Precision of bone mechanoregulation assessment in humans using longitudinal high-resolution peripheral quantitative computed tomography in vivo

Matthias Walle, Danielle E. Whittier, Denis Schenk, Penny R. Atkins, Michael Blauth, Philippe Zysset, Kurt Lippuner, Ralph Müller, Caitlyn J. Collins

PII:	\$8756-3282(23)00113-8
DOI:	https://doi.org/10.1016/j.bone.2023.116780
Reference:	BON 116780
To appear in:	Bone
Received date:	16 February 2023
Revised date:	31 March 2023
Accepted date:	20 April 2023

Please cite this article as: M. Walle, D.E. Whittier, D. Schenk, et al., Precision of bone mechanoregulation assessment in humans using longitudinal high-resolution peripheral quantitative computed tomography in vivo, *Bone* (2023), https://doi.org/10.1016/j.bone.2023.116780

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Inc.

Title: Precision of bone mechanoregulation assessment in humans using longitudinal high-

resolution peripheral quantitative computed tomography in vivo

Running Title: HR-pQCT bone mechanoregulation precision

Author List:

Matthias Walle¹, Danielle E. Whittier^{1,2}, Denis Schenk³, Penny R. Atkins^{1,2}, Michael Blauth⁴,

Philippe Zysset³, Kurt Lippuner², Ralph Müller¹, Caitlyn J. Collins^{1,5}

Affiliations:

- 1. Institute for Biomechanics, ETH Zurich, Zurich, Switzerland;
- 2. Department of Osteoporosis, Bern University Hos, cal, Bern, Switzerland;
- ARTORG Center for Biomedical Engine 21. g Research, University of Bern, Bern, Switzerland;
- 4. Department of Orthopaedics and Traumatology, Medical University Innsbruck, Innsbruck, Austria;
- Virginia Tech, Department of Biomedical Engineering and Mechanics, Blacksburg, VA, United States.

This manuscript is forma. ed in British English

Address for correspondence:

Caitlyn J. Collins, PhD

323 Kelly Hall

Stanger Street

Blacksburg, VA 24061

caitlyn.collins@hest.ethz.ch

ABSTRACT

Local mechanical stimuli in the bone microenvironment are essential for the homeostasis and adaptation of the skeleton, with evidence suggesting that disruption of the mechanically-driven bone remodelling process may lead to bone loss. Longitudinal clinical studies have shown the combined use of highresolution peripheral quantitative computed tomography (HR-pQCT) and micro-finite element analysis can be used to measure load-driven bone remodelling in vivo; however, quantitative markers of bone mechanoregulation and the precision of these analyses methods have not been validated in human subjects. Therefore, this study utilised participants from two cohorts is a ne-day cohort (n=33) was used to develop a filtering strategy to minimise false detections of bone nonodelling sites caused by noise and motion artefacts present in HR-pQCT scans. A longitudin. I ce hort (n=19) was used to develop bone imaging markers of trabecular bone mechanoregula 10⁻¹ and characterise the precision for detecting longitudinal changes in subjects. Specifically, we described local load-driven formation and resorption sites independently using patient-specific odds rios (OR) and 99% confidence intervals. Conditional probability curves were computed to link u ` nechanical environment to the remodelling events detected on the bone surface. To quantify overall mechanoregulation, we calculated a correct classification rate measuring the fraction of remode¹ in events correctly identified by the mechanical signal. Precision was calculated as root-mean-s/ua. a averages of the coefficient of variation (RMS-SD) of repeated measurements using scan-re can pairs at baseline combined with a one-year follow-up scan. We found no significant mean difference (p<0.01) between scan-rescan conditional probabilities. RMS-SD was 10.5% for resorption odds, 6.3% for formation odds, and 1.3% for correct classification rates. Bone was most likely to be formed in high-strain and resorbed in low-strain regions for all participants, indicating a consistent, regulated response to mechanical stimuli. For each percent increase in strain, the likelihood of bone resorption decreased by $2.0\pm0.2\%$, and the likelihood of bone formation increased by $1.9\pm0.2\%$, totalling $38.3\pm1.1\%$ of strain-driven remodelling events across the entire trabecular compartment. This work provides novel robust bone mechanoregulation markers and their precision for designing future clinical studies.

KEYWORDS

High-resolution Peripheral Quantitative Computed Tomography, Reproducibility, Repeatability, Mechanobiology, Micro-finite Element Analysis, Mechanoregulation, Bone Biomechanics.

ACKNOWLEDGEMENTS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement Nos. 860898 and 841316.

DATA AVAILABILITY STATEMENT

The data and analytic code for this study may be made evcilable from the corresponding author upon reasonable request.

AUTHORS' ROLES:

Study design: MW, DW, CC Study conduct: MW, DW, CC Data collection: PA, DS, MB, P', KL, RM Data analysis: MW, DW, CC Data interpretation: MV, LW, DS, PA, MB, PZ, KL, RM, CC. Drafting manuscript: MW, DW, CC Revising manuscript content: MW, DW, DS, PA, MB, PZ, KL, RM, CC. Approving final version of manuscript: MW, DW, DS, PA, MB, PZ, KL, RM, CC. Responsible for the integrity of the data analysis: CC

AUTHOR DISCLOSURES

The authors declare that they have no conflict of interest.

1 Introduction

The bone remodelling process is a complex mechanism that enables structural adaptation to align with physiological loading conditions, such as gravitational loading or muscle forces, thereby minimising the risk of bone fractures [1]. At the cellular level, this process is orchestrated by osteocytes, which sense local mechanical forces and signal bone-forming cells in regions where mechanical stimulations are high, and bone-resorbing cells in areas where the stimulus is low [2–4]. This mechanoregulated exchange of old bone for newly formed material reduces fatigue damage and promotes s' eletal strength [5]. However, the ageing skeleton is believed to respond less effectively to mechanical stimuli, such as loading induced by physical exercise [6–8]. The discordant mechanoregulation of bone cue to ageing and disease may be attributed to decreased osteoblast activity and increased aroptosts [9,10], increased osteoclast number [11], or declining osteocyte density [12,13]. This loss of mechanoregulative response may also occur from various chronic diseases, including diabetes new two, but they do not give conclusive proof of potentially dysregulated mechanoregulation in this case. Therefore, approaches for monitoring *in vivo* bone microstructure at high resolution are necessary to explore the effects of ageing and diseases on bone remodelling in humans.

High-resolution peripheral quantitative computed tomography (HR-pQCT) can non-invasively assess individual trabecular structures *in vivo* in humans at microscopic resolution ($60.7 - 82.0 \mu m$) [15,16]. Acquisition of longitudinal images can even allow for the quantification and visualisation of remodelling sites on the bone surface [17]. When HR-pQCT is combined with micro-finite element (micro-FE) analysis, the local mechanical environment can be simulated and linked to remodelling events (i.e. mechanoregulation). Previous clinical studies exploring mechanoregulation in humans [18–21] have demonstrated relationships between local strains induced by normal physiological activity and bone remodelling, showing promise for HR-pQCT-based mechanoregulation to investigate the effects of disease, ageing, or intervention on the skeleton's ability to adapt to mechanical stimuli. However, the

resolution of HR-pQCT is in the same order of magnitude as the depth of individual remodelling sites (between $5 - 116 \mu m$) [22,23]. To overcome the current limitation of imaging resolution, image filtering protocols are necessary to remove noise and image artefacts that can overshadow these subtle changes on the bone surface [17].

