
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
8
2
2
5
5

|

d
o
w
n
l
o
a
d
e
d
:

2
6
.
4
.
2
0
2
4

GTP-Force: Game-Theoretic Trajectory Prediction
through Distributed Reinforcement Learning

Negar Emami, Antonio Di Maio, Torsten Braun

Institute of Computer Science, University of Bern, Switzerland
Email: {negar.emami, antonio.dimaio, torsten.braun}@unibe.ch

Abstract—This paper introduces Game-theoretic Trajectory
Prediction through distributed reinForcement learning (GTP-
Force), a system that tackles the challenge of predicting joint
pedestrian trajectories in multi-agent scenarios. GTP-Force uti-
lizes decentralized reinforcement learning agents to personalize
neural networks for each competing player based on their non-
cooperative preferences and social interactions with others. By
identifying the Nash Equilibria, GTP-Force accurately predicts
joint trajectories while minimizing overall system loss in non-
cooperative environments. The system outperforms existing state-
of-the-art trajectory predictors, achieving an average displace-
ment error of 0.19m on the ETH+UCY dataset and 80% accuracy
on the Orange dataset, which is -0.01m and 5% better than the
best-performing baseline, respectively. Additionally, GTP-Force
considerably reduces the model size of social mobility predictors
compared to approaches with classical game theory.

Keywords: Trajectory Prediction, Multi-Agent Social Interac-
tions, Transformers, Reinforcement Learning, Neural Architec-
ture Search, Non-cooperative Game Theory, Clustering.

I. INTRODUCTION

Forecasting mobile users’ motion patterns, whether pedes-
trians or vehicles, has become increasingly important in urban
planning and intelligent mobility systems. It can enable various
technologies, such as intelligent transportation services, safety
and emergency applications, rescue operations, autonomous
vehicles, and road traffic engineering. Similarly, mobility
prediction is a pivotal aspect of enabling various wireless net-
work applications, including adaptive and anticipatory network
management, resource allocation, handover management, and
proactive service migration [5].

In crowded public spaces, mobile users follow certain social
rules such as estimating other users’ mobility status, respect-
ing their space, or avoiding colliding with obstacles. This
suggests a strong mutual influence among nearby users’ mo-
bility patterns and decisions. In this direction, socially-aware
predictors have shown significant improvement over socially-
unaware methods in multi-agent scenarios where users are not
acting in isolation. Recently, the task of mobility prediction
has shifted from individual models to joint models, where
mutual influence among individuals in a complex dynamic
environment helps to form group intelligence increasing the
system’s prediction performance.

While there have been advancements in the area of social-
aware Trajectory Prediction (TP), existing predictors face
significant limitations [1]. One major challenge is neural ar-
chitecture inflexibility, which refers to the inability of existing

models to adapt to new types of input data or incorporate
new features. The majority of the existing works design
the trajectory predictors’ Neural Network (NN) architectures
based on heuristics and experts’ prior knowledge, which is a
time-consuming and error-prone process.

Another limitation of existing social-aware trajectory pre-
dictors is their difficulty in handling non-cooperative social
behaviors. These works mainly utilize centralized models,
where the decision-making power is taken away from indi-
viduals and given to a centralized unit to take an optimal
cooperative decision by aggregating everyone’s data through
a single neural architecture model. Therefore, all mobile users
are considered to behave similarly, so that their motion can be
predicted by the same model and with the same features [6].
However, real humans might rather optimize personal goals
instead of joint strategies, making it challenging for mobility
predictors to accurately forecast their future actions. In a
social setting, a specific NN architecture may be well-suited
to capturing the unique data characteristics of one user, while
severely degrading the prediction performance of other users
due to incompatibility with their data features.

On the other hand, privacy issues and communication net-
work bottlenecks are other concerns regarding uploading large,
private datasets to a centralized server. In this direction, the
research community has introduced Federated Learning (FL)
as a distributed Machine Learning (ML) approach to solve
the centralized ML problems [7]. In a classic FL scenario,
each federated participant trains a local model using its own
dataset and only sends the model weights to a central server.
The server then aggregates the weights from multiple clients
by aggregating them to create a global model, which is then
transmitted back to the local clients to be retrained for several
communication rounds until the convergence. In this context,
FL can be applied to a set of interacting users to create a
decentralized social-aware TP model. This can help to protect
the privacy of users while solving the scalability issues over
the communication networks. However, the challenge with
classical FL [7] is that aggregating through averaging locally
trained models can limit the ability to personalize NN archi-
tectures, as local users must have identical NN architectures
(in terms of number and sequence of layers and neurons) to
enable matrix summation. Consequently, the NN architecture
inflexibility issue arises in distributed TP as well.

To address the above-mentioned limitations, we propose

TABLE I
FEATURES OF EXISTING SOCIAL-AWARE TRAJECTORY PREDICTORS

Characteristics Alahi et al. [1] Bahram et al. [2] Geiger et al. [3] Ma et al. [4] GTP-Force

Social-aware Model (Multi-Agent Setting) ✓ ✓ ✓ ✓ ✓
Intra- and Inter-Cluster Social Interactions - - - - ✓

Reinforcement Learning NN Design - - - - ✓
Decentralized Training Model - - - - ✓

Game-Theoretic Decision-making Polices - ✓ ✓ ✓ ✓
Non-Cooperative Strategic Game - - ✓ ✓ ✓

Simultaneous Game Modeling (Payoff Matrix) - - ✓ - ✓
Sequential Game Modeling (Game Tree) - ✓ - ✓ -

