,∀k ∈ Ki,j (3)

We assume that signal propagation follows the probabilistic
model Lz(d), which is generic and applicable to any ranging
technology. This model can relate a measurement z to an
a posteriori PDF f(d | z) conditioned on the measurement
z. Although this function could be used to extract a single-
distance estimation (e.g. the expected value or mode), ARLCL
uses the entire distribution during the localization process.
Using the whole distribution instead of point estimates allows
us to take advantage of the whole information contained in the
PDF about the relative likelihood of every possible distance.
Different ranging-modeling approaches may lead to different
density functions. These always remain proportional to the
product of the ranging likelihood and the prior distribution of
the measurements. We assume an uninformative prior for the
distribution of any node’s position (π

0
(pi) = 1,∀i ∈ A), so

the model family that ARLCL requires may be defined as:

Lz(d) ∝ f(d | z). (4)

The set P is unknown and we aim to compute its estimate P̂
based on a set of measurements Z . When the device j ∈ Bi



performs ranging towards node i, it means that it produces
an estimate d̂i,j of the true distance di,j = ∥pi − pj∥ ∈ R
between them. Since each measurement z is noisy, the esti-
mated distance d̂i,j is also noisy. Given the pairwise noisy
measurement set Z of N wireless sensor nodes located at
positions P , the final CL problem ARLCL aims to solve is to
compute an estimate P̂ that minimizes the error function

ε(P, P̂) = 1

N

N∑
i=1

∥pi − p̂i∥
2
, pi ∈ P and p̂i ∈ P̂. (5)

IV. METHODOLOGY

This section presents the methodology of the cooperative lo-
calization framework, ARLCL. First, we explain, with the help
of factor graphs, the ranging model’s role in the final objective
function, where measurements are related probabilistically to
underlying distances. Then, we detail the offline and online
key phases of the ARLCL process (during which the estimated
positions are iteratively refined), addressing factors such as
the adjustment of the ranging model, optimization order, and
positioning convergence.

A. From Measurements to Objective Function

ARLCL requires a ranging model, often acquired during
an offline phase, which is associated with some Line-of-Sight
(LOS) or NLOS environment. Such a ranging model is used
to relate a measurement to an underlying distance and is a
typical requirement in CL systems. From a graphical model
perspective [24] let us introduce the function ψi,j as the clique
potential between node i and j, described by our ranging
model Lz(d). We also define the local potential ψi as the
representation of the prior probability distribution for pi. We
can model pi as a random variable in a Markov Random
Field [9], [25], and consider all inter-node measurements
zi,j . For the uniform cases, where we have no information
about the i-th node’s position, ψi can be replaced with an
improper prior ψi = 1. The pdf f({pi}i∈A | Z) of the joint
posterior probability distribution of the positions of all nodes
in the system is proportional to the nodes’ position likelihood
(6) multiplied by the node’s position prior probability. The
Hammersley-Clifford theorem allows us to write:

f({pi}i∈A | Z) ∝
∏
i∈A

ψi(pi)
∏
j∈Bi

ψi,j(pi,pj). (6)

We could use Bayesian estimators such as Minimum Mean
Squared Error (MMSE) or Maximum A Posteriori (MAP) on
the marginal posterior distribution of pi to obtain a point
estimate p̂i. This implies the integration of (6) as

f(pi | Z) =
∫
RN−1

f ({pi}i∈A | Z) dpi:N\i (7)

where pi:N\i denotes the positions of all nodes except
i’s. The number of nodes has an exponential impact on
the complexity of the marginalization. Depicting the network
system as a factor graph enables us not only to simplify the
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Fig. 1. Depiction of a CL network as a factor graph.

marginalization task, but also to distribute the computation
across all nodes [24]. A factor graph is a bipartite graph that
can be used to represent the factorization of a joint distribution
like (6) into local functions. The graph’s vertices are classified
into two types: the variable nodes pi (circles representing the
random variables of the distribution) and the factor nodes
ψi and ψi,j (squares representing a specific factor in the
probability distribution). The edges connecting the variable
nodes to the factor nodes represent the functional dependence
between the variables and the factors. Figure 1 provides a
representation of a CL network as a factor graph. Here, the
factor ψi represents the prior information about i’s position,
namely ψi(pi) in (6), and the factors ψi,j represent the ranging
likelihood between two variable nodes. Each edge shows on
which variable, a factor depends. The grey area enclosing all
available factors dependent on p2 designates the information
required for producing an estimation about p2.