The studies by Christen et al. and Mancuso et al. have estimated the precision of analysing bone remodelling sites derived from same-day repeat scans and reported a broad range of measurement precision ranging from 2.5% [17] to 11% [18]. Image noise and moteop artefacts during scanning can confound the precision of longitudinal bone microstructure assessme. (1)7]. To reduce false detections, previous studies have proposed noise-filtering protocols [17]. dower, with the recent advancements from a nominal resolution of 82 µm to 61 µm in second-generation. The event advancements, previous filtering methods must be revised to account for differences in fine ge resolution, artefacts, and noise. Importantly, repeat assessments do not consider the spatial process of bone mechanoregulation [19,24] correlate the mechanical signal with local remodelling events voxel-by-voxel. Therefore, the spatial variance of these remodelling sites may have a signific an impact on the quantification of remodelling sites relative to local mechanical strains and needs to be a sessed using longer follow-up scans during which true remodelling is critical for determining whether measured differences within or across patients are due to genuine changes or caused by noise and artefacts.

This study aimed to develop bone mechanoregulation imaging markers and to determine their precision for detecting longitudinal changes in human subjects. In this context, precision describes the consistency of measurements obtained by a single team using the same procedure, equipment, and operating conditions, in a single location, over multiple iterations [25]. The first objective of this study was to adapt an existing image filtering protocol for detecting local bone formation and resorption sites to current imaging capabilities, and to evaluate the effect of motion artefacts on the accuracy and precision of the

adapted filtering approach. The second objective of this study was to establish robust patient-dspecific markers that characterise strain-driven bone formation and bone resorption as well as their interplay (i.e., mechanoregulation).

2 Methods

2.1 Participants and image acquisition

This study utilised participants from two cohorts, summarised in the following paragraphs, to address each study objective. The first is the *same-day cohort*, used to assess intering parameters designed to remove false formation and resorption sites. The second cohort is referred to as the *longitudinal cohort*, used to determine the precision of mechanoregulation over one year of bone remodelling. All participants gave written informed consent before participation, and local ethics committees approved all studies. All scans were obtained at the distal radius using second generation HR-pQCT (XtremeCT II, Scanco Medical AG, 61 μ m) [15]. For consistency actions cohorts, scans were automatically graded for motion artefacts using a previously developed motion-scoring algorithm [26] on a five-point scale (1 = none, 2 = minor, 3 = moderate, 4 = severe, and 5 = extreme), with manual verification.

The same-day cohort consisted of 3^3 perticipants (17 males of mean age 46.2±18.4 years; 16 females of mean age 41.3±15.8 years) from a previous study [27]. Three same-day HR-pQCT scans of the distal radius were acquired the University Department of Osteoporosis in Bern for all participants. Individuals were scanned by the same operator with two operators in total. The scan region used herein began at the reference line placed at the dense articular surface formed with the scaphoid and lunate fossae of the radiocarpal joint and extended proximally 10.2 mm (168 slices) in length [28].

The *longitudinal cohort* consisted of 19 participants (9 males of mean age 43.9±13.1 years; 10 females of mean age 59.1±18.9 years) selected from an ongoing multi-centre longitudinal study investigating fracture healing [29], where longitudinal scans acquired on the contralateral (i.e. non-fractured distal radius) were used in the present study. Three scans were used per participant, including a baseline scan, a

repeat scan performed within one month, and a third scan performed at a one-year follow-up. Scans were obtained from a previous study at the Innsbruck Medical University in Innsbruck, Austria [30], or newly acquired at the University Department of Osteoporosis in Bern, Switzerland. Participants were included from the more extensive longitudinal study if they had attended all three visits and all scans had a motion score of 2 or lower (on the five-point scale), resulting in 19/132 participants that met the inclusion criteria. In this cohort, HR-pQCT scans were acquired following the manufacturer's standard *in vivo* protocol [31]. Briefly, a reference line was placed on the distal radial joint surface using anteroposterior scout views. The scan region (168 slices) was 10.2 mm extended, portugined at a fixed offset of 9.0 mm from the reference line.

2.2 Image processing and registration

Periosteal and endocortical contours were automatical. id intified in all images using the dual-threshold technique (cortical bone: 450 mg HA/cm³, tra' ecu'ar bone: 320 mg HA/cm³) [32]. Contours were visually inspected for notable deviations from the periosteal or endocortical surfaces and manually corrected where necessary [33]. HR-pQCT scans ver registered using rigid-body registration based on Python (v3.8.5) and SimpleITK (v2.1.1.2) [3-, 35]. Specifically, Euler angles around the density-weighted centre of the image were optimised, max mising the voxel-wise correlation between grayscale density values within the periosteal contour to align the images. Powell optimisation with brent line search, an initial step length of 1, and a se apling rate of 0.01 in conjunction with a five-level pyramid registration framework (shrink factors: 12x, 8x, 4x, 2x, 1x) was used. Optimisations terminated after 100 iterations or if the value or step tolerance of 10^{-6} was reached. Grayscale images were transformed using linear interpolation, and a Gaussian filter was applied to reduce noise (sigma 1.2, support 1). Binary segmentations of the bone and compartment masks (cortical and trabecular) were transformed using nearest-neighbour interpolation. In all cases, the earliest timepoint was used as the fixed reference image, and all follow-up images were transformed into the reference space.

2.3 Objective 1: Bone remodelling site identification and quantification of precision

Image filtering parameters needed to identify true bone formation and resorption fractions were determined using the same-day cohort. Due to the short follow-up time (same-day scans), no measurable true bone remodelling is expected, and thus all detected remodelling events can be considered false remodelling sites. First, the common trabecular region across rescans was determined from the registered images to exclude voxels outside the common region. Segment d 1 nages were then superimposed to identify regions of false formation and resorption in the transcular compartment. Volumes of the segmented bone present only in the earlier measurement wore regarded as resorbed bone, whereas bone voxels present only in the latter measurement corresponded to formed bone [24]. For the same-day scans, all possible combinations of the three measy emants were evaluated. To reduce the detection of false remodelling events caused by registration interpolation and partial-volume effects, the identified formation and resorption sites were fulther filtered using information from the grey-scale images to remove small remodelling cluster o, sites with minimal density changes [17]. For this purpose, the threshold for the absolute difference in density between rescans of the formed and resorbed voxels was varied from 0 to 300 mg H. /cm³ with a step size of 25 mg HA/cm³, and the threshold for cluster volume was varied from 0 to 48 vox els in steps of 4 voxels. The proportion of removed remodelling clusters was calculated at different filter combinations, and filtering settings within a tolerable 1% noise level were selected to remove false remodelling sites. Finally, formation and resorption volumes were expressed as a fraction of the baseline trabecular mineralised bone volume (Tb.BV).