Game-theoretic Trajectory Prediction through distributed rein-
Forcement learning (GTP-Force), a distributed TP system that
trains social Transformers (TFs) to predict joint trajectories of
multiple competing users by personalizing the NN architecture
of each user based on its unique interests while taking into
account other users’ strategies. GTP-Force clusters mobile
users with similar trajectories resulting in inter-cluster users
with distinct trajectories and competing mobility features. The
inter-cluster users are then modeled as players in a non-
cooperative game, with strategic choices made to ensure that
no negative impact is placed on any individual user decision.
To personalize the TF’s architecture for each non-cooperative
player, GTP-Force employs a Reinforcement Learning (RL)
agent that is tailored to the specific mobility data features
of the player, who actually represents the features of the
cluster of users he comes from. This allows intra-cluster
users with similar mobility features to be modeled using a
shared NN, as in our other work [8], while inter-cluster users
with different mobility features are treated as competitive
players in a non-cooperative game. A set of pre-trained NN
weights corresponding to highest-performance RL-designed
TF architectures of each player is then transferred to the
centralized server and a social pooling layer is added to form a
social-aware trajectory predictor that captures the interactions
of multiple interactive players. GTP-Force’s centralized server
trains different social-aware mobility predictors by combining
players’ different decisions (RL-designed TF architectures)
and forms a payoff matrix for the non-cooperative game. The
payoff matrix illustrates the possible rewards or penalties for
various strategy combinations of interdependent players in
a game. The payoff matrix is then returned to individuals,
allowing them to choose an action that guarantees the Nash
Equilibrium in the multi-agent setting.

Our contributions can be summarized as follows. 1. We
propose a novel RL optimization method for developing
high-accuracy and computationally-efficient TF NN trajectory
predictors. 2. We propose an inter-cluster non-cooperative,
but intra-cluster cooperative social game-theoretic trajectory
predictor that effectively captures mobile users’ interdependen-
cies. 3. We validate our proposed trajectory predictor using two
real-world datasets, capturing human mobility at both small
and large scales. The rest of this paper is as follows. Section II
presents the related work. Section III describes the GTP-Force
operation. Section IV evaluates the GTP-Force performance.

Finally, Section V concludes the contributions of this work.

II. RELATED WORK

In recent years, data-driven social-aware predictors are gain-
ing popularity compared to the previously proposed Social-
force models, which use simple repulsive and attraction
forces [9]. The vast majority of modern human-trajectory
predictors are based on deep learning models, such as Re-
current Neural Networks (RNNs), Long Short-Term Memorys
(LSTMs), Convolutional Neural Networks (CNNs), and Atten-
tion NNs, which require less computation and achieve higher
prediction accuracy compared to social-force models due to
their better modeling of sequential patterns [5], [10], [11].
Instead of modeling kinetic forces and energy potentials as
in social-force models, social-pooling [1], [12], attention [13],
[14], and graph [15], [16] mechanisms complement NNs
to share information about neighboring user’s trajectories to
capture complex interactions in crowded urban environments.
Social-LSTM [1], Social-GAN [12], Sophie [14], Social-
Ways [13], Social-STGCNN [16], and STAR [15] are various
examples of social-aware TP models in the existing literature.
Despite the popularity of above models, they face multiple
limitations. The NN architectures used in these predictors are
created manually by experts, which can be a time-consuming
and error-prone process. Moreover, existing models assume
cooperative behavior from all users in a multi-agent envi-
ronment and employ a single NN architecture to train them.
However, in reality, humans tend to optimize their personal
goals, thus, applying a single inflexible NN model can lead to
significant inaccuracies in joint and social TP.

According to the survey conducted by Rudenko et al. [6],
classical AI and game-theoretic approaches hold great poten-
tial for modeling human behaviors in multi-agent settings. As
a step in this direction, Ma et al. [4] and Geiger et al. [3]
are among the few existing papers that partially address the
problem of social-aware non-cooperative TP through Game
Theory (GT) with some limitations. Ma et al. [4] propose a
method for predicting the interactive dynamics of pedestrians
using a combination of GT and deep learning-based visual
analysis via Fictitious Play. In Fictitious Play [4], players
play their best responses to their opponents. Each player
updates their beliefs about the other players’ strategies based
on the observed outcomes and then selects their strategy
for the next round. However, a limitation of this approach

is that Fictitious Play is designed for sequential games and
may not be well-suited for modeling simultaneous games. In
the context of decentralized TP problems, individuals may
take actions simultaneously, necessitating the use of non-
cooperative simultaneous games to more accurately model
their impulsive behaviors. On the other hand, Geiger et al. [3]
propose a game-theoretic framework for predicting the future
trajectories of multiple agents in a social environment, using
implicit layers to learn the best response of each agent in a
Nash equilibrium of the game. The implicit layer is a NN layer
that learns the underlying relationships between input and
output data through a non-linear mapping function. However,
this approach lacks personalized NN models for individual
players to capture their non-necessarily-cooperative charac-
teristics. Personalized NN models can capture the unique
features and preferences of each player, which ultimately leads
to more accurate joint predictions. In contrast, the use of
a single implicit layer to perform non-cooperative TPs may
not be sufficient to capture the full complexity of the social
environment and the individuals within it.

To address the challenge of designing high-performance
personalized neural architectures, some approaches employ
Auto-ML hyperparameter optimization methods, which often
rely on random search models [17]. However, Neural Archi-
tecture Search (NAS) is an NP-hard problem that conventional
optimization methods, such as random search, cannot solve it
in polynomial time as the search space expands. Some other
works use Bayesian optimization methods to tune hyperpa-
rameters in ML models [18]. Bayesian optimization leverages
probabilistic models to search for optimal hyperparameters,
reducing the need for exhaustive evaluations. However, con-
structing a probabilistic model of the hyperparameters and it-
eratively updating it with new observations is computationally
expensive, specifically when dealing with large search spaces.

We propose GTP-Force, which leverages RL to efficiently
design personalized NNs for players participating in a non-
cooperative simultaneous game. The objective of GTP-Force
is to search for the optimal combination of NNs (optimal
strategy profile) among inter-cluster users who participate in
a game-theoretic social TP. The advantage of using RL-based
optimization is its accumulative nature, enabling to partially
train different NN architectures for a limited number of epochs
in each episode. By leveraging RL’s sequential and cumulative
decision-making framework, we can narrow down a vast
search space to find a high-performance neural architecture,
while reducing the computational costs. Table I compares
the characteristics of our solution GTP-Force with those of
existing state-of-the-art social-aware trajectory predictors.

