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Abstract
Purpose A fundamental problem in designing safe machine learning systems is identifying when samples presented to a
deployed model differ from those observed at training time. Detecting so-called out-of-distribution (OoD) samples is crucial
in safety-critical applications such as robotically guided retinal microsurgery, where distances between the instrument and the
retina are derived from sequences of 1D images that are acquired by an instrument-integrated optical coherence tomography
(iiOCT) probe.
Methods This work investigates the feasibility of using an OoD detector to identify when images from the iiOCT probe are
inappropriate for subsequent machine learning-based distance estimation. We show how a simple OoD detector based on the
Mahalanobis distance can successfully reject corrupted samples coming from real-world ex vivo porcine eyes.
Results Our results demonstrate that the proposed approach can successfully detect OoD samples and help maintain the
performance of the downstream task within reasonable levels. MahaAD outperformed a supervised approach trained on the
same kind of corruptions and achieved the best performance in detecting OoD cases from a collection of iiOCT samples with
real-world corruptions.
Conclusion The results indicate that detecting corrupted iiOCT data through OoD detection is feasible and does not need
prior knowledge of possible corruptions. Consequently, MahaAD could aid in ensuring patient safety during robotically
guided microsurgery by preventing deployed prediction models from estimating distances that put the patient at risk.

Keywords Out-of-distribution detection · Instrument-integrated OCT · Medical robotics · Retinal microsurgery

Introduction

Ensuring safe machine learning models is one of the key
challenges for real-world medical systems. While the need
for reliable models is highly important for image-based diag-
nostics with human-in-the-loop users, it is mission-critical
when combined with medical robotic systems that tightly
couple image-based sensing for augmented visualizations or
automation.

In this context, one of the fundamental problems in
designing safe machine learning is identifying when samples
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presented to a deployed model differ from those observed
at training time. This problem, commonly known as out-of-
distribution (OoD) detection [1], aims to alleviate the risks of
evaluatingOoDsamples, as performances on these are known
to be erratic and typically produce wrong answers with high
confidences, whereby making them potentially dangerous.
As machine learning has become increasingly prevalent in
mission-critical systems, the problem of OoD detection has
gathered significant attention both in general computer vision
research [1], and in applied medical imaging systems [2–8].

OoD detection for robotically assisted surgery is particu-
larly relevant as erraticmachine learningpredictions canhave
extremely serious consequences for the patient. For exam-
ple, a misprediction in the distance estimation between an
instrument and its targeted tissue could lead to important
inadvertent trauma. Surprisingly, the topic of OoD detection
for robotically assisted surgery has received little attention
to date, despite its necessity and advantages. More broadly,
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the potential benefits of OoD detection in this context remain
largely unexplored. This work aims to close this gap by ana-
lyzing the implications of integrating an OoD detector in a
relevant robot-assisted surgery use case.

Specifically, we consider the setting of retinal micro-
surgery, where a machine learning model is needed to infer
the distance between a robotically manipulated instrument
and the retina of the eye (see Fig. 1). As with most of
the recently proposed robotic systems for retinal micro-
surgery [9–13], the goal is to assist anoperating surgeonwhen
manipulatingmicron-sized retinal structures using an optical
coherence tomography (OCT) imaging probe which yields
1D OCT measures over time, also known asM-scans. When
using such a probe to help guide the robot to an intra-retinal
injection site, automatic estimation between the instrument
and the retinal surface is key. Yet, for any robot-tissue inter-
acting system, a critical necessity is to ensure that the inferred
distances derived from the imaging probe are safe for the
robotic system to use.

To this end, this work investigates the feasibility of using
OoD detection to identify when images from an intra-
operative instrument-integrated OCT (iiOCT) probe are
inappropriate for subsequent machine learning-based dis-
tance estimation (see Fig. 2). We show how data from this
probe, in combination with the simple MahaAD OoD [14]
detector, can be rejected from further evaluation when the
data are corrupted. We demonstrate the implications of our
approach on the downstream task of distance estimation
using simulated corruptions and reportOoDdetection perfor-
mance on ex vivo porcine eyes with real-world corruptions.