Short-term precision of formation and resorption measurements were calculated as root-mean-squared averages of the standard deviation of repeated measurements (RMS-SD) [36] Individual precision errors were calculated for resorption (Tb.R) and formation (Tb.F) volume fractions derived from combinations

of scan/rescan pairs. For example, for a patient with three scans (t_{1-3}), the following comparisons (c_{1-3}) between detected resorption fractions were made with c_1 : RMS-SD(Tb.R_{t2,t3}, Tb.R_{t1,t3}), c_2 : RMS-SD(Tb.R_{t2,t3}, Tb.R_{t1,t2}), and c_3 : RMS-SD(Tb.R_{t1,t2}, Tb.R_{t1,t3}) and grouped by the maximum motion score of all scans within the comparison. Differences in precision outcomes between grading scores were tested with an unpaired Mann-Whitney-Wilcoxon test with Holm–Bonferroni correction for multiple comparisons after confirming the non-normality of variables with a Shapiro-Wilk test. Least-significant change of bone Tb.F and Tb.R was calculated at a 95% confidence level (where LSC = 2.77*RMS-SD) [36] with the developed filtering approach and compared agains in a filtering steps applied (i.e. remodelling sites obtained from subtracted segmented images).

2.4 Objective 2: Bone mechanoregulation quantification over one year

The precision of detecting remodelling sites and bone ne hanoregulation markers was evaluated in the *longitudinal cohort* between the baseline and one operation of true bone formation and resorption sites. The formation and resorption sites occurring after a one one-year interval were identified using the optimised filtering approach determined in objective 1. A paired Wilcoxon signed-rank test was used to determine the presence of substantial bone resorption, formation, and net change between baseline and one year, after confirming the non-normality of variables with a Shapiro-Wilk test. The approach was performed again with the repeat scan (taken within one month of the baseline) in place of the baseline scan to test the agreeability of the approach (**Figure 1B**). Bland-Altman plots were used to measure the limits of agreement between baseline and repeat scans when determining the resorption, formation, and net change fraction after one year.

The local mechanical signal in the bone tissue of the baseline scan was calculated using micro-FE analysis (**Figure 1C**). Finite element meshes were generated by converting all voxels to 8-node hexahedral elements and assigning a Young's modulus of 8.748 GPa and Poisson's ratio of 0.3 [37]. A standard uniaxial compression of up to 1% apparent strain was applied. Linear micro-FE calculations

were solved using ParOsol [38] at the ETH research computing cluster (Euler, ETH Zurich, Zurich, Switzerland) using 48 threads (Intel Xeon Gold 5118, 3.2 GHz, 96 GB). Voxel-wise strain energy density (SED) was derived as the local mechanical signal [19,24].

Following the method presented by Schulte et al. [24], patient-wise conditional probability curves were computed to link the mechanical signal (baseline SED) at different strain levels to the remodelling events detected on the bone surface between baseline and the one-year follow-up (Figure 1D). Briefly, SED was normalised using the 99th percentile and binned at 1% intervals ($n_{bins}=1.0$). Conditional probability was calculated from strain frequency distributions to analyse the probab.'ity of bone remodelling events at various strain levels. The conditional probability curves were used to calculate the correct classification rate (CCR), a measure for estimating the proportion of ref. ode ling events (resorption, quiescence, and formation) correctly relative to mechanical signal [39] in wever, CCR only provides an overall marker of agreeability, not an independent assessment of the critent to which formation and resorption events are load-driven. Thus, logistic regression was performed to independently ascertain the patient-specific association between mechanical signal (burghn e SED) with voxel-wise bone formation and resorption. Odds ratios for bone resorption (CR_R) 10rmation (OR_F) with 99% confidence intervals (CI) were computed per one-percentage-pc in 'hange in normalised mechanical signal (SED/SED_{max}) to quantify strain-driven bone formation and resorption in individual participants. The 99% CIs were constructed using bootstrapping (k=100). A confidence interval of 99% was used due to the large sample size when performing voxel-wise analysis.

The mechanoregulation analysis was repeated using the repeat scan (taken within one month of the baseline) in place of the baseline scan to determine the precision of the approach. [45]. Bland-Altman plots, with 99% CI were used to measure the limits of agreement between baseline and repeat scans in estimating the conditional probability of resorption, quiescence and formation events for each strain bin $(n_{bins}=100)$. One-year RMS-SD and least-significant change of OR_R, OR_F, and CCR were calculated using outcomes of the baseline-to-one-year and repeat-to-one-year pairs to assess the method's precision.

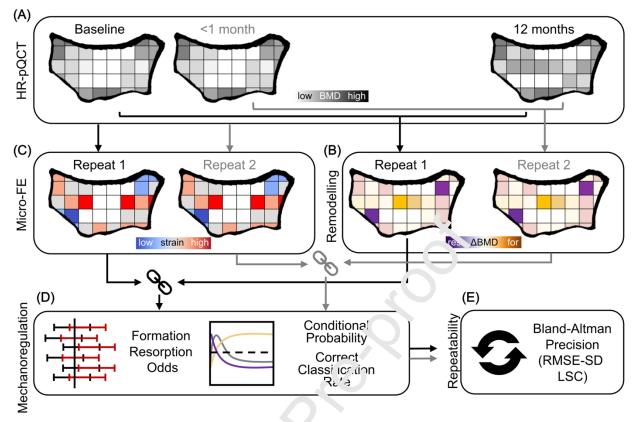


Figure 1: Study design for objective 2. (A) Ba. dine and repeat scans were acquired within one month, along with a one-year follow-up for each patient (n = 19) using HR-pQCT to measure bone mineral density (BMD) and microstructure. (D) Remodelling sites were identified based on changes in density between baseline and follow-up as well as repeat and follow-up. (C) Micro-FE analysis was performed on the baseline and repeat scans (a) Mechanoregulation was assessed using quantitative markers. (E) The precision of mechanoregu. The markers was assessed.

3 Results

Objective 1: Bone remodelling sites identification and precision

Removal of remodelling events with a density change lower than 225 mg HA/cm³ and clusters smaller than 12 voxels eliminated 99% of false remodelling sites observed in the *same-day cohort* (**Figure 2A**). The remaining 1% of false remodelling sites were considered acceptable noise levels. Overall, filtering significantly improved (p < 0.01) absolute errors in the detection of false formation and resorption sites across all motion scores (**Figure 2B and Table 1**). When assessing the absolute errors relative to motion

scores after filtering, no significant differences were found for scans with motion scores of one or two. However, when at least one scan in the scan-rescan pair had a motion score of three or more, absolute errors significantly increased (p < 0.01), despite implementing the optimised filtering protocol. Specifically, when the maximal motion score in scan-rescan pairs shifted from two to three, the detection of false resorption events increased from 6.0% to 11.3% and false formation events increased from 6.4% to 11.9%. Therefore, scans with motion scores one or two were selected for further processing in the longitudinal cohort.

