EGU23-13569
European Geosciences Unio
General Assembly 2023
General Assembly 2023
23-28 April 2023, Vienna, Austria
Introduction

- To model non-gravitational accelerations (NGAs) acting on a satellite in low Earth orbit - due to direct solar radiation pressure (SRP),
visual and infrared planetary radiation pressure (PRP) and gas surface interactions (drag) - the area to mass ratios A / m of satellite surface elements are needed.
Often, the explicit NGA modeling is based on a simple satellite macro model, i.e., a geometry composed of a number of elementary shapes like flat plates, spheres or cylinders, each of which with
a specific size, orientation and surface property. In a first approxia specific size, orientation and surface property. In a first approxi-
mation, each elementary surface is treated fully independent from the other surfaces and the (partial) occultation or shadowing of one surface by other surfaces is neglected. This can lead to degradations of NGA modeling for satellites with significant non-convex shapes. Very detailed satellite geometry models together with techniques
like ray tracing can provide highly accurate NGAs, however, at the like ray tracing can provide highly accurate
price of computational time and complexity.
If the satellite is described by a set of flat convex polygons, for each II the satellite is described by a set of flat convex polygons, for each
plate the amount of shadow cast by the other plates can be computed analytically in a relatively straightforward way. We present the algorithm and first test results to assess its performance for POD.
The self-shadowing algorithm
The algorithm assumes that the shadow casting or receiving surface elements are all convex flat polygons. Notice that all (also non-convex) shapes can be composed out of convex polygons.
Input:
- Node (vertex) coordinates in the satellite body frame (SBF).

A direction unit vector \vec{d} associated to the NGA source (e.g., direc-
tion Sun-satellite for SRP modeling). tion Sun-satellite for SRP modeling).
Initialization:

- Node coordinates are stored and checked to form flat convex polygons, ordered in counter-clockw
side (defined by normal vector).
- For each plate i the basis vectors of the associated plate frame (PF_{i}) are computed and stored. The PF is defined as follows: Origin in 1st node, x-axis in direction from 1st to 2nd node z-axis in outgoing normal direction, y-axis completing right-handed orthogonal system. For each non-moving plate i, the node coordinates of all other non-
moving plates in PF_{i} are computed and stored. For moving plates (e.g., rotating solar panels) the PF coordinates need to be computed at every integration step based on the current plate orientation.
At each satellite orbit integration step, when NGAs are evaluated, for each individual plate R (shadow receiving plate) which is exposed to the source
(ignoring the other plates) the following algorithm is executed for each other plate C_{i} (shadow casting plate):

1. Check whether plate C_{i} is exposed to source. If yes, skip it, because it cannot cast a shadow (it is then the back side of C_{i} which might cast a shadow).
Transform node coordinates of C_{i} into PF_{R} (either reading them from memory or computing them using the momentary PF_{R} basis vectors). Do all following computations in PF_{R}.

Figure 1: The shadow receiving plate R with
basis vectors of $P F_{R}$, shadow casting plate C_{i}, is sprojection C_{i}^{P} along \vec{d} onto the plane
of R and the resulting shadow S_{i} on R.

AIUB =

Simple self-shadowing in precise orbit determination of Copernicus Sentinel satellites

D. Arnold ${ }^{1}$, H. Peter ${ }^{2}$, A. Jäggi

${ }_{2}^{1}$ Astronomical Institute, University of Bern, Bern, Switzerlan ${ }^{2}$ AstiTiTim UG, Seeheim-Jugenheim, Germany

Application to Sentinel-6 Sentinel-6A (about 1340 km altitude) is another example for a satellite of
marked non-convex shape, implying significant self-shadowing especially between the body side panels and the overhanging deployable solar panels (DSP). Several Sentinel- 6
macro models exist, part of them aim macro models exist, part of them aim
to take self-shadowing into account (e.g., by reducing the areas of the

body side panels).

The following models were tested: MOD1: 12-plate model of the Sentinel 6 POD Context document (v 2.1) with body $\pm y$ areas $2.87 \mathrm{~m}^{2}$. MOD2
Like MOD1, but with areas of body $\pm y$ side panels reduced to $1.03 \mathrm{~m}^{2}$ Like MOD1, but with areas of body $\pm y$ side panels reduced to $1.03 \mathrm{~m}^{2}$
MOD3: 6 -plate model of CNES with adapted optical properties, presented at Copernicus POD Quality Working Group meeting \#11.

The different macro models were used for POD tests based on the identical The different macro models were used for POD tests based on the identical
orbit parametrization as for Sentinel-1. Figure 9 shows that for Sentinel-6 the employed self-shadowing handling does not yet provide convincing results. Further macro model modifications must be tested.

Computation time
For Sentinel-1, the use of a 14 -plate instead of an 8 -plate macro model (still without self-shadowing handling) increased CPU time for an orbi integration by 34%. For both Sentinel--1 and Sentinel-6, switching on the ant increase of CPU time (below 1%) The proposed self-shadowing algorithm can very easily also be employed in the modeling of planetary radiation pressure (PRP) or air drag (using the associated vector for \vec{d}. For PRP computations based on Earth radi
ation grids this can be computationally expensive, depending on the de sired self-shadowing resolution. sired self-shadowing resolution.

Conclusions
The presented algorithm can be used to flexibly model self-shadowing ef
fects for a satellite macro model composed of convex plate elements. Fo fects for a sateitite macro model composed of convex plate elements. For to become more expensive for much more complex geometries (including multiple shadow overlaps). The impact on POD results is so far marginal or, in case of Sentiel-6, even slighly detmental. Furticr investigation ze more precise geometries and optical surface prop erties.

References
Peter, H ,. Ferrander, J, and Femménias, P . (2020). Copernicus Sentinel-1 - satellites: sensitivity
of antenna offset estimation to orbit and observation modelling. Advances in Goosciences.
$50: 87-100$ 50:87-100.
Contact address
Daniel Arnold
Astronomical Ins

