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In response to persistent gaps in the availability of survey data, a new strand of research

leverages alternative data sources through machine learning to track global development.

While previous applications have been successful at predicting outcomes such as wealth,

poverty or population density, we show that educational outcomes can be accurately esti-

mated using geo-coded Twitter data and machine learning. Based on various input features,

including user and tweet characteristics, topics, spelling mistakes, and network indicators,

we can account for ∼70 percent of the variation in educational attainment in Mexican mu-

nicipalities and US counties.
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1 Introduction

Reliable data on key socio-economic outcomes enables policy-makers to take informed deci-

sions and promote societal development. However, many countries are plagued by a pervasive

lack of such data, limiting their ability to track progress and evaluate policies. To address

the problem, a growing strand of literature uses alternative data sources such as satellite

imagery or phone records to bridge the existing gaps in data availability (Burke et al., 2021).

While previous studies have successfully predicted outcomes such as wealth, income or popu-

lation density, this paper proposes an innovative approach to measuring human capital using

geolocated Twitter data.

Specifically, we construct a series of interpretable measures of human capital at low ad-

ministrative units (municipality in Mexico and county in the United States) based on over

25 million tweets. Our feature matrix includes simple Twitter penetration (e.g., user densi-

ties) and usage statistics (e.g., tweet length), text-based indicators on spelling mistakes (e.g.,

frequency of grammar mistakes), topics, (e.g., share of tweets about science) and sentiments

(e.g., share of negative tweets) as well as network indicators (e.g., closeness centrality). For

each input, we compute cluster-level estimates based on geographical neighbors, and use

them both as additional features and to impute missing values. We then train a stack-

ing regressor combining five machine learning algorithms — elastic net regression, gradient

boosting, support vector regression, nearest neighbor regression, and a feed-forward neural

network — to predict educational attainment for Mexican municipalities (N = 2,457) and

US counties (N = 3,141). We apply grid search to tune the relevant hyperparameters of each

model, and evaluate the performance of the final models using five-fold cross-validation.

Our predictions account for 70 percent of the variation in years of schooling in Mexican

municipalities and 65 percent in US counties. Where, how and what people tweet is thus

highly informative about human capital. Within both countries, Twitter data appears to be

particularly well-suited for distinguishing higher levels of education. For example, we achieve

an r2 of 0.70 when predicting county-level shares of US adults holding a bachelor’s degree,

while the corresponding r2 for the percentage that completed high school is only 0.50. We

observe a similar, though less pronounced relationship, for Mexico with an r2 of 0.69 for the

share with post-basic education and 0.61 for the percentage completing primary education.

Our focus on a limited number of meaningful variables also allows us to study which

(groups of) features are most predictive of educational outcomes. In most models, user

density emerges as the single most important predictor of educational outcomes. Twitter

penetration features are particularly informative in Mexico, where (on their own) they ac-

count for 57 percent of the variation in educational outcomes, compared to 37 percent in the

1



US. Similarly, error and network features appear to be strongly related to human capital in

Mexico (r2 = 0.55 and 0.51, respectively), but less so in the US (r2 = 0.42 and 0.34, respec-

tively). General tweet statistics and topics have consistently high predictive power in both

countries (r2 between 0.5 and 0.6). In Mexico and the United States including cluster-level

features is critical, improving model performance by almost 10 percentage points.

The main challenge to model performance arises in sparsely populated areas with low

Twitter penetration. Accordingly, the population-weighted r2 for years of schooling is 0.85

for Mexico and 0.70 for the US (compared to 0.70 and 0.65 in our unweighted base model).

Similarly, restricting the evaluation sample to areas with at least ten users would increase

performance to 0.74 in Mexico and 0.68 in the US. We also explore how model performance

evolves depending on the data collection period, finding that we can achieve relatively high

predictive power with just three days of tweet data, namely an r2 of 0.66 for Mexico and

0.58 for the United States.

Using wealth data for Mexico and income data for the US, we further explore how our

human capital measure performs in downstream tasks by comparing regression results based

on predicted vs. ground truth education measures. We find that slope coefficients tend to be

biased not only when using the predicted indicator as an independent variable, but also when

it acts as the dependent variable. The latter bias results from the typical model tendency to

overpredict for low and underpredict for high values and is likely to affect most applications.

When using a loss function that penalizes quintile-specific biases (see Ratledge et al., 2021),

the bias effectively disappears, and regression coefficients based on our predicted indicator

become very similar to their ground truth counterparts. Our simulations show that when

appropriately modeled, predicted indicators can produce correct estimates in downstream

regression tasks as long as they serve as the outcome and not the treatment variable.

This paper contributes to the recent literature exploring the combined potential of non-

conventional data sources and machine learning to measure and understand socio-economic

development. While a range of outcomes including wealth (Jean et al., 2016; Blumenstock,

Cadamuro, and On, 2015; Yeh et al., 2020; Aiken et al., 2022), population density (Stevens

et al., 2015; Wardrop et al., 2018), crop yield (Lobell, 2013; Burke and Lobell, 2017; Sun

et al., 2019), informal settlements (Kuffer, Pfeffer, and Sliuzas, 2016; Mboga et al., 2017),

electricity access (Ratledge et al., 2021), and disease spread (Wesolowski et al., 2012; Chang

et al., 2021) have been accurately predicted using satellite or phone data, previous attempts

to infer human capital have been less successful. Head et al. (2017) use satellite data to

predict educational attainment in Rwanda, Nigeria, Haiti and Nepal, achieving an average

r2 of ∼0.55. The predictive power of other data sources, such as Google Street View images

(Head et al., 2017) or Wikipedia articles (Sheehan et al., 2019), appears to be even lower,
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accounting for less than 40 percent of the variation in educational outcomes. We show that

by using geolocated Twitter data and natural language processing, we cannot only derive

a more accurate indicator of human capital than previous studies but also achieve similar

performance to the renowned wealth prediction with satellite data.

We also add to the literature leveraging social media data for social science research.