The precision error of formation and resorption events was unchanged (p = 1.0) by the added filtering protocol across all motion scores. However, the precision of cone formation and resorption events significantly improved with lower motion grading (p < 0.05, **Figure 2C and Table 1**). Overall, the precision of detecting bone formation versus resorption events was comparable across image quality gradings (RMS-SD = 3.3%, for all scans, and $\langle M'_2 - SD = 1.7\%$ for motion scores of two or less). Overall, these results confirm that motion artefacts p'ay a considerable role in the method's precision, while image filtering significantly influences absolute e rors of false remodelling events.

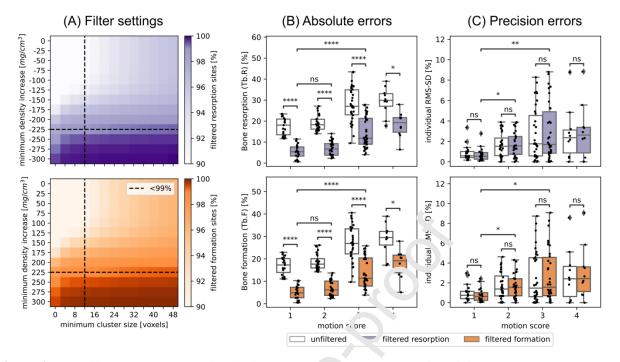


Figure 2: (A) Filter strategy determined using three s modal resorption sites with different filter combinations. (B) Absolute errors were calculated assuming not true bone remodelling between scans. Boxplots show absolute errors with and without filtering to formation and resorption fractions at different motion scores. (C) Precision errors expressed as RMS-S. between individual measurements were grouped by maximum motion score within the compartion ret. Boxplots show precision errors with and without filtering for formation scores. Significant differences are indicated (*p < 0.05; **p<0.01, ****p < 0.001, Mann-Whitney-Wilcoxon test with Holm–Bonferroni correction).

Table 1: Precision errors for resorption (Tb.R) and formation (Tb.F) detections expressed as standard deviation of repeated measurements (RMS-SD) and least-significant change (LSC). Measurements were grouped progressively restricting inclusion criteria for patient motion. Maximum motion score indicates the highest motion score tolerated.

Maximum	Degrees	abs. error (95% CI)	RMS-SD	LSC

motion	of	Tb.F	Tb.R	Tb.F	Tb.R	Tb.F	Tb.R
score	freedom						
≤4	58	9.2% (6.9% - 11.5%)	9.8% (7.2 % - 12.3%)	3.2%	3.3%	9.0%	9.2%
≤3	50	9.2% (6.6% - 11.8%)	9.7% (6.9% - 12.6%)	2.9%	3.0%	7.9%	8.2%
≤2	26	6.1% (4.2% - 8.0%)	6.4% (4.5% - 8.2%)	1.7%	1.7%	4.6%	4.7%
=1	10	4.5% (1.1% - 7.9%)	4.8% (1.6% - 8.1%)	0.9%	0.7%	2.4%	1.8%

Objective 2: Precision of bone mechanoregulation analysis

In the *longitudinal cohort*, the determined filtering strategy (objective 1) visually reduced the amount of detected formation and resorption sites relative to the unliftered approach, and the filtering strategy showed good precision between baseline repeat measurements (**Figure 3**). We found significant bone resorption of 5.3% (95% CI: 3.1% - 7.5%, p < 0.05) and formation of 5.2% (95% CI: 3.0% - 7.4%, p < 0.05) after one year compared to resorption of 5.7% (95% CI: 2.4% - 5%, p < 0.05) and formation of 3.1% (95% CI: 1.7% - 4.5%, p < 0.05) within one month, between baseline and the repeat scan (**Figure 4A**). Bland-Altman plots showed no significant bias (p< 0.01) between baseline and repeated scans for deriving one-year bone formation and resorption (Tb.R > 6.6%) and formation (Tb.F > 6.7%) as an outlier (**Figure 4B**).

In terms of mechanoregulation outcomes over the one-year follow-up, we found that bone had the highest conditional probability to be formed in high-strain and resorbed in low-strain regions (**Figure 5A**), and no bias (p< 0.01) was found between conditional probabilities computed when using the baseline versus repeat scan (**Figure 5B**). No participants showed a dysregulated response (OR < 1.0 or CCR < $\frac{1}{3}$) to mechanical stimuli. The range of participant-level OR_R was between 1.3 to 3.5, and OR_F was between 1.3 to 2.9 (**Figure 5C**). The overall population showed that the likelihood of bone resorption was

significantly associated with decreasing strain, and bone formation was significantly associated with increasing strain, with an overall OR_R of 2.0 (99% CI: 1.8 - 2.2) and OR_F of 1.9 (99% CI: 1.7 - 2.1). On average, 38.3% (99% CI: 37.2 - 39.4) of strain-driven remodelling events were detected with CCR, ranging from 35.7% to 42.5%. In most cases, confidence intervals between one-year mechanoregulation markers estimated from baseline and repeat scans showed consistent participant-level overlap, demonstrating good precision at the participant level. Visually, trending differences in OR_R, OR_F, and CCR between age and sex groups of participants were observed, yet no explicit comparisons were made due to insufficient statistical power. Precision errors of OR_R (RMS-5D = 0.2, LSC = 0.6) were higher than OR_F (RMS-SD = 0.1, LSC = 0.3). CCR showed excellent precision (RMS-SD = $5.1*10^{-3}$, LSC = $14.0*10^{-3}$). Overall, bone mechanoregulation markers acquired the method's precision.

Solution

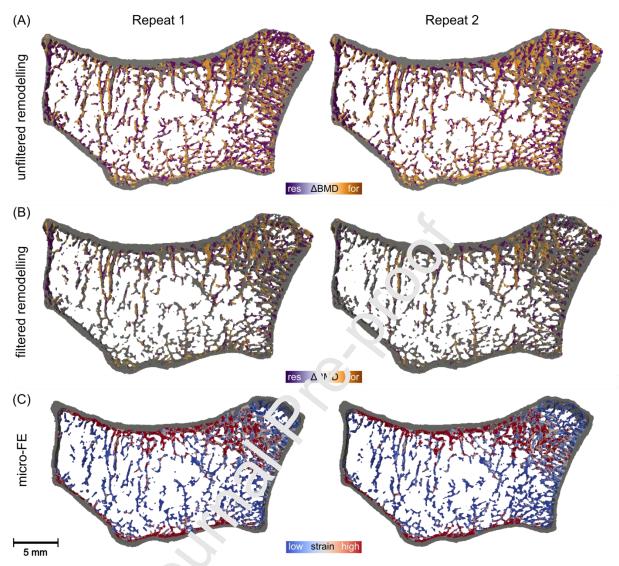


Figure 3: (A) Representati e a ial cross-sections (15 slices thick) of the human distal radius show bone remodelling over one year. Sites of bone formation (for) and resorption (res) were determined using threedimensional image registration of baseline and 1-year follow-up measurements for scans (repeat 1) and rescans (repeat 2). (B) Remaining formation and resorption sites are shown after filtering small remodelling clusters (< 12 voxels) with a minimum change in density of ± 225 HA mg/cm³, using the optimised filtering strategy from objective 1. (C) Corresponding micro finite element analysis (micro-FE) visually shows higher strain energy density in regions of formation and lower strain energy density in regions of resorbed bone.