Obtaining now the marginal distribution ("belief") of each
variable pi in (7) becomes easier through message passing.
The Sum-Product Algorithm (often referred to as Belief Prop-
agation) is a suitable candidate for such a technique [24]. It is
an iterative algorithm that allows us to calculate the marginal
posterior distribution f(pi | Z) over a graph through the
exchange of statistical messages between adjacent nodes.

According to the SPA scheme [16], the exchanged mes-
sages can be of two types; namely, messages from a factor-
node ψi,j or ψi to an adjacent variable-node pi (denoted
as mψi,j→pi

(pi) or mψi→pi
(pi) respectively), and mes-

sages from a variable node to a factor node (denoted as
mpi→ψi,j

(pi)). As depicted in Figure 1, the bidirectional
ranging measurements can allow the corresponding factor-
node ψi,j to exchange messages with exactly two variable
nodes. These types of messages are given as

m
(t)
ψi,j→pi

(pi) ∝
∫
ψi,j(pi,pj)m

(t)
pj→ψi,j

(pj) dpj , (8)

m
(t)
ψi→pi

(pi) ∝ ψi(pi) (9)

where t denotes the iteration step of SPA. Essentially,
mpj→ψi,j (pj) embodies the collective knowledge of pj that
has been fused with the participation of all its neighbors,



except the neighbor towards which it is propagated. These
are the second type of messages (i.e., from a variable node to
a factor node), which are given as

m
(t)
pi→ψi,j

(pi) ∝ m
(t−1)
ψi→pi

(pi)
∏

k∈Bi\j

m
(t−1)
ψi,k→pi

(pi). (10)

After collecting at the variable-node pi all messages from
the adjacent factor-nodes, the belief of the node used to
approximate its posterior distribution is given by

b
(t)
i (pi) ∝ m

(t)
ψi→pi

(pi)
∏
j∈Bi

m
(t)
ψi,j→pi

(pi) (11)

Figure 1 also shows that the factor graph of a CL system is
typically not cycle-free. This means there are no specific "leaf"
and "root" nodes to designate the beginning and end of the
message-passing process. Therefore, the computed marginals
are also not guaranteed to be exact. In such a "loopy" graph,
the belief propagation becomes cyclic and dependent on the
message passing order and iteration depth, until some conver-
gence criterion is reached. Optimal strategies for these will be
provided later in this section.

The collective knowledge that node i has acquired at some
step t, about its neighbor’s positions and the ranging mea-
surements they have towards it, as expressed in (11), suffices
to produce an estimation of its own position. Following this
iterative scheme, ARLCL leverages this knowledge but does
not require any initial information about the nodes’ positions.
Hence, at step t = 0, each node can be assigned any
position, which will be progressively refined throughout all the
iteration steps. Ultimately, according to (4) and since pi,pj
are mutually independent with no prior information available,
each factor-node contributing to the computation of p̂i reflects
the ranging likelihood between the two nodes, where

L(pi,pj | zi,j) ∝ f(pi | zi,j ,pj). (12)

The product of the contributing beliefs in (12), where the
position of each neighbor at step t−1 is assumed to be known,
leads to the objective function that ARLCL is considering for
computing the current most probable position of node i

p̂
(t)
i = arg max

p∈R2

∏
j∈Bi

f(p | zi,j , p̂(t−1)
i ). (13)

An instance of this optimization is illustrated in Figure 2
(which also corresponds to the optimization shown in Fig-
ure 7). Here, four neighbor-nodes have acquired from node
9, four individual measurements. Based on a common rang-
ing model, these measurements have produced four different
beliefs about node-9’s position. Equation (13) is used to fuse
these beliefs into an objective function (contours basemap)
that can be maximized to estimate the position of node 9.
Along with the objective function and node-9’s optimized
position, Figure 2 also illustrates part of the individual be-
lief of neighbor-node 3 (as expressed between their current
positions). Although the actual belief resembles the shape of
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Fig. 2. A slice of neighbor-node’s 3 belief towards node 9.

a "volcano" (given an optimization in two-dimensional space),
a slice of this "volcano" towards node 9, is actually depicted.