Almost five billion people worldwide used at least one social media platform in 2023, and

another billion is projected to join until 2027, as emerging and developing economies are

catching up (Poushter, Bishop, and Chwe, 2018; Statista, 2023). Thus, using social media

data to understand and track development is likely to become increasingly relevant in low-

and middle-income countries where the scarcity of reliable traditional data sources tends to

be most pronounced. Social media data has been used to predict or study diverse outcomes

such as migration (Huang et al., 2020; Yin, Gao, and Chi, 2022), social capital (Chetty et al.,

2022), censorship (King, Pan, and Roberts, 2013), alcohol consumption (Curtis et al., 2018)

or stock market prices (Bollen, Mao, and Zeng, 2011). Moreover, micro-evidence suggests

that social media posts are informative about individual users’ educational characteristics

(Smirnov, 2020; Gomez et al., 2021). This paper goes one step further and shows that

despite the high endogenous selection in social media usage (Mellon and Prosser, 2017), the

respective data can be used to derive accurate education estimates at low administrative

units within countries.

Finally, this paper makes two methodological contributions. First, it ties into the nascent

methodological discussion on the validity of predicted indicators for downstream regression

tasks (Ratledge et al., 2021). While the main focus of the previous literature has been on

achieving high predictive performance, we also discuss how regression estimates are affected

by different biases and show how the most detrimental of these biases can be corrected.

Second, we propose an innovative solution to deal with sparse or noisy data in areas of low

population density. By allowing our models to not only learn from data in the observed units,

but also from spatial neighbors, we achieve a substantial improvement in performance. This

approach could be beneficially transferred to other applications, as geographical information

is usually readily available and many outcomes are spatially correlated.

2 Data and Methods

2.1 Collection and Processing of Twitter Data

We used the Twitter Streaming API to compile a large tweet dataset for Mexico and the

United States. Twitter’s Streaming API grants real-time access to information on 1% of all
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tweets, including the text of each tweet as well as a series of tweet and user characteristics.2

Our final dataset consists of 2,686,779 geo-localized tweets from 123,309 users for Mexico

and 22,610,134 tweets from 943,164 users for the United States, gathered between July and

August 2021. The tweets included in our final dataset were selected based on three criteria:

1. Geographical location: We excluded all tweets that were not posted from within the

geographic territory of the respective country. In the case of the United States, we

use all tweets from the mainland, Alaska and Hawaii, but not from unincorporated

territories such as Puerto Rico or the Virgin Islands. We also exclude tweets without

precise location information (i.e., less than municipality/county level precision). Our

final sample comprises tweets with exact coordinates (MX: 3%, US: 3%), neighborhood

or point of interest (poi) level precision coordinates (MX: 2%, US: 2%), and city-level

precision coordinates (MX: 95%, US: 94%).

2. Language: For each country, only tweets written in the main native language (i.e.,

Spanish for Mexico and English for the United States) are included.

3. Source: One key concern regarding the reliability of Twitter data is that many tweets

are automatically spread through APIs rather than individually created by a human

user. We thus restrict our sample to content that is posted through the main four chan-

nels for human users: iPhone, Android, iPad, and Instagram.3 This excludes tweets

generated through third-party APIs from platforms such as Foresquare or CareerArc

(approximately 1 percent of geo-localized tweets in Mexico and 7 percent in the United

States).

To compute municipality or county-level statistics, we follow a three-stage procedure.

First, each tweet is assigned to a geographical unit (i.e., municipality or county) based on

its coordinate data. While this is straightforward for exact coordinates, we have to apply

different types of consistency checks to find the correct unit when coordinate information

consists of a city, poi, or neighborhood level bounding box.4

2The use of the Twitter streaming API was free of charge until the beginning of February 2023, when a
fee was introduced.

3For tweets posted through Instagram, we exclude all tweets using the default text (”Just posted a
photo @...”) rather than a message specified by the user. Tweets posted through the Twitter website are
not included in our sample as they do not have any associated coordinates.

4In most cases, assignment to the geographical unit harboring the centroid of the tweet bounding box
yielded correct results. However, particularly in the Mexican case, where location precision for tweets tends
to be lower (and city level-precision as defined by Twitter refers to municipalities rather than places within
municipalities), we combine spatial joins with name matching to ensure all tweets are assigned to the correct
entity.
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Next, we approximate the home municipality or county for each user. If users tweet from

more than one geographical entity (MX: 33% of users, US: 35% of users), we assign all their

tweets to the entity from which they tweeted the most. For users with equal numbers of

tweets in two or more entities (MX: 1%, US: 2%), we use the number of tweets posted during

non-work hours on weekdays to break ties. This procedure results in the reassignment of

14 percent of tweets in Mexico and 12 percent of tweets in the United States. Tweets that

cannot be unambiguously assigned to a municipality through this procedure are dropped

(MX: 0.4%, US: 0.2%).

Finally, data is aggregated at the municipality or county level using the unit-level sum,

mean, or median depending on the distribution of the underlying variables (for details, see

Section 2.3 and Appendix C). To give equal weight to all users irrespective of their degree

of activity, all tweet-level variables are first aggregated at the user level.