III. GTP-FORCE

A. System Model

We define a scenario in which n users move within an
urban area containing S base stations providing Internet access
via a cellular radio network. Each user has a wireless device
that connects to the base station with the strongest signal.
As users move, the received signal power from the base

Fig. 1. GTP-Force Architecture.

stations changes, which requires a handover to a new base
station. The timestamps at which each user connects and
disconnects from each base station are recorded. We assume
that at any timestamp vu, user u is located at coordinates
(xu, yu) ∈ R2 and may be connected to a base station with
ID bu ∈ N. The vector pu = (vu, xu, yu, bu) ∈ R3 × N
represents a single data point about the user’s status and is
referred to as the user information vector. Each user u has
a total of mu user information vectors recorded. The set of
these vectors Tu = {pu(1), . . . , pu(mu)}, is referred to as the
user’s trajectory, and the set of all user trajectories is denoted
as Θ = {T1, . . . , Tn}.

B. Problem Formulation and GTP-Force Architecture

The GTP-Force workflow is divided into four phases: (1) the
Game Player Selection, (2) the Distributed RL-TF Training,
(3) the Social Interaction Payoff Computing, (4) and the Non-
Cooperative TP, which are illustrated in Figure 1 and elab-
orated hereafter. Figure 1 shows a social trajectory predictor
that trains on data from multiple non-cooperative players and
jointly predicts multiple trajectories that are influenced by each
other’s mobility. Each player is selected from a distinct cluster
that has unique mobility data features. On the user side, it
can be observed that an RL agent is used to design the TF’s
Encoder and Decoder architecture TF(E,D) for each of the
contesting inter-cluster players. On the server side, multiple
TF(E,D)s of different individuals are then merged through a
social pool unit to form a social-aware trajectory predictor and
compute the corresponding payoff matrix values.

1) Game Player Selection: We assume that the n users
in the system can be classified into k clusters of users with
similar trajectories, where k << n. Users are partitioned into
distinct clusters C = ci ⊆ Θ|i = 1, . . . , q, where ci ∩ cj = ∅
for all i, j ∈ 1, . . . , q, i ̸= j. Users within a cluster have
comparable mobility features and can be modeled using a
single TF NN model. In contrast, inter-cluster users have
distinct mobility features and are treated as competitors, each
with their own preferences and desirable strategies. To model
the non-cooperative game among inter-cluster users, we select

one player from each cluster. The selection of a single user per
cluster offers several advantages, including reducing computa-
tional and communication overheads in the wireless network
and facilitating the identification of the Nash equilibrium. For
selecting a player from each cluster, we prioritize those with
the most reliable and periodic data quality. This guarantees that
the users that are chosen to play in the game can design the
best NN for the entire cluster. Since GTP-Force is a distributed
system and the central server lacks access to local users’ raw
data, we propose a quality-estimator metric called regularity
ratio. This metric allows local users to estimate the quality and
periodicity of their own data and only transmit regularity ratio
values to the centralized server through the wireless channel.
This let the server select a player from each cluster with the
most reliable estimated data.

We process the user’s mobility data signal in both time and
frequency domains to define time-domain regularity ratio and
frequency-domain regularity ratio. On one hand, our extensive
experiments have led us to infer that users whose data has
more samples while visiting fewer locations tend to have more
regular mobility patterns, resulting in improved TP accuracy.
Therefore, we define the time-domain regularity ratio of each
user data as the ratio between the total number of data samples
and the number of unique visited locations. Users with a higher
regularity ratio make it easier for NNs to identify periodic
behavior compared to users with a lower regularity ratio. On
the other hand, our observations indicate that converting the
time-series mobility data signal to the frequency domain can
also provide valuable insights. Specifically, a signal with a
high power spectral density with a dominant frequency that is
sufficiently high, coupled with a high Signal-to-Noise Ratio
(SNR), suggests the presence of a strong and well-defined
oscillation at a high frequency, with relatively low levels of
noise. This results in user data that is easier to analyze and
predict, as the oscillations are distinct and identifiable. Thus,
we define the frequency-domain regularity ratio as the ratio
between the SNR and the dominant frequency of the user’s
time-series data. The acceptable threshold of regularity ratios
in both domains is set empirically based on the specific dataset
being used. By combining information from both domains, we
can achieve a decent estimation of the quality and periodicity
of the local user data. The central server selects a user as the
player for the game only if their regularity ratios meet the
threshold criteria in both time and frequency domains.

2) Distributed RL-TF Training: During this phase, each of
the chosen players trains an RL agent on its local data to iden-
tify the most fitting neural architectures for its own cluster’s
data features. Each RL agent uses the ε-greedy Q-learning
policy to list m highest-performance TF architectures’ trained
weights. This list of pre-trained encoder-decoder weights will
be transferred to the server presenting each player’s m choice
of NN strategies that will be played through a non-cooperative
game. In a classic RL, an agent takes an action based on
the environment’s rules that affects the environment’s state
and receives a reward corresponding to the taken action. The
sequence of aforementioned steps is called an episode. In

RL-based NAS, the state signifies the present architecture or
configuration of the NN during a specific moment of the
training process. In each episode, as the RL agent adds a
layer to the current architecture as its action, the environment
evolves into a new state. State transitions in RL capture the
essence of Markov Decision Processes, a powerful framework
for solving sequential decision-making problems. The main
goal of the RL agent is to find an action whose accumulated
reward is maximized over a series of episodes. The RL agent
can take actions from a large, finite search space of admissible
NN architectures called action space. In GTP-Force, the action
space expands to a set of diverse TF architectures made by all
possible combinations of TF hyperparameter values.