The optimization of (13) may be performed in an MLE
or a MAP framework. In this paper, we demonstrate MAP,
constructing the posterior distribution by integrating (2), as

f(d | z) = f(z | d)f(d)∫ +∞
0

f(z | δ)f(δ) dδ
(14)

Since the produced likelihood

L(zi,j | di,j) =
exp

{
− 1

2

(
zi,j−(P0−10α log(di,j))

σdB

)2
}

σdB
√
2π

(15)

has the form κ · exp{g(zi,j ,pi,pj)}, we can reduce its
computation cost by reforming it as

p̂
(t)
i = arg max

p∈R2

∑
j∈Bi

g(p | zi,j , p̂(t−1)
i ) (16)

where the parameters of g depend on the parameters of f .

B. ARLCL Process

ARLCL is assembled into two phases; the offline phase,
where policies and parameterizations are set, and the online
phase, where the nodes’ positions are iteratively refined.

A) Offline phase
During the online phase, several mechanisms and policies

are considered that need to be set in the offline phase. These
are the selection of the ranging model’s parameters, the nodes’
optimization order, and when to terminate the optimization.

1) Adjustment of the ranging model: The acquisition of a
representative ranging likelihood model can be made with the
collection of training data during a survey. Such a process is a
typical requirement and foundation for most CL systems [10],
[26]–[28], including both MS and ML-PSO methods. Equation
(2) is then fitted (typically in a least-squares approach), and
the parameters of g are determined. These parameters could
alternatively be obtained from the literature, yet, different envi-
ronments and hardware introduce different ranging responses.



2) Optimization order: The nodes’ enumeration in A defines
the system’s optimization order. This constitutes a vital step for
ARLCL as it grants it a flip-ambiguity mitigation capability
and faster convergence. In practice, the true swarm’s shape
may expand in various directions and neighborhood densities.
Therefore, it is reasonable to execute the localization in a
spatial order that prevents the process from bouncing randomly
across distant neighborhoods, for which there might be little
effective information available. This results in improved spatial
continuity of the optimization and, thus, reduced occurrence
of clusters that are flipped relatively to other clusters.

To disfavor a spatially incoherent optimization, ARLCL
prioritizes the nodes for which stronger beliefs are available
from their neighbors. Such effective neighbors often form a
common neighborhood. In general, the effectiveness of some
zi,j (measured by neighbor-node j) reflects the likelihood of
the mode distance from which it could have been taken. In
other words, it reflects the likelihood at the distance where (14)
is globally maximized when conditioned on the measurement.

To quantify the volume of information about node i,
ARLCL considers the measurements from its b most effec-
tive neighbors by accumulating their likelihoods. Since (14)
produces densities that are unimodal and are monotonically
increasing with the RSS, we could instead consider the RSS
directly to avoid unneeded computations. Based on the above,
the available information per node (offered by its neighbors)
can be quantified and used to order the nodes accordingly.

3) Positioning convergence: On each iteration step t and
according to the optimization order, the position of a single
node is refined. When all nodes have been considered (i.e., be-
fore t = N +1), the system assesses whether the optimization
should stop. This point signifies the end of a single cycle c (the
period of which is N iteration steps) and the beginning of a
new one. Our criterion is based on the trend of the positioning
changes in the last w cycles. Let ac be the average distance
change between two successive cycles c− 1 and c, with

ac =
2∑N

i=1 |Bi|

∑
i∈A

∑
j∈Bi

∣∣∣d̂(c−1)
i,j − d̂(c)i,j

∣∣∣ , ∀j > i (17)

The positions used to compute d̂(0)i,j (and thus, a1) are those
assigned to the nodes at their initialization. Our statistic con-
siders, across different cycles, the various changes in neighbor-
distances d̂i,j and not the changes of pi themselves. Otherwise,
it would become more prone to spatial fluctuations of entire
neighborhoods often occurring during a CL optimization.