2.2 Survey Data

While many countries lack timely and spatially disaggregated information on educational

outcomes, such data are available for both Mexico and the United States, allowing us to

train and test a prediction algorithm in two different settings. Our main outcome variable is

years of schooling for both countries, but we also look at the share of adults holding different

educational degrees to better understand at which point of the educational distribution

our models work best (see Table A8). We use data from the 2020 census for Mexico and

from the American Community Survey (2017–2021, 5-year estimates) for the United States.5

Following Barro and Lee (2013), we approximate county level years of schooling for the US

based on the proportions holding different educational degrees and the averages for the years

of schooling these degrees correspond to.6

Section C in the Appendix presents summary statistics on all outcome variables. In

the average Mexican municipality, 28 percent of the population holds a post-basic degree,

54 percent graduated from secondary school, 76 percent finished primary school, and the

average person completed 7.8 years of schooling. The corresponding figures in US counties

are 23 percent with a bachelor degree, 54 percent with some college, 88 percent with a high

5The Mexican census data is publicly available at https://www.inegi.org.mx/datosabiertos/

while data from the American Community Survey can be accessed at https://www.ers.usda.gov/

data-products/county-level-data-sets/county-level-data-sets-download-data/.
6Average years of schooling for a given county are calculated by

∑
j hj Durj , where hj indicates the

fraction of the population having attained education level j and Durj indicates the respective duration
to attain level j. We use data from the Current Population Survey, specifically the 2021 Annual Social
and Economic (ASEC) Supplement, to compute estimates for Durj . In Mexico, this approximation is not
necessary as average years of schooling are included in the census data.
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school degree, and 13.3 years of schooling.7

2.3 Features

Our feature matrix comprises municipality-level information on (i) Twitter penetration, (ii)

Twitter usage, (iii) spelling mistakes, (iv) topics, (v) sentiment, and (vi) user networks. In

addition, we also include population density estimates.8 To advance our understanding of the

aspects of people’s online behavior that are most predictive of human capital, we deliberately

focus on a limited number of interpretable features rather than using, for example, tweet

text embeddings (for a detailed overview, see Section C and D in the Appendix).

Table 1: Summary statistics by education level for selected features

Mexico United States

Bottom 25% Top 25% All Bottom 25% Top 25% All

User density 0.23 0.86 0.47 0.79 2.49 1.45
Tweet density 1.94 16.70 7.00 12.03 45.14 24.40

Tweet length 68.75 72.88 69.94 77.09 82.05 80.86
Account age 5.03 6.34 5.67 6.67 7.51 7.06
Tweets per year 1,306.55 362.71 841.93 648.93 351.58 495.19
Favorites per tweet 5.02 1.34 3.76 1.52 2.14 1.73

Error total 24.60 23.54 25.28 15.23 13.14 13.87
Error grammar 0.17 0.15 0.17 0.65 0.47 0.55
Error typos 12.18 10.66 12.47 7.48 6.92 7.19

Topic science 1.84 1.92 1.87 1.58 1.82 1.69
Topic relationships 6.66 5.72 6.27 5.31 4.42 4.76

Sentiment positive 0.39 0.37 0.38 0.50 0.50 0.50
Offensive language 0.15 0.16 0.15 0.17 0.16 0.16

Network clos. centr. 0.06 0.31 0.16 0.28 0.42 0.34

Number of Areas 430 429 1,714 723 723 2,889

Municipality (MX) or county (US) averages for selected features by educational outcome. The bottom 25%
and top 25% refer to the municipalities/counties in the lowest or highest quartile with regard to years of
schooling. Only areas with at least one tweet are included. Features are not log-transformed.

Twitter penetration data (4 features) consists of the total number of tweets and users

as well as the number of users and tweets relative to the population (referred to as user

7MX: Estimates for years of schooling, primary and secondary completion are provided for the population
aged 16 or more, while the share with post-basic education is defined for adults (i.e., over 18). US: All
education statistics refer to the population aged 25 or older.

8Population data is globally available; consequently, its inclusion does not limit the external validity of
our approach. Population data is also necessary for the computation of tweet and user densities. A model
using only population estimates will serve as our benchmark against which the performance of our approach
is compared.
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and tweet densities). We further include general information on Twitter usage (11 features)

such as the average tweet length, number of followers, user mobility, account age, number

of emojis per tweet, or the share of tweets posted during working hours or from an iPhone.

To obtain estimates for the frequencies of different spelling mistakes (MX: 23 features, US:

16 features), we use a Python wrapper for “LanguageTool”, an open-source grammar, style,

and spell checker. LanguageTool is available in over 25 languages, including English and

Spanish, and classifies the detected errors into different categories such as grammar, typos,

casing, punctuation, or style.9 We include the total number of errors per 1,000 characters

and the corresponding figures for each category. To determine the topics of each tweet (19

features), we use a pre-trained multi-label tweet classification model (Ushio and Camacho-

Collados, 2022). This allows us to estimate the probability a given tweet is about a specific

topic such as news, celebrity, sports, or science. As no pre-trained tweet classification models

are available in Spanish, we translate all Spanish tweets to English using a pre-trained model

based on the Marian NMT framework (Junczys-Dowmunt et al., 2018) to determine the topic

distributions of our Mexican tweets.10 A further group of inputs comprises features related

to sentiments (4 features), such as the share of tweets with negative or positive sentiments,

offensive language, or hate speech. They are generated using pre-trained classification models

for Spanish and English tweets.11 Finally, we also add network indicators (4 features), such

as degree and closeness centrality. We use quotes and mentions to construct a user-to-user

network and subsequently aggregate this network to the municipality or county level. We

take the log of right-skewed features and standardize all features before training.12

To address potential problems related to sparse or noisy data in areas of low population

density, we develop a procedure that allows our model to learn from spatial neighbors. For

each unit (i.e., municipality or county), we create a cluster consisting of the focal unit and

all its spatial neighbors and compute cluster-level estimates for each of our features. We

use this information about Twitter usage in the broader area around each unit in three

ways: First, we add the cluster-level estimates as additional inputs to our feature matrix

(i.e., for each unit and measure, we include both unit and cluster-level values). Second, we

use cluster-level features to impute missing values in units without tweets using an elastic

net regression model. This provides estimates for features that cannot be observed in the

absence of tweets, and is necessary as most machine learning algorithms cannot deal with

9See https://dev.languagetool.org/languages for information on language availability.
10The model is provided via the HuggingFace library: https://huggingface.co/docs/transformers/

model_doc/marian.
11The classification models are provided by the same library used for the topic classification above.
12Appendix D documents which variables are log-scaled. Following Stahel (2000), we use log(x + c) to

deal with zeros, with x as the values of a particular feature and c = Q2
0.25 /Q0.75, where Q0.25 and Q0.75 are

the first and the third quartile based on feature values x > 0.