Methods

Problem setting

Our retinal microsurgical setup is equipped with a robot that
manipulates an injection needle with an iiOCT sensor. The
sensor captures the retinal tissue in front of the instrument

in a M-scan, which is a sequence of one-dimensional depth
signals, denoted A-scans. Specifically, M-scans contain use-
ful information about the layers of the retina and the sensor’s
distance to the different layers (see Fig. 2). However, extract-
ing distance information fromM-scans is challenging due to
the large appearance variability and noise observed in these
signals.

To this end, machine learning and deep learning models
are a natural approach to do so consistently and reliably. We
thus train a deep learning model r : RP → [0, 1]P to esti-
mate the location of the internal limiting membrane (ILM) of
the retina. Given an M-scan x, the retinal detection model r
receives individual A-scans as one-dimensional vectors x j

and produces one-dimensional heatmaps ŷ j = r(x j ) indi-
cating the probability that the ILM is located at each location
of the input A-scan. The location of maximum probability
determines the ML-based distance as shown in Fig. 1. Simi-
lar to [15], the model r is trained by minimizing the standard
L2 loss over a training dataset T = {(x(i), y(i))}Ni=1 of M-
scans and their corresponding ground-truth retinal maps.

At inference time, the retinal detection model r is robust
to the types of A-scan variability learned from the training
set T , but not to others never seen in this dataset. This poses
a risk to the safety of the surgical system in practice, as we
cannot ensure that the range of potential perturbations that
can occur during surgery are present in the training dataset.
The range is simply too large to build a representative dataset
that covers all cases.

Unsupervised OoD detection

We augment our system with an unsupervised out-of-
distribution detection method to tackle the abovementioned
limitation. Our approach is unsupervised in the sense that we
do not have examples of OoD cases from which we can train
a supervised model to perform OoD. Instead, we have only
the dataset from which the distance estimation model, r , is
trained. In this context, we leverage the MahaAD method

Fig. 1 Out-of-distribution
detection of an inappropriate
sequence of 1D images, or
M-scan, acquired by an iiOCT
probe. These should be rejected
rather than processed by a
subsequent machine
learning-based distance
estimation method
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Fig. 2 Six M-scans acquired
from a 1D OCT image probe
from which distance estimates
to the ILM of the retina (shown
in green) need to be computed.
Evaluating unexpected images
(right column) can lead to
incorrect estimates and
endanger the intervention.
Images were resized for
improved visualization

proposed by Rippel et al. [14] to learn the appearance of M-
scans in the training dataset and detect when novel M-scans
are too far from the training distribution to be safely pro-
cessed by r . We select this model as it has been shown to
be highly effective in a large number of cases while being
interpretable and computationally lean [16].

At training time, MahaAD learns the training distribution
by fitting multiple multivariate Gaussians to latent repre-
sentations of the training data at different scales. More
specifically,we build a training datasetT ′ = {x(i)}Mi=1, where
each sample x(i) ∈ R

10×P is a M-scan of 10 consecutive A-
scans. M-scans in T ′ may come from the training data T
used to train r or, given the unsupervised nature of MahaAD,
fromanyother dataset ofM-scanswithout annotations.Given
a pre-trained network f with K layers for feature extraction,
MahaAD first describes each training sample x(i) as a col-
lection of K feature vectors {fi,k = fk(x(i))}Kk=1, where each
vector fk(x(i)) is the spatial average of the k-th feature map
for the input x(i). The collection of the feature vectors for all
training samples is then used to fit K multivariate Gaussians,
one per layer k, with parameters,

μk = 1

N

N∑

i=1

fi,k and �k = 1

N

N∑

i=1

(fi,k − μk)(fi,k − μk)
T

∀k ∈ {1, . . . , K }.