Let O denote the set of positive odd integers greater than
2. Let then A(c) = (ac−w+1, ac−w+2, . . . , ac) be a rolling
contiguous sub-sequence of the last w successive statistics,
with w ≤ c and w ∈ O. The earliest possible element in A(c)

is a1. Moreover, the relation w ≤ c renders the computation of
the first available window A(c) infeasible until c has become
as large as w. Based on the current window’s state at some
cycle c, the convergence estimator can be acquired as

T (c) =
12

w (w2 − 1)

(w−1)/2∑
i=1

i
(
A

(c)
(w+1)/2+i −A

(c)
(w+1)/2−i

)
(18)

To assess whether convergence has been reached at cycle c,
ARLCL checks whether the rolling trend T (c) has reached a
predefined threshold T0. This can be typically set close to 0.

The analytic expression of (18) is derived to enable a
direct and fast computation of the scale factor of a linear
regression, when applied to a set of odd observations which
are indexed equidistantly. Here, the summation’s coefficient
becomes a precalculated constant. Hence, aside from its
speed, the biggest strength of our metric is that it can identify
the cycle, after which no further improvement in accuracy
can be achieved without knowing what this accuracy is.

B) Online phase
ARLCL can operate either in a centralized arrangement

or in a distributed one, where an elected node undertakes
the coordination of the optimization steps. In this mode,
every node i is responsible for estimating (as an individual
optimization step) its own position after having received from
all its neighbor-nodes: 1) their ranging measurements zi,j and
2) the current estimations about their current positions p

(t−1)
j .

1) System initialization: At the initial stage, assuming that
the set of measurements Z has become available, A and Bi
are constructed according to the optimization order policy and
each node i is assigned a random initial position p̂i. Prior
information about positions in P̂ from previous optimization
instances can be used to enable estimations for moving nodes.
Nevertheless, ARLCL does not require any for the first es-
timation. Moreover, although the utilization of anchor-nodes
would enable the positioning estimations to be referenced, our
method does not require any anchor. This results in a set of
estimated positions that are placed in an arbitrary reference
system, where they remain relatively correct. The first cycle
starts once the system initialization has been completed.

2) Execution of the optimization-cycle: This stage involves
the consecutive repetition of the next three stages (3-5) until
all nodes in the queue have been optimized (i.e. when t = N ).

3) Construction of the next step objective function: The
optimization of the next node in the queue (namely, node i)
begins. The latest known position p

(t−1)
j of each neighbor

j ∈ Bi is selected, together with zi,j . These pairs are used
to construct the individual function components g(·) of the
objective function (16). We should emphasize that ARLCL
does not assume or require full connectivity between the nodes
(either for remote or static scenarios). By the end of this stage,
all pairs have been parsed, and (16) has been constructed.

4) Optimization of the objective function: In this stage, the
produced objective function is optimized, and its global max-
imum represents the best estimate p̂

(t)
i . ARLCL implements

by default the Nelder–Mead method, a classical method for
unconstrained optimization without derivatives. Yet, it does
not dictate the use of any specific optimization framework.



5) Update of the currently optimized node: After the esti-
mation p̂

(t)
i is retrieved, it becomes for the next steps (where

node i will be used as neighbor-node j) the prior knowledge
about node j’s position (i.e., p̂(t−1)

j ).
6) Convergence evaluation: With the completion of the

optimization-cycle c and if c ≥ w, ARLCL can check for
convergence to assess whether the process can stop. If not, then
all previous stages besides the initialization are recursively
repeated. These six stages are outlined in Algorithm 1.

Algorithm 1: Online Phase of ARLCL

Input: N , Z , b, trained params of g(·), any P̂prior
Define:
t← 1, c← 1 // Optimization’s iterators
T0 ← 0, w ← 7 // Convergence params

1 CL Initialization:
Build A, Bi, ∀i ∈ A, and P̂ (with latest p̂(0)

i , d̂(0)i,j )
b← 2∑N

i=1|Bi|
, q ← 12

w(w2−1) // Constants

2 Repeat Optimization Cycle:
3 for i ∈ A do
4 p̂

(t)
i ← argmaxp∈R2

∑
j∈Bi

g(p | zi,j , p̂(t−1)
i )