7



missing values. Third, in units with less than 5 tweets, we replace extreme outliers with

imputed values using the same imputation procedure.13

Table 1 shows the mean of selected features by educational level for both countries (see

Section C in the Appendix for complete summary statistics).This simple inspection already

reveals a strong correlation between Twitter features and educational outcomes. In both

countries, user and tweet density is markedly higher in places with more educated popula-

tions. Similarly, users in more educated areas tend to write longer tweets, make fewer errors

and talk about different topics (e.g., science rather than relationships). On the other hand,

users in areas with lower educational attainment are, on average, tweeting more actively.

2.4 Training and Evaluation

To train our models, we use a stacking regressor combining five machine learning algorithms:

(i) elastic net regression, (ii) gradient boosting, (iii) support vector regression, (iv) nearest

neighbor regression, and (v) a feed-forward neural network (i.e., a multi-layer perceptron).

We use grid search to tune the hyperparameter of each model. The performance of the final

stacking regressor is evaluated using five-fold cross-validation. We report the cross-validated

r2 for each fold as well as an overall r2 obtained by combining all cross-validated predictions.

3 Results

3.1 Main Results

Our final model is able to account for 70 percent of the variation in years of schooling in

Mexican municipalities and 65 percent in US counties (see Figure 1). Population-weighted

performance estimates are even higher, reaching an r2 of 0.85 in Mexico and of 0.70 in

the United States.14 A closer look at the predictive power for different educational degrees

reveals substantial variation in model performance in both countries.

In Mexico, we report an r2 of 0.69 for the share of the population holding a post-basic

degree (i.e., high school or more), an r2 of 0.64 for the corresponding share with a secondary

degree, and an r2 of 0.61 when aiming to predict the prevalence of primary school completion.

Differences are even more pronounced in the United States, where our model captures 70

percent of the variation in the percentage of adults that hold bachelor’s degree, 62 percent

for the share that went to college, and 50 percent when focusing on high school completion.

13Extreme outliers are defined as values that are lower than Q0.25 − 3 IQR or higher than Q0.75 +3 IQR,
with Q0.25 and Q0.75 as the first and the third quartile and IQR as the interquartile range.

14Population weights are not taken into account during training.
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MX r2

Years of schooling 0.695
(0.847)

% Post-basic 0.690
(0.820)

% Secondary 0.638
(0.815)

% Primary 0.608
(0.809)

US r2

Years of schooling 0.648
(0.697)

% Bachelor 0.698
(0.753)

% Some College 0.621
(0.683)

% High School 0.499
(0.589)

Figure 1: Performance for different educational outcomes in Mexico and the United States
All models are evaluated through five-fold cross-validation. Boxplots show the median (solid line), mean
(dotted line), the 20th & 80th percentile (box limits), as well as the minimum & maximum (whiskers) for
the r2 across validation folds for each outcome and country. The table on the right presents the r2 based on
out-of-sample predictions for the full data sets (stacked across folds). Population-weighted r2 are presented
in parentheses. All models are evaluated through five-fold cross-validation.

This suggests that Twitter data is particularly informative about higher education levels and

less sensitive to differences at the lower end of the education distribution.

Among the five included models, gradient boosting and support vector machines perform

best and, accordingly, receive the highest weights in the final stacking regressor (see Figure

A1 and Table A1 in the Appendix). The neural network and the nearest neighbor regres-

sor, on the other hand, perform rather poorly, achieving a lower predictive power than the

simple elastic net model (i.e., a regularized linear model). For all outcomes, the ensemble

of all models outperforms the best-performing individual model, highlighting the benefits of

stacking.

As Figures 3a and 3b show, our model produces the attenuated predictions that are

typical for continuous outcomes (Ratledge et al., 2021), meaning that, on average, estimates

9



(a) Predictions for Mexico

(b) Predictions for the United States

(c) Prediction Error

Figure 2: Maps of true vs. predicted years of schooling
Predicted values for all municipalities and counties are obtained by combining out-of-sample predictions from
all folds. In Figure 2c, red indicates overprediction and blue underprediction of true values.
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are too high in low-education and too low in high-education areas.15 This pattern also

becomes apparent when comparing maps of true and predicted years of schooling (see Figures

2a and 2b). While spatial patterns look very similar for the two measures, they are slightly

less fine-grained in the prediction maps. Similarly, Figure 2c shows that prediction errors

tend to be spatially correlated.

(a) Mexico (b) United States

Figure 3: True vs. predicted years of schooling
Predicted values for all municipalities and counties are obtained by combining out-of-sample predictions from
all folds. Bubble size is proportional to the population in each unit. r2 and population weighted r2 shown.
The line indicating the best linear fit is not population-weighted.

3.2 Feature Importance

As our model is based on a limited number of interpretable inputs (see Sections C and

D in the Appendix), we can explore how important various types of features are to the

success of our approach. Figure 4 shows how different groups of features perform on their

own. A model using only population data serves as a benchmark, reaching an r2 of 0.48 for

Mexico and 0.34 for the United States. Simple Twitter penetration data, that is, user and

tweet densities/counts, already outperforms the population model, with r2 values of 0.57 for

Mexico and 0.36 for the United States. Particularly in Mexico, knowing where people tweet

is thus more informative about human capital concentration than knowing where people live.

15The regression line in Figure 3 and Appendix Figure A2 does not take population weights into account.
The fact that there are many sparsely populated areas at the lower, and few, but very populous areas at the
higher end of the education distribution, creates the illusion that the line does not fit the data.

11



Figure 4: Performance of feature subgroups
Performance of feature subgroups for Mexico (blue) and the United States (red): Population (2x4 features,
i.e., 4 at the unit level and 4 at the cluster level), Twitter penetration (2x4 features), usage statistics (2x11
features), spelling mistakes (MX: 2x23 features, US: 2x16 features), topics (2x19 features), sentiment (2x4
features), and networks (2x4 features), as well as all unit level (i.e., municipality or county) and all cluster
level (i.e., including spatial neighbors) features. All models are evaluated through five-fold cross-validation.
Boxplots show the median (solid line), mean (dotted line), the 20th & 80th percentile (box limits), as well as
the minimum & maximum (whiskers) for the r2 across validation folds for each outcome and country. The
outcome is years of schooling in all models.