TFs are composed of encoder and decoder stacks and
characterized by a large set of hyperparameters named as
the number, characteristics, and sequence of multi-head at-
tention layers, add and norm layers, feed-forward layers, and
dropout layers. The multi-head self attention module, as the
most important element of a TF, contains a self-attention
mechanism that accesses previous segments of input data and
can differently weigh the importance of each segment based
on segments’ pairwise similarities. The self-attention feature
enables parallel training for TFs, which considerably reduces
training time compared to sequential RNNs. Each of the multi-
head self attention layers could possess different numbers of
heads and values for the dimension of attention keys. The
term add in the add and norm layer refers to the TF’s residual
connection that adds the output of a previous layer to the
input of a subsequent layer in order to prevent gradients from
vanishing or exploding during training deep NNs. Add and
norm layers could have different normalization values. Feed-
forward layers could have different numbers of hidden neurons
and activation functions. Dropout layers could have different
dropout ratios. Therefore, the action space can become remark-
ably large relative to the input range of the hyperparameters
(see the RL Agent Actions section of Table II).

At each episode, after the agent proposes a new NN
architecture, by adding a layer to the current NN as its action,
the unknown reward associated with the selected architecture
is evaluated by training the suggested TF on the player’s data
for a few epochs. We assume that on each RL episode t, the
proposed architecture achieves a loss Lt ∈ R, which is defined
as Sparse Classification Cross-Entropy for classification and
Mean Square Error for regression problems. The RL agent
uses a reward function rt = −Lt, to evaluate the performance
of the candidate NN and updates the Q-table to record state-
action transitions using the Bellman equation (Equation 1),
where γ ∈ [0, 1] is the discount factor that regulates the
relevance of recent rewards, s′ is the resulting state from
the action selected by the agent, and R(s′) is the action
space from state s′. We define the cumulative reward r∗t as
r∗t =

∑T ′

k=0 γ
krt+k, where T ′ is the number of episodes used

to compute the cumulative reward. As the number of episodes
increases, the Q-table’s content corresponding to the optimal
policy π tends to Qπ(st, at) = E[r∗t |st, at]. At the end of the

exploration stage, the RL agent enters the exploitation stage
where it selects the m best NN architectures by searching the
m states s∗ corresponding to m most expected cumulative
reward values from the Q-table, as shown in Equation 2.

Qt+1 (s, a) = (1− α)Qt (s, a) + α

(
rt + γ max

a′∈R(s′)
Qt

(
s′, a′))

(1)

s∗ =

(
argmax

(s,a)∈S×R(s)

Qπ(s, a)

)
1

(2)

3) Social Interaction Payoff Computing: At this point, each
player’s trained RL agent sends a list of its m best NNs’
trained weights as its m possible decisions or strategies for
the game to the central server through the available network
throughput. As shown in Figure 1, the central server contains
a social-pool module where multiple users’ transformers’
encoder stacks Ei and decoder stacks Di can be aggregated
forming a social-aware model. This module takes multiple
inputs from multiple users, aggregates them and captures
their interdependencies, and outputs multiple joint predictions.
Each player’s architecture for Ei and Di can be selected
from their list of m top-performing RL-designed transformers,
representing the player’s strategy through the game. The joint
predicted trajectories show each player’s output considering
other players’ strategies, thereby forming the payoff matrix.

GTP-Force models the social TP through a simultaneous
non-cooperative game, where it aims to find the best com-
bination of NNs for different conflicting players so that the
interest of each player is optimized while taking into account
other users’ strategies. In a classic non-cooperative simulta-
neous game, multiple players make decisions simultaneously,
without knowing the decisions made by the other players. Let
K = {p1, . . . , pk} be the set of players, where each player
pj ∈ K can select a strategy σj ∈ Σ among m = |Σ|
possible strategies. The payoff for each player depends on
the combination of strategies chosen by all players. The
game’s outcomes for each player can be represented by a
payoff matrix A ∈ Rmk×k with entries aσ1,...,σk,j , where
σ1, . . . , σk ∈ Σ. Each row of matrix A represents one of the
mk possible combinations of strategies for all players. The
entry a1,...,k,j represents the payoff for player j when the
players choose the strategies σ1, . . . , σk. The matrix A can
be constructed as follows:

A =

 a1,...,1,1 a1,...,1,2 . . . a1,...,1,m
...

...
. . .

...
am,...,m,1 am,...,m,2 . . . am,...,m,m

 . (3)

4) Non-Cooperative TP: During this phase, the central
server sends back the completed payoff matrix to all players
through the wireless link. Each element of the matrix contains
k joint prediction accuracies for k players, revealing the impact
of each player’s strategy on others in terms of social TP. In
the analysis of the non-cooperative simultaneous game, the

concept of Nash equilibrium is of great importance for deter-
mining the best strategy profile (in our case, determining the
best combination of NN architectures) for competing players.
The Nash equilibrium signifies a set of strategies (a strategy
profile) in which no player is motivated to alter its strategy,
provided they are aware of the impacts of the strategies of
the other players. Nash equilibrium is not necessarily the
combination that yields the maximum total or expected payoff,
but rather a set of strategies that is rational given the strategies
chosen by other players. As players act independently and may
not know other players’ deterministic strategies, it may not
always be possible to select the optimal solution.

A strategy profile σ∗ = (σ∗
1 , σ

∗
2 , . . . , σ

∗
k) is a Nash equi-

librium if, for each player j ∈ K, their strategy σ∗
j is

the best response bj to the strategies of the other players,
i.e., ∀σ ∈ Σk : uj(σ

∗) ≥ uj(σ). In this context, uj

denotes the utility function of player j, which represents the
player’s preference over the possible outcomes. In other words,
player j’s strategy σ∗

j is a best response to the strategies
(σ∗

1σ
∗
2 . . . , σ

∗
j−1σ

∗
j+1 . . . , σ

∗
k) chosen by the other players. To

find the best response of player j in a non-cooperative game,
we use the following formula:

bj(σ−j) = arg max
σj∈Σ

uj(σj , σ−j), (4)

where σ−j denotes the strategies of all other players in the
game. To determine whether a given strategy profile is a
Nash equilibrium, we can find the best response of each
player to the strategies of the other players, using the formula
for the best response given above, substituting σ−j with
(σ∗

1 , σ
∗
2 , . . . , σ

∗
j−1, σ

∗
j+1, . . . , σ

∗
k).