5 Update P̂ with p̂
(t)
i

6 if c ≥ w then
T (c) ←
q
∑(w−1)/2
i=1 i

(
A

(c)
(w+1)/2+i −A

(c)
(w+1)/2−i

)
if T (c) ≥ T0 then

return final P̂ with stats: [T (c), c, A])

else
ac ← b

∑
i∈A

∑
j∈Bi

∣∣∣d̂(c−1)
i,j − d̂(c)i,j

∣∣∣ , ∀j > i

Update A(c) up to ac
c← c+ 1

V. PERFORMANCE EVALUATION

We present ARLCL’s evaluation experiment against
MS [11] and ML-PSO [6], [20] (source code is also released).

The baseline parameters [Opt:105, Step:10−3] and
[Opt:103, c1:0.7, c2:0.3, w:0.9, particles:700] for MS and
ML-PSO respectively, where chosen to provide high optimiza-
tion score instead of optimization speed. The evaluation was
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Fig. 3. Nodes’ positions during the data collection.

performed under extended indoor shapes that have been shown
to be affecting flip-ambiguity the most [21]. Although RSS
ranging with BLE is highly susceptible to environmental con-
ditions (NLOS, multipath, etc.), we do not compare different
ranging approaches (where these are a major factor); rather, the
optimization approaches that are based on a common ranging
model. Therefore, giving importance to the shape conditions
instead of NLOS becomes more sensible.

To develop a shared indoor ranging model, 21 BLE enabled
Raspberry Pi nodes were deployed ten times across a lecture
room (Figure 3). Every node had, at each time, a random
individual orientation. Their true positions and distances were
tracked using a Leica BLK360 Imaging Laser Scanner. For a
duration of 120 s, each node i was transmitting (at 50Hz) and
receiving (from every other node j) advertising packets, whose
RSS was recorded. A total of 18 million measurements were
collected. To identify the parameters α (path loss exponent),
P0 (reference RSS at 1 meter), and σdB , the measurements
were fitted to our ranging likelihood model L(zi,j | di,j).

To enable the assessment of different swarm sizes and
shapes within the already irregular deployment, the initial set
of 21 nodes was used to generate 19 groups corresponding
to N number of nodes, with N ∈ {3, . . . , 21}. Each group
contained CN combinations of N chosen nodes. Constrained
by the maximum number of combinations

(
21
N

)
, for N = 20

and N = 21, we set C20 = 21 and C21 = 1 respectively.
For all other groups, we set Ci = 200,∀i ∈ {3, . . . , 19}.
In these cases, to determine which combinations to keep out
of the possible

(
21
N

)
ones, a sorted pool was used, holding

the average node distances within each swarm. Finally, a grid
selection of CN swarms was performed from the sorted pool.
For example, the 1st node combination in the group of N = 3
is {1,2,4}, while the 200th combination is the swarm {1, 3,
21}. In total, 3422 swarm instances were selected.

In total, 100 different initialization scenarios were examined
per single instance to reduce the standard error in the methods’
comparison. For every scenario, each component of p̂(0)

i was
assigned a random value from −10m to 10m.

For each generated scenario, the true distance di,j between
two nodes was used to acquire, based on our likelihood model
L(zi,j | di,j), the distribution of zi,j . We assessed the impact
of variable noise levels in the measurements by assuming that
every node j received Ki,j = K ∈ {1, . . . , 20},∀(i, j) ∈
A× Bi RSS measurements from each neighbor node i.

Considering zi,j to be the average of all K samples, we use
this information from now on to infer the nodes’ distance. The
generated measurements were shared between all methods.

Our experiment involves (per CL method) the position
estimation of every node in 7.6 million system combinations
of a specific swarm size, set of nodes, initialization state,
and noise level. To quantify the difference between P and
P̂ and, thus, the estimation’s performance ε(P, P̂) in each
system solution, we utilize the cost function defined in (5).
However, since the performed localization is anchor-free, the
difference between the ground truth P and the estimation P̂
also involves a random and unknown translation, rotation, and



Fig. 4. Positioning error per number of nodes for 3 sample-size groups (5/10/20-RSS samples).