The performance of usage statistics, that is, features such as the average tweet length

or the number of followers, is high in both countries, accounting for 55 to 58 percent of the

variance in educational outcomes. The same is true for topic variables, which reach an r2

around 0.5 in both countries. Error and network statistics, on the other hand, seem to be

much more strongly related to human capital in Mexico (r2 of 0.55 for errors and 0.51 for

networks) than in the United States (r2 of 0.42 for errors and 0.34 for networks). Finally,

sentiment features constitute the only group of variables that fails to surpass the benchmark

model. Overall, the performance of no single group of features comes close to that of the

overall model, suggesting that the different inputs are complementary.

When looking at the contributions of individual features, the user density seems to be the

most important predictor in the majority of models (see Appendix Figures A3 and A4).16

The importance of other features varies more strongly between countries (and measures of

feature importance), but network features such as closeness centrality or out degree, simple

16The reported feature importances are not based on the final stacking model, but computed separately
for (1) the elastic net and (2) the gradient boosting model. Due to the high collinearity between different
features, results should be interpreted with care.
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usage statistics including the tweet length or the account age, as well as specific topics and

errors tend to be very predictive too.

We can also evaluate how our model benefited from including cluster-level features (see

Figure 4). When limiting ourselves to unit-level features, we report r2 values of 0.63 (MX)

and 0.56 (US), as opposed to 0.70 (MX) and 0.65 (US) for the full model.17 Thus, exploiting

information from spatial neighbors is critical to the predictive power of our models.

3.3 Performance Heterogeneity

We now explore how our model is affected by the limited number of tweets in sparsely pop-

ulated areas (Figure 5). In line with expectations, performance is substantially higher when

limiting the evaluation to municipalities or counties with more tweets or users. This relation-

ship is even more pronounced when looking at different population thresholds. Particularly in

Mexico, model performance increases drastically if we exclude smaller municipalities, where

both input and output data is likely to be more noisy. This is consistent with finding that,

in both countries, the population-weighted r2 is substantially higher than the unweighted r2

for all outcomes.

It is also informative to look at performance by the amount of data we use for the

predictions. We streamed Twitter data for two months for our main analyses and used

millions of tweets to construct municipality or county-level indicators. To see if similar

results can be achieved with a shorter data collection period, we re-run the entire feature

engineering and model training procedure on different subsets of our data. As Figure 6

shows, a drastic shorting of the data collection period only marginally reduces performance.

This is particularly true in Mexico, where one day of tweets already yields an r2 of more

than 0.65. In the US, on the other hand, about one week of Twitter data is needed to

account for 60 percent of the variation in county-level education outcomes. As the curves for

both countries flatten out almost completely after a few weeks, extending the data collection

period beyond two months is likely to yield only negligible additional performance gains.

17This provides a lower bound for the true benefit of exploiting spatial information as cluster-level features
are also used to impute missing values and extreme outliers.

18Standard errors (shaded area) are computed using
√

4r2(1−r2)2(n−k−1)2

(n2−1)(n+3) , where n is the sample size and

k is the number of features (Cohen et al., 2013).
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(a) MX: Tweet count (b) MX: User count (c) MX: Population count

(d) US: Tweet count (e) US: User count (f) US: Population count

Figure 5: Performance heterogeneity by user, tweet, and population count

The solid line shows the r2 for units (municipalities or counties) above different tweet, user or population
count cutoffs.18 The proportion of units included at each cutoff is represented through a dashed line.

(a) Included weeks (b) Included days

Figure 6: Performance by data collection period

Value for 0 weeks/days corresponds to r2 of our baseline model using population data only. Standard errors
are computed using the same formula as reported in Figure 5.
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3.4 Downstream Performance

Apart from being directly useful to better understand local patterns in development outcomes

and target interventions accordingly, predicted measures may also serve to study relation-

ships with other variables. Using wealth data for Mexico and income data for the United

States (see Appendix Table A8), we thus explore how our Twitter-derived indicator performs

in downstream regression tasks. The fact that machine-learning-derived indicators are noisy

measures gives rise to several potential biases that may jeopardize such applications. If edu

is the true distribution of the indicator we predicted as êdu (e.g., years of schooling), and

econ is another variable whose relationship to edu we would like to study (e.g., wealth), three

types of measurement error may occur (see simulations in Appendix Figure A5):

1. Attenuation bias: A random measurement error in êdu will cause the correlation be-

tween edu and econ to become diluted. This results in an attenuation bias when

regressing econ on êdu, but not in the opposite specification, and decreases precision

in both cases (see, e.g., Fuller, 1987).

2. Berkson-type error: A bias that has only recently gained attention (see Ratledge et al.,

2021) arises when measurement errors are correlated with edu. The typical machine

learning model behavior is to overpredict for low and underpredict for high values, a

pattern that is very apparent in our application, where the correlation between the

prediction error (i.e., êdu - edu) and edu amounts to about -0.6. This does not have

an impact on the correlation between edu and econ, but it distorts coefficients in

downstream regressions. Specifically, it leads to a downward bias when êdu is used as

the outcome variable, and to an upward bias when it acts as the explanatory variable.

3. Correlated learning: If the features used to predict êdu contain wealth or income-

related information, our model might exploit the correlation between econ and edu to

make better predictions. Indeed, our feature matrix is almost as predictive of economic

outcomes (r2 = 0.64 for wealth in Mexico and r2 = 0.62 for income in the US) as

of education.19 This creates an artificially strong correlation between êdu and econ.

When using êdu as the dependent variable, this only leads to overoptimistic standard

errors. If êdu is the independent variable (and edu and econ are positively correlated),

it additionally induces an upward bias for the point estimate.