Given that players are rational and using the Nash equilib-
rium to personalize the non-cooperative NNs, GTP-Force eval-
uates the performance of the social-aware TP by selecting the
best combination of NAS decisions in a multi-agent scenario.
After the non-cooperative training, GTP-Force distributes the
pre-trained models to all users of each cluster who were not
played in the game from their respective clusters’ players.
This approach ensures that every user in the system can
perform prediction tasks effectively, without compromising the
accuracy or computational complexity of the model.

Algorithm 1 details the GTP-Force system’s workflow. The
first section of the algorithm (lines 1 to 5) describes how
mobile users from contesting clusters are chosen to be the
players of the non-cooperative game. The second section (lines
6 to 22) describes how players train locally the RL-designed
transformers tailored to their unique characteristics. The third
section of the algorithm (lines 23 to 25) describes how social
interaction among players is extracted for different combina-
tions of their strategies to form the payoff matrix. Finally,
the fourth section of the algorithm (lines 26 to 27) explains
how the non-cooperative game can be efficiently played by
satisfying the Nash Equilibrium. Once the optimal strategy
profile has been identified, the joint trajectory prediction can
be performed. The algorithm includes comments indicating
where computations are performed at the central server and

Algorithm 1: GTP-Force Workflow
Input: Set of trajectories Θ and clusters C
Output: Optimal social-TF multi-RL architecture F ∗

k

through Nash Equilibrium
// Compute locally regularity ratio of each user ui

with trajectory Ti and transmit it to the server

1 foreach Ti ∈ Θ do
2 Compute Regularity Ratio ri;
// Build a social transformer Fk, ∀ck ∈ C

3 foreach ck ∈ C // 1. Game Player Selection

4 do
// Elect the user with max regularity ratio as the

player by the server and let the player knows

5 pk ← argmaxuk∈ck r(uk) ;
// 2.Distributed RL-TF Training
// Locally initialize RL agent Ak to optimize the

TF architecture using data of player pk

6 Ak ← InitAgentRL(γ, α, ε, ε0)
// Initialize state-action table to zero for all

states and actions

7 ∀(s, a) ∈ S ×A : Q(s, a)← 0;
// Initialize exploration probability ε to maximum

and empty architecture state

8 ε← 1, s← ∅;
// Optimize TF architecture up to vmax episodes

9 foreach v ∈ {1, . . . , vmax} do
// Decrease exploration every vmaxε0 episodes

10 if v mod vmaxε0 = 0 then
11 ε← ε− ε0;

// ε-greedy to select next TF architecture

12 if RandomSample([0, 1]) ≤ ε then
13 av ← random action a ∈ A(s);

14 else
15 av ← argmaxa∈A(s) Q(s, a);

// Update state according to action av

16 s′ ← UpdateState(s, av);
// Train the TF with data of the

representative user pk for a few epochs θs
and compute model error w and reward ρv

17 s′∗ ← Train(s′, rk, θs);
18 w ← ComputeModelError(s′∗, rk);
19 ρv ← 1/w;

// Update Q-learning table by Bellman equation

20 Q (s, av)← (1− α)Q (s, av) +
α
(
ρv + γmaxa∈A(s′) Q (s′, a)

)
;

21 s← s′;
// Select m trained NN weights with lowest loss

22 Wk ← argmaxW ′⊆{w1,...,wm} Q(s, ·) ;
// Transmit locally-trained Wk to the server
// 3. Social Interaction Payoff Computing

23 foreach σ ∈ {1, . . . ,mk} do
// Train the Social-TF for k players with k

Encoders connected to k Decoders through one
Social-Pool by the server

24 Fk ← Train(fk, ck, θs);
// Form the Payoff Matrix A from strategy σk and

prediction accuracy Fk and send A to local players

25 A← (σk, Fk),∀k ∈ K;
// 4. Non-Cooperative Trajectory Prediction
// Compute locally Nash Equilibria through finding the

best response of player j ∈ K

26 bj(σ−j)← argmaxσj∈Σ uj(σj , σ−j) ;
27 F ∗

k ← σ∗ = (σ∗
1 , σ

∗
2 , . . . , σ

∗
k);

where they are carried out locally by decentralized players.

IV. EVALUATION

A. Experimental Setup

In our evaluation, we compare the performance of
GTP-Force against several mobility predictors in small-scale
and large-scale mobility scenarios. We leverage the TF NN
architecture, implement the RL process, and simulate GT
along with other state-of-the-art TP models using Keras, Ten-
sorFlow, TensorFlow GPU, and Nashpy open-source libraries.
The constant parameters used to train the Social TP model, TF
predictor, and RL agent used through GTP-Force are shown in
the first two sections of Table II. Additionally, the third section
of Table II displays the search space of hyperparameters that
form the transformer architecture, with each row correspond-
ing to one of the RL’s potential actions. After clustering similar
trajectory users and reducing the number of players in a non-
cooperative game, we are able to solve the Nash equilibrium
using a brute force approach. However, it should be noted that
finding a Nash equilibrium is a computationally challenging
task and the brute force approach may not be practical for
large games involving many players. In such scenarios, we
consider using more advanced algorithms or heuristics, such as
the Lemke-Howson algorithm, which can offer more efficient
solutions for finding Nash equilibrium.

1) Small-scale Scenario: In the small-scale scenario, we
consider a limited moving area of users covering only a
few tens of meters. In this scenario, base station information
is irrelevant and has no impact on the TP task. Instead,
the mobility is characterized by the sequence of location
coordinates. The ETH and UCY public datasets are used to
gather information on small-scale pedestrian mobility in urban
settings. A total of 1536 pedestrian trajectories are extracted
from the datasets with a sampling rate of 0.4 s using the
method described in [11]. Unique user data is saved separately
to simulate a distributed-dataset scenario. The ETH dataset
contains data from two urban locations (ETH and Hotel), while
the UCY dataset includes data from three urban locations
(Univ, Zara1, and Zara2). Each trajectory Tu in this scenario
consists of a sequence of up to 100 user information vectors
pu = (vu, xu, yu), where the timestamp granularity of any two
consecutive vectors is 0.4 s. The prediction models are trained
to observe a user’s trajectory over the past Tobs = 8 timestamps
(3.2 s) and predict the next Tpred = 12 timestamps (4.8 s) to
allow for a fair comparison with state-of-the-art works using
this popular dataset. In this scenario the goal of the mobility
predictor is to forecast next location coordinates, and thus, TP
is modeled as a regression problem.