Fig. 5. Positioning error per number of samples for 3 node-size groups (5/10/20-nodes).

possibly reflection between the two sets. Therefore, before
evaluating the cost function, we first eliminate this difference
by performing a rigid and correspondence-based registration
between the sets P and P̂ .

The HPC UBELIX cluster at Bern University was utilized
to support this extensive evaluation computationally, allocating
4000 CPU cores across 100 compute nodes for a week.

A. Evaluation Results

The parameters offering the best fit of (15) to our collected
training data, are: α ≈ 1.274, P0 ≈ −53 and σdB ≈ 9.74.
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Fig. 6. Cumulative Distribution Functions (CDFs) of the positioning errors.

Figure 6 presents the cumulative error probability in me-
ters for all evaluated scenarios. We see that up to the 85th

percentile, ARLCL produced estimations of higher accuracy.

More specifically, Figures 5 and 4 show the positioning
errors of the evaluated methods by the number of nodes and
samples. The confidence intervals of 2 standard errors are also
presented, which become larger for the cases of 20 nodes due
to fewer evaluations. We see that in almost every case, ARLCL
outperforms both baselines. Figure 4 suggests that our gain
becomes less for very small swarms, which is explained due
to the low probability of flips in such cases. This is also why
the left group in Figure 5 (N = 5) shows a smaller gain than
the other two groups. In contrast, we see a positive correlation
in our gain as the swarm increases. According to the plots,
the error reduction for the combination of maximal settings
(i.e., N = 20, K = 20) that is introduced by ARLCL is 40%
compared with ML-PSO and 24% compared with MS. Hence,
ARLCL can make progressively better use of the available
collective information as the swarm’s size increases and utilize
additional measurements more effectively.

Comparing ML-PSO to MS, we notice that the probabilistic
ML-PSO outperforms MS for small swarms or limited RSS
samples. However, as the measurements become less noisy
(with the increase of samples), utilizing the likelihood distribu-
tion of the measurements in their method becomes less helpful.
At the same time, when the number of nodes increases, its
complexity makes the discovery of the global optimum more
challenging, leading to even worse performance than MS.

Another observation is that the amount of noise affects
the positioning error monotonically (Figure 5). This means
that factors impacting the measurements, such as NLOS,
reflections, dynamic environment, etc., should cause similar
trends. Regarding the error at a different number of nodes, a
threshold seems to exist (close to small sizes) before and after
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Fig. 8. Estimation residuals (Swarm {1,3,4,9,12}, 36th iteration, K = 19).

Fig. 9. Distribution of positioning errors for the cases of N = 10, K = 10.

which the accuracy improves monotonically with a long right
tail. This happens due to flip-errors [21], where a subgroup of
nodes with relatively correct positions has been connected with
another such subgroup, incorrectly. It results from inadequate
spatial information in the measurements (bonds) for charac-
terizing the correct spatial relationships, leading inevitably to

misaligned node clusters. Their occurrence starts at an early
point (e.g., N = 5) and then increases with the number of
nodes due to the coincidental increase of the likelihood for a
weak bond to arise. Figure 8 shows an example of such flips.
We see that ML-PSO and MS flipped nodes 1 and 4. Yet,
ARLCL can produce a better estimation within three cycles as
depicted in Figure 7. Here, although the estimations are non-
georeferenced and reflected (as no anchors exist), they remain
relatively correct. To stress the impact of flip-ambiguity in the
positioning errors, we show in Figure 9 the distribution of
errors for the average case of N = 10, K = 10. We see that
flips are very common, leading to a bimodal distribution of
errors. However, ARLCL has greater robustness against them.

Although no hard convergence detection was used to in-
terrupt the optimization process for the methods, in the case
of ARLCL (where the refinements are progressive across
the different cycles), we examined the resulting trajectories.
Figure 10 presents, per swarm size and across 20 cycles,
the average convergence towards the accuracy of the final
estimation. We observe that the bigger the swarm is, the slower
the system converges to the final accuracy. For swarms of low
size (N ≤ 5), the estimations reach their maximum accuracy at
the 2nd cycle. On the contrary, for bigger swarms, the required
cycles for achieving the system’s maximum possible accuracy
increase. Lastly, ARLCL’s convergence time for a swarm of
size (N = 21) and with a random initialization was empirically
observed to be approximately between 2 and 4 seconds.