19This is substantially higher than a model using education only (years of schooling) for the prediction
(MX: 0.57, US: 0.50), suggesting that our feature matrix indeed contains wealth and income-related informa-
tion that is independent of education levels. Estimates are based on re-running the same machine learning
procedure we use to predict education for wealth and income.
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(a) MX: λq = 0 (b) MX: λq = 1 (c) MX: λq = 3

(d) US: λq = 0 (e) US: λq = 1 (f) US: λq = 3

Figure 7: True vs. predicted values with correction of the Berkson-type error
To correct for the Berkson-type error, we apply an adjusted loss function in the final ridge regression model
that performs the stacking. Following Ratledge et al. (2021), we add an additional penalty term to the
standard loss function of the ridge regression, which comprises of the mean squared error (MSE) plus an L2

penalty. The adjusted loss function is thus MSE+λlL2+λqQbias, where λq is the strength of the additional
penalty and a hyperparameter that can be tuned. Qbias is the maximum of the squared quintile specific
biases, equal to maxj(E[ŷi−yi|yi ∈ Qj ]

2), where Qj ∈ {Q1, ... , Q5}, and ŷi is the predicted y for observation
i. The figure shows the effect of three λq parameters on the prediction bias. Solid lines indicate the best
linear fit of each model, while dashed black lines represent the expected fit without bias (β1 = 1).

With these considerations in mind, we now compare the downstream correlations (Ap-

pendix Figure A6) and regression results (Table 2) of êdu and econ with the true correlations

captured by edu. As Figure A6 in the Appendix shows, the predicted education indicator

consistently understates true correlations, suggesting that the attenuation bias dominates

over a potential bias due to correlated learning. Table 2 further shows that the slope of the

regression coefficients is considerably underestimated for all outcomes when using êdu as the

dependent variable of the regression and slightly overestimated in the reverse specification,

a pattern that is consistent with a Berkson-type error. Hence, it appears that the correla-

tion estimates are mainly affected by attenuation, while biases in regression coefficients are
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largely driven by a Berkson-type error.

Table 2: Downstream regression results

Mexico United States

Years of
Schooling

Post-
Basic

Secondary Primary
Years of
Schooling

Bachelor College
High
School

βt : edu ∼ econ
0.740
(0.014)

0.661
(0.015)

0.703
(0.014)

0.728
(0.014)

0.692
(0.013)

0.707
(0.013)

0.655
(0.013)

0.487
(0.016)

βp : êdu ∼ econ
0.549
(0.013)

0.499
(0.014)

0.526
(0.012)

0.516
(0.012)

0.496
(0.011)

0.526
(0.012)

0.470
(0.011)

0.320
(0.011)

βc : êduc ∼ econ
0.748
(0.017)

0.651
(0.018)

0.744
(0.018)

0.687
(0.016)

0.699
(0.016)

0.727
(0.017)

0.661
(0.018)

0.362
(0.013)

βt − βp
-0.191
(0.012)

-0.161
(0.011)

-0.177
(0.012)

-0.212
(0.014)

-0.196
(0.011)

-0.181
(0.012)

-0.185
(0.011)

-0.167
(0.012)

βt − βc
0.008
(0.014)

-0.010
(0.013)

0.041
(0.015)

-0.042
(0.016)

0.007
(0.014)

0.021
(0.016)

0.005
(0.017)

-0.125
(0.014)

βt : econ ∼ edu
0.740
(0.014)

0.661
(0.015)

0.703
(0.014)

0.728
(0.014)

0.692
(0.013)

0.707
(0.013)

0.656
(0.013)

0.488
(0.016)

βp : econ ∼ êdu
0.794
(0.018)

0.717
(0.019)

0.826
(0.019)

0.863
(0.019)

0.765
(0.017)

0.738
(0.017)

0.767
(0.018)

0.640
(0.023)

βc : econ ∼ êduc
0.577
(0.013)

0.539
(0.015)

0.564
(0.013)

0.646
(0.015)

0.535
(0.012)

0.520
(0.012)

0.443
(0.012)

0.515
(0.019)

βt − βp
0.054
(0.012)

0.056
(0.012)

0.123
(0.013)

0.135
(0.014)

0.072
(0.015)

0.031
(0.014)

0.111
(0.014)

0.152
(0.025)

βt − βc
-0.162
(0.010)

-0.122
(0.011)

-0.139
(0.011)

-0.083
(0.012)

-0.157
(0.013)

-0.187
(0.012)

-0.212
(0.012)

0.028
(0.024)

N 2,457 2,457 2,457 2,457 3,140 3,140 3,140 3,140

The predictions for different educational outcomes, referred to as edu, are represented as êdu, and econ is

wealth for Mexico and income for the United States. For êduc, we apply a Berkson error correction with λq

= 3 for years of schooling and λq = 15 for all other outcomes (i.e., all percentages). Results are reported in

standard deviations (êdu and êduc are standardized using the distribution of edu). βt−βp is the original bias
and βt−βp is the bias using the predictions based on the adapted loss function. Education is the dependent
variable in the upper panel and the independent variable in the lower panel. Standard errors in parentheses.

While in a typical application, we would be unable to quantify the extent of the atten-

uation bias or avoid correlated learning, it is possible to refine our model in a way that

minimizes the Berkson error. Following Ratledge et al. (2021), we add a further penalty

term for a quintile-specific bias to the loss function of our final stacking model. If the weight

given to this penalty is sufficiently high, the tendency to understate high and overstate low

values effectively disappears (see Figure 7), but this comes at the expense of lower overall

performance with a decrease in the r2 by about 10 percentage points. When using this new

set of predictions (see Table 2), the bias in the upper panel (êdu ∼ econ) becomes negligible
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for most outcomes.20 In the lower panel (econ ∼ êdu) the direction of the bias is reversed

as the attenuation bias starts to dominate. This suggests that when appropriately modeled,

predicted indicators can produce correct estimates in downstream regression tasks as long

as they serve as the outcome and not the treatment variable. Luckily, the former constitutes

a much more likely use case, as, for example, it allows to evaluate the effect of interventions

or policy changes.