To assess the performance of GTP-Force in predicting future
location coordinates of users in the small-scale scenario, we
compared it with several social-aware trajectory predictors
including: Social-LSTM [1], Social-GAN [12], Sophie [14],
Social-Ways [13], Social-STGCNN [16], STAR [15], IN-
TRAFORCE [10], and FedForce [8], based on their Aver-
age Displacement Error (ADE). The displacement error in
predicting the trajectory of user u over a prediction window

of Tpred, given the observation window of Tobs, is defined as
the average squared Euclidean distance between the predicted
points of the trajectory and the true locations, expressed as:

E(u) =
1

Tpred

Tobs+Tpred+1∑
t=Tobs+1

(x̂t
u − xt

u)
2 + (ŷtu − ytu)

2. (5)

To evaluate the performance of the prediction models, we use
the ADE calculated as the average of the E(u) values over n
users as 1

n

∑n
u=1 E(u).

2) Large-scale Scenario: In the large-scale scenario, the
users are assumed to be moving over a large area that covers
several kilometers, and their specific location within a small
area over a short time window is not relevant. Instead, their
mobility is characterized by the sequence of base stations to
which they connect over time. The dataset used in this scenario
was provided by Orange S.A., France, containing management
data of a private cellular network, which includes timestamps
and base station IDs to which each of the 1.3 × 106 users
connect while moving over a Paris district between July and
September 2019 [5]. User identities have been anonymized
for privacy reasons, and the location coordinates of the 131
identified base stations are not available. In this scenario, user
trajectories consist of sequences of a few thousand information
vectors, where the timestamps of any two consecutive vectors
are a few minutes apart. To simulate a distributed-dataset
scenario, we generate a local dataset for each user by splitting
the Orange dataset into several sub-datasets, grouping samples
by unique user IDs, and storing these local datasets on each
user. We assume that the predictor processes a user’s past
trajectory for the previous Tobs = 16 timestamps and predicts
for the future Tpred = 1 timestamp. In this scenario the goal
of the mobility predictor is to forecast next base station IDs,
and thus, TP is modeled as a classification problem.

For evaluating the GTP-Force performance in predicting
future base station IDs in the large-scale scenario, we conduct
two experiments. In the first experiment, we compare the
prediction accuracy and build time of Reinforced Transformer
(RL-TF) with several other trajectory predictors, including
NN-based predictors RL-CNN, RL-LSTM, HO-LSTM, and
GS-LSTM, as well as non-NN predictors J48 Decision Tree,
and XGBoost and RF ensemble models. RL-LSTM uses RL
to optimize LSTM architecture, while HO-LSTM and GS-
LSTM use Hyperopt (Auto-ML) and Grid Search, respectively.
The aim of this experiment is to demonstrate that TFs and
RL outperform other ML predictors and hyperparameter op-
timization models. In the second experiment, we evaluate the
performance of the GTP-Force, applying GT to competing
RL-TFs, as a social-aware TP model in terms of accuracy
and model size performance metrics, in comparison to RL-TF
without GT, GT-based TF without RL personalization (GT-
TF), and the classical social-aware model using TFs without
GT and RL (Social-TF). Accuracy is defined as the ratio
of correctly predicted next locations to the total number of
predictions made by the model. Build time and train time
correspond to the time to build and train the personalized

TABLE II
PARAMETERS FOR SMALL-SCALE AND LARGE-SCALE SCENARIOS

Transformer Parameters

Batch size (small-scale, large-scale) 10, 200
Learning rate decay 0.002
Social Transformer training epochs θl 200
Early stopping patience (in epochs) 10
Early stopping improvement delta threshold
(small-scale, large-scale)

0.05, 0.1

Dense layers’ activation func. (hidden, output) ReLU, SoftMax

Reinforcement Learning Parameters

Maximum RL training episodes vmax 500
Training epochs per episode θs 20
Discount factor γ, learning rate α 1, 0.01
Exploration rate decay ε0 0.1
Training target per episode (small-scale) η 0.05
Training target per episode (large-scale) η 0.1
Exploration training validation (small-scale) 4 sets train, 1 set test
Exploration training validation (large-scale) 10-fold x-validation,

70% train, 30% test

RL Agent Actions: Transformer Hyperparameters Space

Number of hidden layers 10, 11, . . . , 50
Number ξ of encoder and decoder layers 1, 2, 3, 4, 5
Number of heads h in a multi-head attention
layer

2, 4, 6, 8

Dimension of the key for a self-attention layer 64, 128, 265
Normalization layer parameter 10−2, 10−3, 10−6

Number of perceptrons in dense layer 20, 50, 80, 100, 150
Dropout ratio in dropout layer 0.15, 0.25, 0.5, 0.75

TABLE III
AVERAGE DISPLACEMENT ERROR (ADE) [M] OF DIFFERENT SOCIAL

TRAJECTORY PREDICTORS FOR THE SMALL-SCALE SCENARIO
(ETH+UCY DATASETS)

Work ETH Hotel Univ Zara1 Zara2 Mean

Social-LSTM [1] 1.09 0.79 0.67 0.47 0.56 0.72
Social-GAN [12] 0.81 0.72 0.60 0.34 0.42 0.58
SoPhie [14] 0.70 0.76 0.54 0.30 0.38 0.54
Social-BiGAT [19] 0.69 0.49 0.55 0.30 0.36 0.48
Social-Ways [13] 0.39 0.39 0.55 0.44 0.51 0.46
Social-STGCNN [16] 0.64 0.49 0.44 0.34 0.30 0.44
PECNet [20] 0.54 0.18 0.35 0.22 0.17 0.29
STAR [15] 0.36 0.17 0.31 0.26 0.22 0.26
INTRAFORCE [10] 0.31 0.24 0.22 0.14 0.23 0.22
FedForce [8] 0.28 0.21 0.22 0.14 0.19 0.20
GTP-Force 0.27 0.17 0.21 0.16 0.18 0.19

model by RL agent and the average time to train multiple
users individually or in the social GTP-Force framework,
respectively. We define model size as the total number of a
NN’s training parameters.