At test time,MahaADcomputes K Mahalanobis distances
between an M-scan x and the means μk of the learned Gaus-
sians as shown in Fig. 3,

dk(x) = d(x,μk) =
√

(fk − μk)
T�k

−1(fk − μk),

∀k ∈ {1, . . . , K }.

The final OoD score for a test-time sample x is then the sum
over all distances,

s(x) =
K∑

k=1

dk(x).

The M-scan is then considered OoD if its score s(x) is larger
than a threshold τ , which is the only hyperparameter of the

method. When an M-scan is considered OoD, we treat all of
its individualA-scan components x j asOoDand assume they
are not suitable for safe estimation with the subsequent retina
detection model r . We experimentally found that applying
MahaAD onM-scans produced more reliable results than on
individual A-scans.

Experimental setting

Data

Our data consist of four recordings from ex vivo trials
on four different pig eyes, with each recording containing
approximately 900’000 A-scans. The iiOCT device pro-
duced temporal A-scans at a frequency of approximately
700Hz with a resolution of 3.7µm/pixel and a scan depth of
P = 674 pixels (2.49mm).Of the four pig recordings, three
were used for training (and validation), and the fourth record-
ingwas held out for evaluation. From the training recordings,
a collection of 334 in-distribution M-scans consisting of 10
A-scans was used to train the OoD detector. We manually
selected samples with identifiable retina to ensure that they
are in-distribution samples.

Implementation details

Tomeasure the impact ofOoDsamples on the retinalmodel r ,
we compared six OoD detection strategies and one reference
baseline.

MahaAD The method proposed in Sect. 2.2. As proposed
in [14], our feature extractor f is an EfficientNet-B0 [17]
with K = 9 blocks pre-trained on ImageNet. The input
to f are M-scans x resized from 10 × 674 to 64 × 224
with bicubic interpolation to increase the importance of
the temporal information and to make the input size closer
to the training sizes of the EfficientNet-B0. We applied z-
score normalization with the mean and standard deviation
from ImageNet to all the input sequences.

Supervised An OoD detector implemented as a binary
classifier and trained in a supervised fashion with both
in-distribution and OoD samples. Given that OoD sam-
ples are not available in large amounts, we synthetically
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Fig. 3 Example of MahaAD
with a single bivariate Gaussian
(i.e., a single 2D latent
representation). A multivariate
Gaussian is fit to the latent
representations of the training
samples and is used to determine
the Mahalanobis distance of the
test samples’ latent
representations. Based on the
distance, samples are considered
in- or out-of-distribution

generated them by perturbing 50% of the training data
using four types of perturbations: noise, smoothing, shifts
and intensity (see Fig. 4). The OoD detector uses an
ImageNet-pre-trained EfficientNet-B0 as backbone with
a classification head adapted to the binary OoD detection
task. We fine-tuned all layers with Adam optimizer and
learning rate 10−5.

Glow A generative flow-based model [18] used as OoD
detector. We use the model’s negative likelihood output
as the OoD score (i.e., the lower the likelihood, the less
probable a sample is in-distribution). The employed archi-
tecture has three blocks of 32 layers and was trained with
the public implementation of [19].

UncertaintyOoD samples tend to produce estimationswith
lower maximum softmax probabilities, (i.e., higher uncer-
tainty [20]). We take the maximum probability of the
estimated heatmap ŷ j = r(x j ) and use its entropy as the
OoD score.

Raw-MahaAD Similar toMahaAD but, instead of the fea-
ture vectors fi,k , we use the raw signal to fit a single
(K = 1) multivariate Gaussian. This can be seen as an
ablation of the deep features.

SNR A simple measure of scan quality directly used as
OoD score. We measure the signal-to-noise ratio (SNR)
as μx/σx.

No-rejection Reference baseline that considers all samples
as inliers (i.e., no OoD detection is applied).