4 Conclusion

Our results show that human capital can be accurately inferred from Twitter data using

machine learning. We are able to account for 70 percent of the variation of years of school-

ing in Mexico and 65 percent in the United States. This is substantially higher than the

performance reported in previous attempts to predict human capital, and comparable to the

effectiveness of satellite data in predicting wealth. As only a few days of Twitter data are

needed to achieve a good performance and the natural language processing tools we use for

feature preparation support many different languages, our approach is widely applicable and

scalable.

Despite the lower Twitter penetration, our model tends to perform better for Mexico than

for the United States, suggesting our approach is also relevant for less affluent regions with

lower levels of social media usage. However, within countries, Twitter data appears to be

less informative at the lower end of the education distribution. Similarly, the model performs

worse in less-populated areas with lower Twitter penetration. An intuitive explanation is

that Twitter use is concentrated among the highly educated and thus not particularly well-

suited for distinguishing between low and medium levels of education. Including data from

other platforms with less selective usage patterns might thus be a promising avenue for

future research aiming to further improve predictive performance, particularly in developing

countries.

Apart from being directly useful to understand spatial patterns and target interventions,

predicted indicators also have the potential to advance scientific research by providing inputs

for downstream inference tasks. This paper shows that such applications do not come without

caveats. Our data and simulations show that estimates in downstream regression tasks tend

to be subject to several biases. We further demonstrate, that these biases can be corrected

using an adapted loss function (see Ratledge et al., 2021) if the predicted indicator acts

20The bias becomes insignificant for 5 out of 8 outcomes. The correction appears to be particularly
effective for outcomes that have a higher initial r2. In the last model (high school), which is also the one
with the lowest initial r2, the penalized loss function achieves only a limited slope correction under λq = 15
(not shown) and the regression is thus unable to recover the true effect.
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as the dependent variable. If carefully tuned, machine learning derived indicators can thus

become a valuable data source to study effects on outcomes for which ground truth data are

unavailable. However, more research is needed to better understand the empirical relevance

of each of the biases, and experiment with the most effective ways of approaching them.
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A Appendix

A.1 Main Results

Figure A1: Performance of individual models
Performance of individual models considered in the final stacking model for years of schooling in Mexico
(blue) and the United States (red). All models are evaluated through five-fold cross-validation. Boxplots
show the median (solid line), mean (dotted line), the 20th & 80th percentile (box limits), as well as the
minimum & maximum (whiskers) for the r2 across validation folds for each outcome and country.
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(a) MX: Post-basic degree (b) MX: Secondary degree (c) MX: Primary degree

(d) US: Bachelor (e) US: Some College (f) US: High school

Figure A2: True vs. predicted values for secondary outcomes
Predicted values for all municipalities and counties are obtained by combining out-of-sample predictions from
all folds. Bubble size is proportional to the population in each unit. r2 and population weighted r2 shown.
Line indicating best linear fit is not population weighted.
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(a) Mexico (b) United States

Figure A3: Feature importance based on elastic net model
Feature importance estimates shown on the x-axis correspond to the standardized regression coefficients in
the elastic net model.
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(a) Mean impurity decrease

(b) Permutation feature importance

Figure A4: Gradient boosting feature importance
Most important features in gradient boosting regressor for Mexico (blue) and the United States (red). In
Figure A4a, feature importances are based on mean impurity decrease. As these can be misleading if features
are differently scaled or have varying numbers of categories (Strobl et al., 2007), Figure A4b also presents
permutation based feature importances. Note that due to the high correlation between features, estimates
should be interpreted with care.
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B Bias Correction

(a) Attenuation bias (b) Berkson-type error (c) Correlated learning

Figure A5: Simulation of different types of biases in downstream regression tasks

Scatter plots and best linear fit for edu (black) and êdu (red) with different types of measurement errors.
Arrows indicate the movement of typical points as a result of each measurement error. In the upper row,

edu (or êdu) is the outcome of the regression, while it features as the explanatory variable in the lower row.

Figure A6: Correlation of observed and predicted education with wealth index and income
Correlations between true and predicted educational outcomes and wealth in Mexico (blue) as well as income
in the United States (red). 95% confidence intervals shown.
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C Feature Statistics

Table A2: Survey statistics by country

Variable Country Mean SD Min Median Max

Years of Schooling
MX 7.83 1.49 3.40 7.72 14.55

US 13.30 0.66 9.37 13.28 16.13

Post Basic Education MX 0.28 0.13 0.03 0.26 0.89

Bachelor Degree US 22.61 9.71 0.00 20.22 79.14

Secondary Education MX 0.54 0.14 0.12 0.54 0.95

Some College US 53.67 10.72 7.41 53.61 90.31

Primary Education MX 0.76 0.11 0.36 0.76 0.98

High School US 87.60 6.04 21.85 88.83 98.61

Population
MX 51,173.11 147,322.51 81.00 13,552.00 1,922,523.00

US 105,661.95 333,146.18 57.00 25,790.00 9,829,544.00

Wealth Index MX 0.68 0.12 0.07 0.70 0.94

Income US 57,455.86 14,582.81 22,901.00 55,143.50 160,305.00
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Table A6: Sentiment statistics by country

Variable Country Mean SD Min Median Max

Sentiment negative
MX 0.16 0.12 0.00 0.16 0.95

US 0.16 0.08 0.00 0.17 0.91

Sentiment positive
MX 0.38 0.18 0.01 0.37 0.99

US 0.50 0.13 0.01 0.48 0.99

Hate speech
MX 0.04 0.03 0.01 0.04 0.42

US 0.05 0.02 0.01 0.04 0.33

Offensive language
MX 0.15 0.07 0.03 0.15 0.89

US 0.16 0.06 0.03 0.16 0.83

Table A7: Network statistics by country

Variable Country Mean SD Min Median Max

Network in degree
MX 0.14 0.87 0.00 0.00 15.17

US 0.36 2.17 0.00 0.01 67.43

Network out degree
MX 0.14 0.79 0.00 0.00 14.65

US 0.36 1.91 0.00 0.01 56.15

Network clos. centr.
MX 0.16 0.18 0.00 0.00 0.55

US 0.34 0.16 0.00 0.40 0.68

Network pagerank
MX 0.00 0.00 0.00 0.00 0.06

US 0.00 0.00 0.00 0.00 0.05
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D Feature Descriptions