B. Results

1) Small-scale Scenario: Table III shows the results of
the small-scale experiment (ETH+UCY datasets), in which
GTP-Force achieves the lowest ADE, 0.19m, compared to
several state-of-the-art social trajectory predictors. Our other
works, INTRAFORCE [10] and FedForce [8], focus on cen-
tralized and decentralized models respectively for intra-cluster
cooperative-user social interaction extraction. We can observe

6 7.5 9 10.5 12
x-axis (m)

-1

0.5

2
y-

ax
is

(m
)

LSTM Prediction
Ground Truth
TF Prediction
Observation

Fig. 2. TF- and LSTM-predicted trajectories versus the ground-truth path
for the ETH+UCY datasets.

9 10.5 12
x-axis (m)

-1

-0.25

0.5

y-
ax

is
(m

)

RL-TF Predictions
Ground Truth

Fig. 3. Various RL-designed TF predictions for the ETH+UCY datasets.

that GTP-Force model outperforms both INTRAFORCE and
FedForce due to its capacity of modeling adversaries.

Figure 2 displays predicted trajectories by both TF and
LSTM, as compared to the ground-truth trajectory. We observe
that the optimal RL-designed TF path more closely resembles
the ground-truth than the optimal RL-designed LSTM path.

Figure 3 depicts various RL-designed TFs’ predicted trajec-
tories as compared to the ground-truth path. This figure’s goal
is mainly to show the impact of different combinations of TF
hyperparameters, forming a specific neural configuration, on
the predication performance.

2) Large-scale Scenario: The results obtained from the
large-scale experiment (Orange dataset) reveal that utilizing
RL to explore the NN architecture of the TF, and GT to
model the decision-making of non-cooperative multi-agent NN
designs leads to superior prediction accuracy, expedited model
building time, and reduced training parameter size compared
to other trajectory prediction methods.

In Figure 4a, we compare the Kernel Density Estimation
(KDE) of accuracy between RL-TF and other predictors. KDE
of accuracy refers to the estimation of the distribution of
prediction accuracy values across the trained and tested 100
random users. It can be observed that the distribution of user
prediction accuracy for RL-TF is biased towards higher values,
indicating that it is better at predicting user trajectories with
greater precision. Individual RL-TF achieves mean accuracy of
(75%), which is 10% better than the other reinforced models
(RL-LSTM and RL-CNN) and almost 20% higher than non-
NN models (XGBoost, RF, and J48). Achieving a higher
prediction accuracy over the Orange dataset is restricted by the
limited dataset size (63 days) and the significant diversity in
users’ data sample distributions. The obtained accuracy of 75%
is the average accuracy over 100 random users with highly
variable data quality and periodicity.

In Figure 4b, it is evident that RL-TF demands slightly
more than one hour of build time, which is comparable to RL-
CNN and RF. Despite having larger architectures than CNNs
and LSTMs, TFs’ attention mechanism notably diminishes the

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

0.5

1.0

1.5

2.0

Ke
rn

el
 D

en
sit

y
Es

tim
at

io
n

RL-TF
RL-CNN
RL-LSTM
HO-LSTM
GS-LSTM
XGBoost
RF
J48

(a)

RL-TF RL-CNN RL-LSTM HO-LSTMGS-LSTM XGBoost RF J48
Trajectory Predictor

0

300

600

Av
g.

 B
ui

ld
 M

od
el

 T
im

e
(m

in
)

62.77 56.04

177.02

322.69

631.89

0.07
52.41

0.08

(b)

Fig. 4. Accuracy KDE (a) and build time (b) of different trajectory predictors
for the large-scale Orange dataset.

GTP-Force RL+ Social-TF GT+ Social-TF Social-TF
Trajectory Predictor

0.3

0.6

0.9

Ac
cu

ra
cy

Fig. 5. Accuracy of GTP-Force with respect to other social trajectory
predictors for the large-scale Orange dataset.

build time. Furthermore, the RL-TF build time is comparable
to that of non-neural RF, which does not necessitate architec-
ture exploration (no NAS) but only training. RL-LSTM and
HO-LSTM involve extended build times due to the sequential
nature of LSTMs and the extensive training of Hyperopt’s
random search-based exploration.

To have fair evaluations, we compare the average accu-
racy of GTP-Force, which employs non-cooperative GT in
social TP via RL-designed TFs, with respect to RL-designed
Social-TF without GT, Game-theoretic Social-TF without RL
personalization, and Social-TF without RL personalization or
non-cooperative GT modeling, as shown in Figure 5. It can
be observed that GTP-Force achieves an average accuracy of
80%. This represents a 5% improvement over the RL-based TF
predictor, a 10% improvement over the classical GT-based TF
predictor without RL personalization, and a 15% improvement
over the simple Social-TF without RL or GT.

Figure 6 compares the average model size of GTP-Force,
an RL- and cluster-based game theoretic approach, with that
of the classical GT approach for social-aware TF trajectory
prediction across various numbers of users. We observe that
the model size difference gap between GTP-Force and the
classical GT approach increase as the number of users, and
subsequently the number of clusters, rises. The reduction in
model size of GTP-Force is attributed to the utilization of
optimized RL technique and the clustering of similar-trajectory

2U-1C 5U-2C 10U-3C
User Size (U) - Cluster Size (C)

0

2

4

6

8
M

od
el

 S
ize

1e4
GTP-Force
Classical GT + Social-TF

Fig. 6. Model size of the GTP-Force with respect to the classical GT for
the social-TF trajectory prediction on Orange dataset.

users, enabling the training of a single player per cluster.
This smaller model size improves computational efficiency and
scalability of the system in large wireless networks.