VI. DISCUSSION AND CONCLUSION

In this paper, we presented and demonstrated Anchor-free
Ranging-Likelihood-based Cooperative Localization, a novel
localization framework that considers the cross-ranging mea-
surements between wireless nodes to estimate their positions.
This is performed under a refining scheme of successive opti-
mization cycles offering flip-ambiguity mitigation. Our method
leverages the a priori knowledge of the ranging uncertainty to
assign proper importance to every distance.

An evaluation was also presented against Mass-Spring and
Maximum Likelihood - Particle Swarm Optimization CL
methods. We showed, for a ranging technology known to be
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noisy, that ARLCL introduced an improvement in positioning
accuracy under almost every setting and up to 40%. Our
method was able to extract, by the swarm’s increasing inter-
communication, gradually more spatial information compared
to the baselines. The experiment was designed with the effect
of flip-ambiguity in mind (and less of the environmental
conditions), because the ranging model, measurements, and
technology remained exactly the same for all evaluated meth-
ods. Therefore, assessing a factor impacting the measurement
itself becomes of secondary importance. Our demonstrated
gain is still expected for either open-space scenarios (e.g.,
localization in air, sea) or more complex and dynamic indoor
spaces. It is worth mentioning that preliminary results of a
work in progress, where we deployed 40 UWB transceivers
across 450m2 indoors and under real NLOS conditions, have
shown further performance gain.

As a technology-agnostic method, ARLCL is applicable to
any CL system that uses ranging for its estimations. It does not
depend on any prior positioning information or the existence
of anchors (although it can use them for geo-referencing).
Tracked entities in such systems can span from crowds of
pedestrians and vehicles to UAVs and swarms of robots.

Further improvement in ARLCL’s performance is theoreti-
cally possible, opening up ideas for future work. For example,
researchers could develop a method for statistically identifying
and rejecting flips in the produced solutions or explore ways to
continuously update and refine the ranging-likelihood model
used by the system. The latter could possibly be enabled based
on federated learning over the exchanged messages.

REFERENCES

[1] H. Ping, Y. Wang, D. Li, and T. Sun, “Flipping Free Conditions and
Their Application in Sparse Network Localization,” IEEE Transactions
on Mobile Computing, vol. 21, pp. 986–1003, 2022.

[2] A. A. Kannan, B. Fidan, and G. Mao, “Robust Distributed Sensor
Network Localization Based on Analysis of Flip Ambiguities,” in IEEE
Global Telecommunications Conference, (New Orleans, USA), 2008.

[3] A. A. Kannan, B. Fidan, and G. Mao, “Analysis of flip ambiguities for
robust sensor network localization,” IEEE Transactions on Vehicular
Technology, vol. 59, pp. 2057–2070, 5 2010.

[4] S. Chang, Y. Li, H. Wang, W. Hu, and Y. Wu, “RSS-Based cooperative
localization in wireless sensor networks via second-order cone relax-
ation,” IEEE Access, vol. 6, pp. 54097–54105, 2018.

[5] S. Wang and X. Jiang, “Three-Dimensional Cooperative Positioning in
Vehicular Ad-hoc Networks,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 22, no. 2, pp. 937–950, 2021.

[6] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95 - International Conference on Neural Networks, IEEE.

[7] G. C. Calafiore, L. Carlone, and M. Wei, “A distributed technique for
localization of agent formations from relative range measurements,”
IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems
and Humans, vol. 42, no. 5, pp. 1065–1076, 2012.

[8] S. Tomic, M. Beko, and R. Dinis, “RSS-based localization in wireless
sensor networks using convex relaxation: Noncooperative and cooper-
ative schemes,” IEEE Transactions on Vehicular Technology, vol. 64,
no. 5, pp. 2037–2050, 2015.

[9] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in
wireless networks,” Proceedings of the IEEE, vol. 97, no. 2, 2009.

[10] S. Mazuelas, A. Conti, J. C. Allen, and M. Z. Win, “Soft Range
Information for Network Localization,” IEEE Transactions on Signal
Processing, vol. 66, no. 12, pp. 3155–3168, 2018.