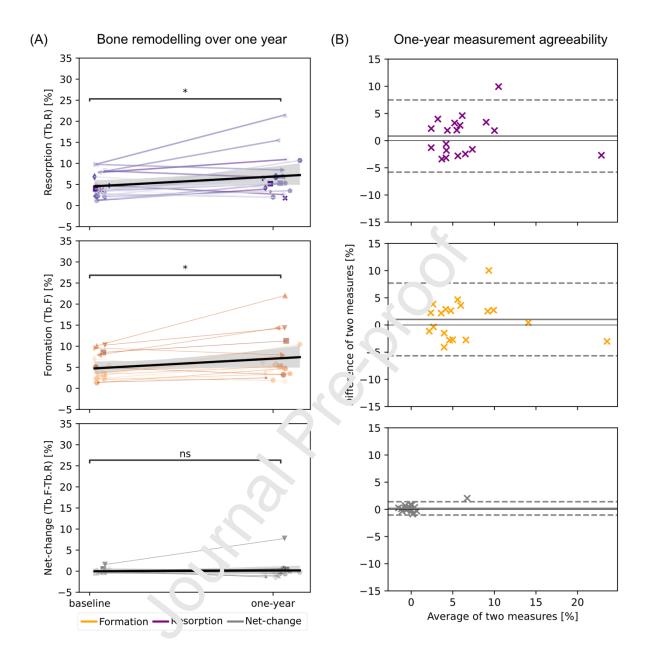


Figure 4: (A) Bone resorption, formation and net change fraction over one year of bone remodelling assessed by longitudinal HR-pQCT imaging. Significant increases in remodelled tissue fraction from baseline to one year are indicated (*p < 0.05; Wilcoxon signed-rank test). (B) Bland-Altman plots illustrating the mean offset (solid mid-line, grey) and 95% confidence limits (dashed lines, grey) of agreement for one-year resorption, formation, and net-change fractions when the baseline versus repeat scans (within one month of baseline) were used.

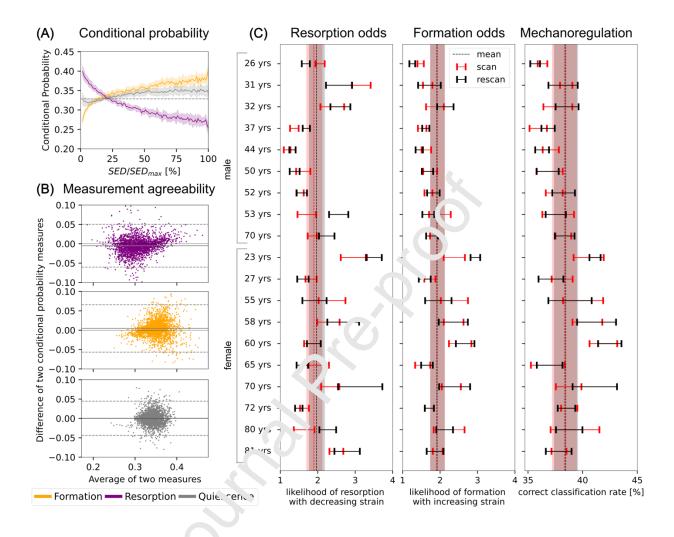


Figure 5: (A) Conditional p obability of bone resorption, quiescence, and formation throughout one year of bone remodelling (n=19) with varying local strain energy density (SED) magnitudes. (B) Bland-Altman plots illustrate mean offset (solid mid-line, grey) and 95% confidence limits (dashed lines, grey) of conditional probability agreement of a repeat assessment (<1 month) conducted on the same participant. (C) Respective odds ratios of bone resorption/formation with decreasing/increasing SED and correct classification rates quantify the mechanically-driven bone remodelling in participants. Vertical dashed lines indicate average measurement values, and the shaded area shows the 99% confidence intervals for baseline scans (red) and repeat scans (black).

4 Discussion

Mechanical signals are one of the most important determinants of bone health in humans [40], yet, quantifying the metabolic response of bone tissue to this stimulation has proven difficult. Here, we demonstrated that longitudinal HR-pQCT at 61 μ m resolution can detect local bone formation and resorption on the bone surface over the course of one year. Combined with micro-FE analysis, we found a substantial temporospatial relationship between bone remodelling and local mechanical signals. We quantified the capacity of regional mechanical stimulus variations to initiate bone remodelling events using participant-specific formation and resorption odds ratios. We showed that local strain variations affected remodelling differently across participants. Further, we demonstrated that the proportion of remodelling events that were correctly correlated to the mechanical signal varied across participants. Using repeat scans, we evaluated the precision of this method to ensure that bone formation and resorption detected among individuals were not solely with the noise and measurement errors. Finally, our study provided robust *in vivo* mecha. or gulation markers characterising the effect of local mechanical stimuli on bone remodelling and vanitified their precision.

For a reliable evaluation of bone mecha oregulation, consistent detection of local bone formation and resorption sites is required. Using all independent same-day-repeat HR-pQCT cohort, we showed that filtering of remodelling sites eased on density change and cluster volume can reduce false detections without adversely impacting the method's precision. The basis of the proposed filtering approach was first developed for the first generation of HR-pQCT (XtremeCT, ScancoMedical, 82 µm) [17]. Although the resolution has increased from 82 µm to 61 µm, we found consistent filtering parameters of 225 mg/cm³ minimum density change and 12 voxels minimum cluster size, which is equivalent to 5 voxels at 82 µm resolution, were effective for removing the majority (99%) of false remodelling events. Previous studies have shown that it is possible to retrospectively estimate specific second-generation HR-pQCT measurements from first-generation acquired images using cross-calibration techniques [41]. Our findings suggest that this could also be viable for mechanoregulation measurements, allowing comparisons to

published longitudinal data at 82 µm resolution; however, future cross-calibration studies would be required to confirm this. Further, the LSC required to detect bone formation was comparable to the LSC required to detect resorption and did not change from the previous scanner generation. We found that LSC rapidly increased with increasing patient motion, roughly 2% for high-quality (score 1) and 5% for good-quality (score 2) scans. Although the average volume replacement (turnover) of bone is approximately 10% per year [42], it varies across different sites. It is estimated to be substantially lower at yellow bone marrow sites, such as the distal radius, at roughly 2% per year [43,44]. Considering comparable one-year remodelling fractions in our longitudinal cohort, our findings suggest that a one-year follow-up may be the minimum required period to assess bon; fo mation and resorption using this method. Although filtering can reduce false detections of formation and resorption events, our findings suggest future studies should only use low-motion HR-pCC1 scans (motion ≤ 2), especially for short follow-ups or when investigating diseases with low bon a turnover, such as diabetes mellitus. Differences observed in the current study compared to a previous study [17], recommending the inclusion of motion scores up to grade 3, may be due to operato, variability of the manual motion scoring procedure [33]. To ensure inter-study comparability, we used a reviously developed automatic motion grading system [26] to eliminate the subjectivity of m' tion, scores. Studies may be able to use scans with moderate motion artefacts grade (motion grade: 3) for more extended follow-up periods or when investigating bone diseases with more rapid oh, nges, such as chronic kidney disease [45].