In all cases, we used a retinal model r that was imple-
mented as a one-dimensional U-Net-like architecture [21]
with four down-pooling/upsampling steps and one convolu-
tional layer per step. We used Adam with a learning rate of
10−4 for optimization and performed early stopping accord-
ing to the performance on the validation split. To train and
validate r , the location of the ILM was manually annotated
for a random collection of 14’700M-scans from the original
pig recordings.

Experiments

OoD detection for distance estimation

The first experiment measures the impact of our approach
in a simulated scenario of retinal surgery where the retinal
model r only receives the samples considered safe for esti-
mation by the OoD detector. For this purpose, we employed
a test set of 2’000M-scans with annotated ILM locations.
To account for the lack of real OoD samples, OoD samples
were synthetically generated by perturbing a fraction p of
elements from the test data with eight types of corruptions:

Noise Additive Gaussian noise with μ=0 and σ=50.
Smoothing Gaussian filtering with σ=5.
Contrast Contrast increase/decrease by a factor uni-
formly sampled from {0.1, 0.2, 0.3, 2, 3, 4}.
Intensity Equally probable positive/negative shift of the
intensity uniformly sampled from the setU([−50,−25]∪
[25, 50]).
Stripes Randomly replacing one or two A-scans in a
sequence with a constant intensity sampled from U(100,
200).
Rectangle Randomly placing a rectangle with size (i.e.,
M-scan stretch×depth) sampled from U([6, 10] ×
[15, 30]) pixels and a constant intensity sampled from
U(100, 200).
Shift Roll in depth for a random split of A-scans in
the sequence with positive/negative shift sampled from
U(25, 100) pixels.
Zoom Zoom each A-scan in a sequence by a factor sam-
pled from U(1.5, 1.75).

All perturbations were applied with equal probability to
samples with intensities rescaled to the range [0, 255]. Fig-
ure4 shows examples of produced synthetic corruptions.
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Fig. 4 Examples of the eight
types of perturbations applied to
simulate OoD samples. Each
sample is an M-scan with a
depth of 674 pixels and 10
consecutive A-scans. Images
were resized for improved
visualization

Fig. 5 Effect of different OoD
methods on the retinal surgery
pipeline. Mean absolute distance
error (MAE) is shown for
different perturbation ratios p.
For each baseline, a proportion
of p M-scans were considered
OoD and rejected from MAE
computation

Real OoD samples in ex vivo data

In a second experiment, we explore the behavior of the meth-
ods when presented with real OoD M-scans that were man-
ually identified in our data. For this purpose, we built a test
dataset with 258 real OoD M-scans and 258 in-distribution
M-scans, where each M-scan consists of 10 A-scans. Fig-
ure8 includes a few examples. As these samples are real
OoD cases, it is impossible to label the location of the ILM
and thus prevents us from using the above experimental pro-
tocol. Instead, we compared the performance of the baselines
in the task of detecting OoD samples in this small dataset,
omitting the retinal network r .

Results

OoD detection for distance estimation

Wemeasured the performance of r in terms of themean abso-
lute error (MAE) between the estimated and the real distances
for a progressively increasing ratio of corruptions p, which
ranged from 0 (i.e., no corruptions) to 0.9. To quantify the
impact of each OoD detection approach, M-scans detected

as OoD were discarded from MAE computation. For proper
comparison, anM-scan was considered OoD if it was among
the top-p highest OoD-scoring M-scans. Hence, a perfect
OoD detector will discard all the corrupted M-scans, keep-
ing the MAE low.

MahaAD outperformed all baselines, with its MAE stay-
ing almost constant for all the perturbation ratios (Fig. 5).
Raw-MahaAD, Glow, Uncertainty, and SNR underper-
formed compared to No-rejection, suggesting that they flag
a large proportion of correct samples as OoD while allowing
corrupted A-scans to be processed by the subsequent reti-
nal network. The poor behavior of Uncertainty and SNR is
noticeable for perturbation ratios as low as 0.2, which makes
them unsuitable for OoD detection in the present setting.
Finally, Supervised matched the performance of MahaAD,
but given that it was trained with the same kind of synthetic
perturbations used in the evaluation, this is most likely an
overoptimistic result.