In Figure 6, we conducted a comparison between GTP-
Force and the classical game-theoretic TP model. However, we
did not evaluate the computational complexity of GTP-Force
in comparison to non-game theoretic predictors within this
analysis. The reason is that, as shown in Figure 5, GTP-Force
exhibited significantly higher prediction accuracy compared
to non-game theoretic predictors by a factor of 15%. Due
to the significant performance improvement by GTP-Force,
we prioritize accuracy gains over potential increases in the
algorithm complexity resulting from the utilization of GT.

V. CONCLUSIONS

We present GTP-Force, a multi-agent trajectory predictor
that takes into account the social interactions among adversar-
ial mobile users. The system clusters similar-trajectory users
and leverages Reinforcement Learning (RL) to design trans-
former neural network architectures based on the collaborative
intra-cluster user mobility features. It utilizes non-cooperative
Game Theory (GT) among inter-cluster users who possess
diverging mobility features. Evaluations on the small-scale
ETH+UCY and large-scale Orange mobility datasets show
that GTP-Force outperforms existing baselines by improving
ADE by -0.01m, achieving 5% higher accuracy, and a 70%
reduction in training time, respectively. GTP-Force achieves
80% average accuracy, which is 5% higher than RL-designed
Social-TF, 10% higher than game theoretic Social-TF, and
15% higher than the simple Social-TF (without RL and GT).
As the number of users within the social system increases,
the model size gap between GTP-Force and the classical GT
approach widens, with GTP-Force consistently achieving a
smaller model size due to its clustering mechanism and the
RL-based neural architecture search technique.

ACKNOWLEDGMENTS

This work was funded by the SNF Intelligent Mobility
Services project (No. 184690). We thank Orange S.A., France,
for providing the dataset used for the experiments.

REFERENCES

[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[2] M. Bahram, A. Lawitzky, J. Friedrichs, M. Aeberhard, and D. Woll-
herr, “A game-theoretic approach to replanning-aware interactive scene
prediction and planning,” IEEE Transactions on Vehicular Technology,
vol. 65, no. 6, pp. 3981–3992, 2015.

[3] P. Geiger and C.-N. Straehle, “Learning game-theoretic models of
multiagent trajectories using implicit layers,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, pp. 4950–4958, 2021.

[4] W.-C. Ma, D.-A. Huang, N. Lee, and K. M. Kitani, “Forecasting
interactive dynamics of pedestrians with fictitious play,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 774–782, 2017.

[5] Z. Zhao, N. Emami, H. Santos, L. Pacheco, M. Karimzadeh, T. Braun,
A. Braud, B. Radier, and P. Tamagnan, “Reinforced-lstm trajectory
prediction-driven dynamic service migration: A case study,” IEEE Trans-
actions on Network Science and Engineering, 2022.

[6] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila,
and K. O. Arras, “Human motion trajectory prediction: A survey,” The
International Journal of Robotics Research, vol. 39, no. 8, pp. 895–935,
2020.

[7] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics, pp. 1273–1282, PMLR,
2017.

[8] N. Emami, A. Di Maio, and T. Braun, “Fedforce: Network-adaptive fed-
erated learning for reinforced mobility prediction,” in 48th International
Conference on Local Computer Networks (LCN), pp. to appear–, IEEE,
2023.

[9] D. Helbing, L. Buzna, A. Johansson, and T. Werner, “Self-organized
pedestrian crowd dynamics: Experiments, simulations, and design solu-
tions,” Transportation science, vol. 39, no. 1, pp. 1–24, 2005.

[10] N. Emami, A. Di Maio, and T. Braun, “Intraforce: Intra-cluster rein-
forced social transformer for trajectory prediction,” in 18th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), pp. 333–338, IEEE, 2022.

[11] F. Giuliari, I. Hasan, M. Cristani, and F. Galasso, “Transformer networks
for trajectory forecasting,” in 2020 25th International Conference on
Pattern Recognition (ICPR), pp. 10335–10342, IEEE, 2021.

[12] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan:
Socially acceptable trajectories with generative adversarial networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2255–2264, 2018.

[13] J. Amirian, J.-B. Hayet, and J. Pettré, “Social ways: Learning multi-
modal distributions of pedestrian trajectories with gans,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion Workshops, pp. 0–0, 2019.

[14] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and
S. Savarese, “Sophie: An attentive gan for predicting paths compliant
to social and physical constraints,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1349–
1358, 2019.

[15] C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, “Spatio-temporal graph
transformer networks for pedestrian trajectory prediction,” in European
Conference on Computer Vision, pp. 507–523, Springer, 2020.

[16] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel, “Social-stgcnn:
A social spatio-temporal graph convolutional neural network for human
trajectory prediction,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14424–14432, 2020.

[17] C. Wang, X. Chen, J. Wang, and H. Wang, “Atpfl: Automatic trajectory
prediction model design under federated learning framework,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6563–6572, 2022.

[18] M. Kusner, J. Gardner, R. Garnett, and K. Weinberger, “Differentially
private bayesian optimization,” in International conference on machine
learning, pp. 918–927, PMLR, 2015.

[19] V. Kosaraju, A. Sadeghian, R. Martı́n-Martı́n, I. Reid, H. Rezatofighi,
and S. Savarese, “Social-bigat: Multimodal trajectory forecasting using
bicycle-gan and graph attention networks,” Advances in Neural Infor-
mation Processing Systems, vol. 32, 2019.

[20] K. Mangalam, H. Girase, S. Agarwal, K.-H. Lee, E. Adeli, J. Malik,
and A. Gaidon, “It is not the journey but the destination: Endpoint
conditioned trajectory prediction,” in European Conference on Computer
Vision, pp. 759–776, Springer, 2020.

	1