Understanding the mechanisms behind localised bone loss and turnover dynamics in response to strain patterns may have important implications for treating age-related or disease-induced bone loss [1]. For example, previous HR-pQCT studies have identified impaired bone microstructure in patients with diabetes mellitus [46]. In these patients, observed microstructural deficits [47] may be directly related to an impaired response to mechanical loading, as has been observed in diabetic animal models [48]. Our proposed mechanoregulation method has the potential to bridge the gap between clinically observed bone phenotype and animal models and may help to develop mechanical intervention therapies that enhance

bone health and lower fracture risk in diabetic patients. Through determination of the level of strain that constitutes bone growth and the level of strain that may be excessive and raise the risk of damage or failure, similar analysis methods could also be incorporated into personalised physiotherapy or exercise treatments. Further, interventions that improve mechanosensitivity, as measured using the techniques described herein, may provide novel treatments for these patients. In support of this, a previous study showed that bone mechanoregulation could be used to assess the effects of vitamin D and calcium supplementation in individuals [21]. Our findings provide the necessary precision for these and future studies to interpret observed changes in mechanoregulation within and *act* as participant groups.

There are several limitations to our study. First, the linear travisformation used after image registration may have introduced interpolation artefacts [49]. Yet, p eliminary tests showed using higher-order interpolations did not substantially improve outcomes will significantly increasing computational time. Second, we assessed the precision of the mechanic regulation methods using a single follow-up timepoint, which is not completely independent since the ne-year follow-up was used for both the baseline and repeat measurement. Therefore, we experiently higher precision errors when performing this analysis using scans/rescans at baseline and cans/rescans at follow-up. Yet, in combination with the same-day reproducibility assessment, our stu v provides first estimates for further investigations. Finally, the employed micro-FE model ... s inear in terms of material and geometry. These simplifications do not account for nonlinear beha jour or viscoelastic effects; however, only minor linear-elastic deformations are anticipated during daily activities [50]. Although our results show promising precision of our method for high-quality images, patient motion remains an issue for longitudinal HR-pQCT investigations. As a result, we had to exclude many participants in the longitudinal cohort due to patient motion. This is consistent with other studies investigating bone mechanoregulation using HR-pQCT that included subsets of 9 out of 126 [19], 21 out of 102 [18] and 25 out of 106 participants [21]. Future advances in motion suppression, whether through computational or hardware approaches, will be necessary to move HRpQCT-based bone remodelling methods closer to clinical implementation. Further, HR-pQCT is limited

to the peripheral skeletal sites. Therefore, direct assessment identification of reduced mechanoregulation at osteoporotic fracture sites with higher bone turnover rates, such as the hip or spine, is not yet possible. However, with the advent of new imaging technologies such as photon counting computed tomography [51] the application of mechanoregulation to other skeletal sites of interest could be possible in the future.

The combination of time-lapsed bone remodelling with micro-finite element analysis provides a powerful tool for investigating skeletal adaptation to mechanical load. This work provides the necessary filtering protocol to identify the true bone formation and resorption sites using lor citudinal HR-pQCT. Further, we propose patient-specific bone mechanoregulation imaging markers and report their precision to aid in designing future clinical studies investigating bone mechanoregulation *in vivo*. Bone mechanoregulation markers have the potential to help decipher the underlying cruse of abnormal bone remodelling in many osteodegenerative disorders and age-related bone loss of abnormal bone remodelling in many markers can be utilised to identify patients at the for fracture and develop individualised mechanical treatment regimens.

5 References

- A.A. Biewener, Safety factors in one strength, Calcified Tissue International 1993 53:1. 53 (1993) S68– S74. https://doi.org/10.1007/3F01673406.
- [2] M.B. Schaffler, W.Y. Chyng, R. Majeska, O. Kennedy, Osteocytes: Master orchestrators of bone, Calcif Tissue Int. 94 (2011) 5 24. https://doi.org/10.1007/S00223-013-9790-Y/FIGURES/3.
- M.B. Schaffler, O.D. Kennedy, Osteocyte signaling in bone, Curr Osteoporos Rep. 10 (2012) 118–125. https://doi.org/10.1007/S11914-012-0105-4/FIGURES/1.
- [4] L. Qin, W. Liu, H. Cao, G. Xiao, Molecular mechanosensors in osteocytes, Bone Research 2020 8:1. 8 (2020) 1–24. https://doi.org/10.1038/s41413-020-0099-y.
- [5] B. Martin, Mathematical model for repair of fatigue damage and stress fracture in osteonal bone, Journal of Orthopaedic Research. 13 (1995) 309–316. https://doi.org/10.1002/JOR.1100130303.
- [6] E.J. Bassey, M.C. Rothwell, J.J. Littlewood, D.W. Pye, Pre- and Postmenopausal Women Have Different Bone Mineral Density Responses to the Same High-Impact Exercise, Journal of Bone and Mineral Research. 13 (1998) 1805–1813. https://doi.org/10.1359/JBMR.1998.13.12.1805.