Table A8: Survey indicator description

Label Description

Years of Schooling Average years of schooling in municipality (MX) or county (US) according to
census. We approximate years of schooling for the US by attainment statistics
(see main text)

Post Basic Education Share of population with post basic education

Secondary Education Share of population with secondary education

Primary Education Share of population with primary education

Wealth Index Index based on share of households that have 13 wealth related items according
to the Mexican census, sum across standardized items

Bachelor Degree Share of county level population with some college level education

Some College Share of population with a bachelor degree

High School Share of population with high school education

Income Income statistics provided by US census

Population Population counts according to census

Table A9: Network indicator description

Label Description

Network in degree Number outgoing references measured by mentions and quotes (log scale)

Network out degree Number incoming references measured by mentions and quotes (log scale)

Network clos. centr. Pagerank for municipalities (MX) or counties (US) according to respective net-
work based on mentions and quotes (log scale)

Network pagerank Closeness centrality for municipalities (MX) or counties (US) according to respec-
tive network based on mentions and quotes (log scale)
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Table A10: Twitter penetration and usage indicator description

Label Description

Tweet count Number of tweets

User count Number of users

Share weekdays Share of tweets created during weekdays (Monday-Friday)

Share workhours Share of tweets created during workhours (Monday-Friday, 8:00am-4:00pm))

Follower count Median number of followers per user (log scale)

Following count Median number of friends per user (log scale)

Tweet count Median number of tweets per user (log scale)

User mobility Average number of municipalities (MX) or counties (US) users tweet from (log
scale)

iPhone share Share of tweets sent from an iPhone

Instagram share Share of tweets sent via Instagram (log scale)

Favorites per tweet Number of likes per tweet, median (log scale)

Tweets per year Median number of tweets per year (log scale)

Account age Age of average account

Table A11: Twitter penetration and usage indicator description

Label Description

Account age Age of average account

Listed count Average number of public lists user is a member of (log scale)

Followers per following Number of followers divided by number of accounts a user follows, median (log
scale)

Share quotes Share of tweets that are quotes (log scale)

Share replies Share of tweets that are replies (log scale)

Share verified Share of verified users (log scale)

Tweet length Average number of characters per tweet (log scale)

Hashtags per tweet Average number of hashtags per tweet (log scale)

Mentions per tweet Average number of mentions per tweet (log scale)

Urls per tweet Average number of urls per tweet (log scale)

Emojis per tweet Number of emoji per tweet (log scale)
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Table A12: Error indicator description (countries’ joint errors)

Label Description

Error total Number of errors per character (log scale)

Error casing Casing error (log scale)

Error confusions Word confusions (log scale)

Error grammar Grammar error (log scale)

Error variants Errors regarding American and British English (log scale)

Error misc Miscellaneous error (log scale)

Error punctuation Punctuation error (log scale)

Error repetitions style Style error related to repetitions (log scale)

Error semantics Semantic error (log scale)

Error style Style error (log scale)

Error typography Typography error (log scale)

Error typos Typo (log scale)

Table A13: Error indicator description (countries’ disjoint errors)

Label Description

Error noun agreement Noun verb agreement error (log scale)

Error verb agreement Verb subject agreement error (log scale)

Error norm change Deviation from linguistic norms (log scale)

Error collocations Collocation error (log scale)

Error compounding Compounding error (log scale)

Error context Context dependent error (log scale)

Error diacritics Errors regarding accents (diacritic marks, log scale)

Error expressions Incorrect expression (log scale)

Error misspelling Misspelling (log scale)

Error nonstandard Error related to non-standard English (log scale)

Error prepositions Error related to prepositions (log scale)

Error proper nouns Error related to proper nouns (log scale)

Error redundancy Redundancy in text (log scale)

Error redundancy Redundancy in text (log scale)

Error repetitions Repetition in text (log scale)
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Table A14: Topic indicator description

Label Description

Topic arts & culture Share of tweets classified into the arts & culture topic (log scale)

Topic business Share of tweets classified into the business & entrepreneurs topic (log scale)

Topic celebrity Share of tweets classified into the celebrity & pop culture topic (log scale)

Topic daily life Share of tweets classified into the diaries & daily life topic (log scale)

Topic family Share of tweets classified into the family topic (log scale)

Topic fashion Share of tweets classified into the fashion & style topic (log scale)

Topic films Share of tweets classified into the films, tv & video topic (log scale)

Topic fitness & health Share of tweets classified into the fitness & health topic (log scale)

Topic food & dining Share of tweets classified into the food & dining topic (log scale)

Topic gaming Share of tweets classified into the gaming topic (log scale)

Table A15: Topic indicator description

Label Description

Topic educational Share of tweets classified into the learning & educational topic (log scale)

Topic music Share of tweets classified into the music topic (log scale)

Topic news Share of tweets classified into the news & social concern topic (log scale)

Topic hobbies Share of tweets classified into the other hobbies topic (log scale)

Topic relationships Share of tweets classified into the relationships topic (log scale)

Topic science Share of tweets classified into the science & technology topic (log scale)

Topic sports Share of tweets classified into the sports topic (log scale)

Topic travel Share of tweets classified into the travel & adventure topic (log scale)

Topic youth Share of tweets classified into the youth & student life topic (log scale)

Table A16: Sentiment indicator description

Label Description

Sentiment negative Average share of tweets with negative sentiment in contrast to positive and neutral

Sentiment positive Average share of tweets with positive sentiment in contrast to negative and neutral

Hate speech Score indicating hate speech, average (log scale)

Offensive language Score indicating offensive language, average (log scale)
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