Additionally, we compared MahaAD and Supervised
based on their isolated OoD detection performance for
individual corruption types at a proportion p of 0.5. To
investigate our presumption of Supervised’s overoptimistic
performance due to known perturbations, we analyzed the
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Fig. 6 Comparison between MahaAD and Supervised on the OoD
detection performance in terms of area under the receiver operating
characteristic curve (AUROC) for corruptions not used for training
Supervised

Fig. 7 Area under the receiver operating characteristic curve (AUROC)
and average precision (AP) performance for the detection task on real
OoD samples

corruptions that Supervised has not seen during training
(i.e., stripes, rectangle, zoom, contrast). Figure6 shows that
MahaAD is outperforming Supervised in terms of OoD
detection on the unseen corruptions. Specifically, the dif-
ference is notable for zoom and rectangle, which seem to
be the most difficult perturbations to detect. This result indi-
cates thatMahaAD is a better OoD detector when the type of
expected perturbations is unknown and for which we cannot
train.

Real OoD samples in ex vivo data

Figure 7 reports the results for the second experiment on
the selection of real OoD samples. As previously found,
MahaAD outperformed the other baselines, demonstrating
its ability to generalize beyond simulated perturbations in a

more realistic scenario. Furthermore, Supervised performs
significantly worse than MahaAD on real data, suggesting
that the results of Fig. 5 were indeed overoptimistic and that
Supervised is not suitable as an OoD detector in a realistic
scenario. In contrast, SNR’s performance improved on real
data, likely due to a selection bias facilitating discrimination
of OoD samples through low-order statistics. Surprisingly,
Glow and Raw-MahaAD seem to produce OoD scores that
better describe in-distribution samples than OoD samples.

Figure 8 shows visual examples of correctly and incor-
rectly classified in- and out-of-distribution samples for the
MahaAD approach. The examples confirm that MahaAD
typically classifies obvious in-distribution or OoD sam-
ples correctly but can misclassify borderline samples. For
instance, some false negatives may be considered in-
distribution based on their retinal-like structure, while false
positives often exhibit a hyperreflective retinal pigment
epithelium layer, which might lead to their OoD classifica-
tion.

Discussion and conclusion

In this work, we showed how corrupted data from an
iiOCT probe in the context of retinal microsurgery can be
rejected from further evaluation by using unsupervised OoD
detection. The simple MahaAD approach was able to main-
tain good performance of distance estimation by reliably
detecting and rejecting simulated corruptions, and showed
promising results onOoD cases from an ex vivo porcine trial.

The experiments revealed that the benefits of MahaAD
observed for a variety of scenarios on 2D images [16] trans-
late well to temporal iiOCT scans with high levels of noise
and limited lateral view. Another benefit is its computa-
tional efficiency, allowing it to cope with high-frequency
A-scan acquisition with minimal latency. Additionally, the
experiments point to the challenges of supervisedOoDdetec-
tion when not all unknowns (i.e., possible corruptions) are
known and why unsupervised OoD detection might be suit-
able for improved generalization. In conclusion, we showed
that detecting corrupted iiOCT data through unsupervised
OoD detection is feasible and that MahaAD could poten-
tially be used to improve safety in retinal microsurgery.

Fig. 8 Examples of correctly
detected and missed OoD and
in-distribution samples with
MahaAD. Images have been
resized for improved
visualization
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However, one limitation of this work is that the temporal
component of the iiOCT is largely ignored as individual sam-
ples were considered for the distance estimation without any
knowledge of the past. In the future, we plan to take this tem-
poral information into account by combining the MahaAD
OoD detection with dedicated techniques such as Bayesian
filters to further improve performances.
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