- [7] R. Chow, J.E. Harrison, C. Notarius, Effect of two randomised exercise programmes on bone mass of healthy postmenopausal women., Br Med J (Clin Res Ed). 295 (1987) 1441–1444. https://doi.org/10.1136/BMJ.295.6611.1441.
- [8] G.F. Maddalozzo, C.M. Snow, High intensity resistance training: Effects on bone in older men and women, Calcif Tissue Int. 66 (2000) 399–404. https://doi.org/10.1007/S002230010081.
- [9] G.F. Muschler, H. Nitto, C.A. Boehm, K.A. Easley, Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors, J Orthop Res. 19 (2001) 117–125. https://doi.org/10.1016/S0736-0266(00)00010-3.
- [10] G. D'Ippolito, P.C. Schiller, C. Ricordi, B.A. Roos, G.A. Howard, Age-Related Osteogenic Potential of Mesenchymal Stromal Stem Cells from Human Vertebral Bone Ma row, Journal of Bone and Mineral Research. 14 (1999) 1115–1122. https://doi.org/10.1359/JBMR.1999.14.7.¹115.
- [11] Y. Koshihara, A. Suematsu, D. Feng, R. Okawara, H. Ishibashi, S. Van Moto, Osteoclastogenic potential of bone marrow cells increases with age in elderly women with fracture, Mech Ageing Dev. 123 (2002) 1321– 1331. https://doi.org/10.1016/S0047-6374(02)00071-4.
- [12] E.A. Tonna, Electron microscopic study of bone surface c. anges during aging. The loss of cellular control and biofeedback, J Gerontol. 33 (1978) 163–177. https://c.oi.org/10.1093/GERONJ/33.2.163.
- [13] S. Qiu, D.S. Rao, S. Palnitkar, A.M. Parfitt, Re¹ tion. inps between osteocyte density and bone formation rate in human cancellous bone, Bone. 31 (2^f J2) 709-711. https://doi.org/10.1016/S8756-3282(02)00907-9.
- [14] Z. Seref-Ferlengez, S.O. Suadicani, M.M. T., A new perspective on mechanisms governing skeletal complications in type 1 diabetes, Ann N 1 Acad Sci. 1383 (2016) 67. https://doi.org/10.1111/NYAS.13202.
- [15] S.L. Manske, Y. Zhu, C. Sanding, S., Boyd, Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT, Bone. 79 (2015) 213–221. https://doi.org/10.1016/j.bone. 015.06.006.
- [16] S. Boutroy, M.L. Bouxs, in F. Munoz, P.D. Delmas, In Vivo Assessment of Trabecular Bone Microarchitecture by Jigh Resolution Peripheral Quantitative Computed Tomography, J Clin Endocrinol Metab. 90 (2005) 65. 8–0515. https://doi.org/10.1210/JC.2005-1258.
- [17] P. Christen, S. Boutroy, R. Ellouz, R. Chapurlat, B. van Rietbergen, Least-detectable and age-related local in vivo bone remodelling assessed by time-lapse HR-pQCT, (2018). https://doi.org/10.1371/journal.pone.0191369.
- [18] M.E. Mancuso, K.L. Troy, Relating Bone Strain to Local Changes in Radius Microstructure Following 12 Months of Axial Forearm Loading in Women, J Biomech Eng. 142 (2020) 1–11. https://doi.org/10.1115/1.4048232.
- [19] P. Christen, K. Ito, R. Ellouz, S. Boutroy, E. Sornay-Rendu, R.D. Chapurlat, B. van Rietbergen, Bone remodelling in humans is load-driven but not lazy, Nat Commun. 5 (2014) 1–5. https://doi.org/10.1038/ncomms5855.

- [20] M. Walle, F.C. Marques, N. Ohs, M. Blauth, R. Müller, C.J. Collins, Bone Mechanoregulation Allows Subject-Specific Load Estimation Based on Time-Lapsed Micro-CT and HR-pQCT in Vivo, Front Bioeng Biotechnol. 9 (2021) 486. https://doi.org/10.3389/fbioe.2021.677985.
- [21] C.J. Collins, P.R. Atkins, N. Ohs, M. Blauth, K. Lippuner, R. Müller, Clinical observation of diminished bone quality and quantity through longitudinal HR-pQCT-derived remodeling and mechanoregulation, Scientific Reports 2022 12:1. 12 (2022) 1–13. https://doi.org/10.1038/s41598-022-22678-z.
- [22] M.G. Goff, C.R. Slyfield, S.R. Kummari, E. v. Tkachenko, S.E. Fischer, Y.H. Yi, M.G. Jekir, T.M. Keaveny, C.J. Hernandez, Three-dimensional Characterization of Resorption Cavity Size and Location in Human Vertebral Trabecular Bone, Bone. 51 (2012) 28. https://doi.org/10.1016/J.BONE.2012.03.028.
- [23] E.F. Eriksen, H.J.G. Gundersen, F. Melsen, L. Mosekilde, E.F. Eriksen, Reconstruction of the Formative Site in Iliac Trabecular Bone in 20 Normal Individuals Employing a Kinstic Model for Matrix and Mneral Apposition, 1984.
- [24] F.A. Schulte, D. Ruffoni, F.M. Lambers, D. Christen, D.J. Webster, C. Kuhn, R. Müller, Local Mechanical Stimuli Regulate Bone Formation and Resorption in Mice at u.
 Tissue Level, PLoS One. 8 (2013) e62172. https://doi.org/10.1371/JOURNAL.PONE.0062172.
- [25] H.E. Plesser, Reproducibility vs. Replicability: A blief history of a confused terminology, Front Neuroinform. 11 (2018) 76. https://doi.org/10.3389/ N.NF.2017.00076/BIBTEX.
- [26] M. Walle, D. Eggemann, P.R. Atkins, J.J. Kei dah, K. Stock, R. Müller, C.J. Collins, Motion grading of high-resolution quantitative computed tomo r.phy supported by deep convolutional neural networks, Bone. 166 (2023) 116607. https://doi.org/10.1016/J.Bc.NE.2022.116607.
- [27] D. Schenk, A. Mathis, K. Lippuner, P. 2, "set, In vivo repeatability of homogenized finite element analysis based on multiple HR-pQCT sections" assessment of distal radius and tibia strength, Bone. 141 (2020) 115575. https://doi.org/10.1016/s BONE.2020.115575.
- [28] S. Bonaretti, S. Majumdar, T.F. Lang, S. Khosla, A.J. Burghardt, The comparability of HR-pQCT bone measurements is improved 'v scanning anatomically standardized regions, Osteoporosis International. 28 (2017) 2115–2128 https://cpi.org/10.1007/S00198-017-4010-7/TABLES/7.
- [29] P.R. Atkins, K. Stock, J. Ohs, C.J. Collins, L. Horling, S. Benedikt, G. Degenhart, K. Lippuner, M. Blauth, P. Christen, others, Formation Dominates Resorption with Increasing Mineralized Density and Time-Post-Fracture in Cortical but not Trabecular Bone: A Longitudinal HR-pQCT Imaging Study in the Distal Radius, JBMR Plus. (n.d.) e10493.
- [30] P.R. Atkins, K. Stock, N. Ohs, C.J. Collins, L. Horling, S. Benedikt, G. Degenhart, K. Lippuner, M. Blauth, P. Christen, others, Formation Dominates Resorption with Increasing Mineralized Density and Time-Post-Fracture in Cortical but not Trabecular Bone: A Longitudinal HR-pQCT Imaging Study in the Distal Radius, JBMR Plus. (n.d.) e10493.
- [31] D.E. Whittier, S.K. Boyd, A.J. Burghardt, J. Paccou, A. Ghasem-Zadeh, R. Chapurlat, K. Engelke, M.L. Bouxsein, Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography, Osteoporosis International. 31 (2020) 1607–1627. https://doi.org/10.1007/s00198-020-05438-5.