[11] N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, “Anchor-
free distributed localization in sensor networks,” in Proceedings of the
First International Conference on Embedded Networked Sensor Systems,
(Los Angeles, California, USA), pp. 1–13, ACM, 2003.

[12] C. Xunxue, S. Zhiguan, and L. Jianjun, “Distributed localization for
anchor-free sensor networks,” Journal of Systems Engineering and
Electronics, vol. 19, no. 3, pp. 405–418, 2008.

[13] S. Nawaz and S. Jha, “A graph drawing approach to sensor network
localization,” in 2007 IEEE Internatonal Conference on Mobile Adhoc
and Sensor Systems, MASS, (Pisa, Italy), p. 12, IEEE, 2007.

[14] J. Eckert, F. Villanueva, R. German, and F. Dressler, “Distributed mass-
spring-relaxation for anchor-free self-localization in sensor and actor
networks,” in Proceedings - International Conference on Computer
Communications and Networks, ICCCN, (Lahaina, USA), IEEE, 2011.

[15] B. Zhou and Q. Chen, “On the Particle-Assisted Stochastic Search
Mechanism in Wireless Cooperative Localization,” IEEE Transactions
on Wireless Communications, vol. 15, no. 7, pp. 4765–4777, 2016.

[16] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, 2001.

[17] S. Rangan, “Generalized approximate message passing for estimation
with random linear mixing,” in IEEE International Symposium on
Information Theory - Proceedings, (St. Petersburg, Russia), 2011.

[18] A. Conti, S. Mazuelas, S. Bartoletti, W. C. Lindsey, and M. Z. Win,
“Soft Information for Localization-of-Things,” Proceedings of the IEEE,
vol. 107, no. 11, pp. 2240–2264, 2019.

[19] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and
N. S. Correal, “Locating the nodes: Cooperative localization in wireless
sensor networks,” IEEE Signal Processing Magazine, vol. 22, 2005.

[20] R. M. Buehrer, H. Wymeersch, and R. M. Vaghefi, “Collaborative Sensor
Network Localization: Algorithms and Practical Issues,” 6 2018.

[21] O. H. Kwon, H. J. Song, and S. Park, “Anchor-free localization through
flip-error-resistant map stitching in wireless sensor network,” IEEE
Transactions on Parallel and Distributed Systems, vol. 21, no. 11, 2010.

[22] Q. Guo, K. Zhang, T. Du, and S. Qu, “A localization algorithm reducing
flip ambiguities for WSNs with measurement errors,” in 2016 3rd Inter-
national Conference on Informative and Cybernetics for Computational
Social Systems, ICCSS 2016, pp. 143–150, Institute of Electrical and
Electronics Engineers Inc., 10 2016.

[23] A. A. M. Saleh and R. A. Valenzuela, “A Statistical Model for Indoor
Multipath Propagation,” IEEE Journal on Selected Areas in Communi-
cations, vol. 5, no. 2, pp. 128–137, 1987.

[24] H. A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschis-
chang, “The factor graph approach to model-based signal processing,”
Proceedings of the IEEE, vol. 95, no. 6, pp. 1295–1322, 2007.

[25] A. T. Ihler, Inference in Sensor Networks: Graphical Models and Particle
Methods. PhD thesis, Massachusetts Institute of Technology, 3 2005.

[26] S. Sorour, Y. Lostanlen, S. Valaee, and K. Majeed, “Joint Indoor
Localization and Radio Map Construction with Limited Deployment
Load,” IEEE Transactions on Mobile Computing, vol. 14, 5 2015.

[27] S. He, W. Lin, and S. H. Gary Chan, “Indoor Localization and Automatic
Fingerprint Update with Altered AP Signals,” IEEE Transactions on
Mobile Computing, vol. 16, pp. 1897–1910, 7 2017.

[28] F. Zafari, A. Gkelias, and K. K. Leung, “A Survey of Indoor Local-
ization Systems and Technologies,” IEEE Communications Surveys and
Tutorials, vol. 21, no. 3, pp. 2568–2599, 2019.


	1