- [32] H.R. Buie, G.M. Campbell, R.J. Klinck, J.A. MacNeil, S.K. Boyd, Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis, Bone. 41 (2007) 505–515. https://doi.org/10.1016/j.bone.2007.07.007.
- [33] D.E. Whittier, A.N. Mudryk, I.D. Vandergaag, L.A. Burt, S.K. Boyd, Optimizing HR-pQCT workflow: a comparison of bias and precision error for quantitative bone analysis, Osteoporosis International. 31 (2020) 567–576. https://doi.org/10.1007/S00198-019-05214-0/TABLES/3.
- [34] Z. Yaniv, B.C. Lowekamp, H.J. Johnson, R. Beare, SimpleITK Image-Analysis Notebooks: a Collaborative Environment for Education and Reproducible Research, J Digit Imaging. 31 (2018) 290–303. https://doi.org/10.1007/S10278-017-0037-8.
- [35] R. Beare, B. Lowekamp, Z. Yaniv, Image Segmentation, Registration and Characterization in R with SimpleITK, J Stat Softw. 86 (2018). https://doi.org/10.18637/JSS.V086.16.
- [36] C.-C. Gliier, G. Blake, Y. Lu, B.A. Blunt, M. Jergas, H.K. Gerom, Cateoporosis International Accurate Assessment of Precision Errors: How to Measure the Reproduci vility of Bone Densitometry Techniques, 5 (1995) 262–270.
- [37] D.E. Whittier, S.L. Manske, D.P. Kiel, M. Bouxsein, S.K. Poyd, Harmonizing finite element modelling for non-invasive strength estimation by HR-FQCT, J Biomech. 80 (2018) 63. https://doi.org/10.1016/J.JBIOMECH.2018.08.030.
- [38] C. Flaig, P. Arbenz, A scalable memory eff².1et. multigrid solver for micro-finite element analyses based on CT images, Parallel Comput. 37 (2011) 846 9'.4. https://doi.org/10.1016/j.parco.2011.08.001.
- [39] D.C.T. né Betts, E. Wehrle, G.R. Paul, C.A. Kuhn, P. Christen, S. Hofmann, R. Müller, D.C. Tourolle né Betts, E. Wehrle, G.R. Paul, G.A. Ku'n, P. Christen, S. Hofmann, R. Müller, The association between mineralised tissue formation and the network of a mouse defect healing model, Sci. Pep. 10 (2020) 1–10. https://doi.org/10.1038/s41598-020-57461-5.
- [40] L. Wang, X. You, L. Zhang, C Zhang, W. Zou, Mechanical regulation of bone remodeling, Bone Research 2022 10:1. 10 (2022) 1–15. https://doi.org/10.1038/s41413-022-00190-4.
- [41] S.L. Manske, E.M. Pavison, L.A. Burt, D.A. Raymond, S.K. Boyd, The Estimation of Second-Generation HR-pQCT From First-(eneration HR-pQCT Using In Vivo Cross-Calibration, Journal of Bone and Mineral Research. 32 (2017) 1514–1524. https://doi.org/10.1002/jbmr.3128.
- [42] S.C. Manolagas, A.M. Parfitt, What old means to bone, Trends in Endocrinology and Metabolism. 21 (2010) 369–374. https://doi.org/10.1016/j.tem.2010.01.010.
- [43] A.M. Parfitt, Misconceptions (2): Turnover Is Always Higher in Cancellous Than in Cortical Bone, 2002.
- [44] A.M. Parfitt, D.S. Rao, J. Stanciu, A.R. Villanueva, M. Kleerekoper, B. Frame, Irreversible bone loss in osteomalacia. Comparison of radial photon absorptiometry with iliac bone histomorphometry during treatment, Journal of Clinical Investigation. 76 (1985) 2403–2412. https://doi.org/10.1172/JCI112253.
- [45] S. Salam, O. Gallagher, F. Gossiel, M. Paggiosi, A. Khwaja, R. Eastell, Diagnostic accuracy of biomarkers and imaging for bone turnover in renal osteodystrophy, Journal of the American Society of Nephrology. 29 (2018) 1557–1565. https://doi.org/10.1681/ASN.2017050584/-/DCSUPPLEMENTAL.

- [46] M. Walle, D.E. Whittier, M. Frost, R. Müller, C.J. Collins, Meta-analysis of Diabetes Mellitus-Associated Differences in Bone Structure Assessed by High-Resolution Peripheral Quantitative Computed Tomography, Curr Osteoporos Rep. (2022). https://doi.org/10.1007/s11914-022-00755-6.
- [47] A. Parajuli, C. Liu, W. Li, X. Gu, X. Lai, S. Pei, C. Price, L. You, X.L. Lu, L. Wang, Bone's Responses to Mechanical Loading are Impaired in Type I Diabetes, Bone. 81 (2015) 152. https://doi.org/10.1016/J.BONE.2015.07.012.
- [48] K.L. Troy, M.E. Mancuso, J.E. Johnson, Z. Wu, T.J. Schnitzer, T.A. Butler, Bone Adaptation in Adult Women Is Related to Loading Dose: A 12-Month Randomized Controlled Trial, J Bone Miner Res. 35 (2020) 1300–1312. https://doi.org/10.1002/JBMR.3999.
- [49] F.A. Schulte, F.M. Lambers, T.L. Mueller, M. Stauber, R. Müller, image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography cans, Comput Methods Biomech Biomed Engin. 17 (2014) 539–548.
- [50] T. Sugiyama, Physical activity and bone health: understandin 3 mc chanical strain-related stimuli, Int J Epidemiol. 47 (2018) 669–670. https://doi.org/10.1093/IJE/D^{*} V03/.
- [51] M. Bonvento, T. Button, P. Srivastava, E. Roessl, K. Pr ksa, K-edge imaging in x-ray computed tomography using multi-bin photon counting de ectors, Phys Med Biol. 52 (2007) 4679. https://doi.org/10.1088/0031-9155/52/15/020.

CRediT author statement:

Matthias Walle: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization. Danielle E. Whittier: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data Curation, Writing - Original Draft, Writing - Review & Editing. Denis Schenk: Data Curation, Writing - Review & Editing. Penny R. Atkins: Data Curation, Writing - Review & Editing. Michael Blauth: Data Curation, Writing - Review & Editing, Project administration. Philippe Zysset: D:... Curation, Writing - Review & Editing, Project administration. Kurt Lippuner: Data Curation, Writing - Review & Editing, Project administration, Funding acquisition, Supervision. Caitlyn J. Collins: Conc. Duc lization, Methodology, Formal analysis, Data Curation, Writing - Review & Editing, Project administration, Supervision.

Highlights

- Assessed *in vivo* precision of HR-pQCT-based bone mechanoregulation methods.
- The measured precision was between 1.3% and 10.5% RMS-CV for various markers.
- All participants consistently formed bone in high-strain and resorbed in low-strain regions.
- Likelihood for resorption decreased by 2.0±0.2% and formation increased by 1.9±0.2% per percent increase in strain.
- In the trabecular compartment, $38.3 \pm 1.1\%$ of remodelling event were strain-driven.

Sontal