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Abstract
Purpose Surgical scene understanding plays a critical role in the technology stack of tomorrow’s intervention-assisting
systems in endoscopic surgeries. For this, tracking the endoscope pose is a key component, but remains challenging due to
illumination conditions, deforming tissues and the breathing motion of organs.
Method We propose a solution for stereo endoscopes that estimates depth and optical flow to minimize two geometric losses
for camera pose estimation. Most importantly, we introduce two learned adaptive per-pixel weight mappings that balance
contributions according to the input image content. To do so, we train a Deep Declarative Network to take advantage of
the expressiveness of deep learning and the robustness of a novel geometric-based optimization approach. We validate our
approach on the publicly available SCARED dataset and introduce a new in vivo dataset, StereoMIS, which includes a wider
spectrum of typically observed surgical settings.
Results Ourmethod outperforms state-of-the-artmethods on average andmore importantly, in difficult scenarioswhere tissue
deformations and breathing motion are visible. We observed that our proposed weight mappings attenuate the contribution
of pixels on ambiguous regions of the images, such as deforming tissues.
Conclusion We demonstrate the effectiveness of our solution to robustly estimate the camera pose in challenging endoscopic
surgical scenes. Our contributions can be used to improve related tasks like simultaneous localization and mapping (SLAM)
or 3D reconstruction, therefore advancing surgical scene understanding in minimally invasive surgery.

Keywords Camera pose estimation · Endoscopic surgery · Deep declarative network

Introduction

Camera pose estimation is a well-established computer
vision problem at the core of numerous applications of med-
ical robotic systems for minimally invasive surgery (MIS).
With a variety of methods proposed in recent years, most
approaches have focused on Simultaneous Localization and
Mapping (SLAM) and Visual Odometry (VO) frameworks
to solve the pose estimation problem. Well-established tech-
niques such as ORB-SLAM2 [1] and ElasticFusion [2]
have shown great promise in rigid scenes. More recently,
non-rigid cases in MIS using monocular [3–5] and stereo-
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scopic cameras [6–8] have also been studied. Yet to this
day, pose estimation in typical MIS settings remains par-
ticularly difficult due to deformations caused by instruments
and breathing, self or instrument-based occlusions, texture-
less surfaces and tissue specularities.

In this work, we tackle the problem of pose estimation in
such difficult cases when using a stereo endoscopic camera
system.

This allows depth estimation to be computed from paral-
lax, which has been shown to improve robustness of SLAM
methods [1]. In contrast to [6, 7] which assume the tissue
is smooth and locally rigid, respectively, we avoid making
assumptions on the tissue deformation and topology. Instead,
we propose a dense stereo VO framework that handles tissue
deformations and the complexity of surgical scenes. To do
this, our approach leverages geometric pose optimization by
inferringwhere to look at in the scene. At its core, ourmethod
uses a Deep Declarative Network (DDN) [9] to enable back-
propagation of gradients through the pose optimization.
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More specifically, we propose to integrate two adaptive
weight maps with the role of balancing the contribution of
two geometrical losses and the contribution of each pixel
toward each of these losses. We learn these adaptive weight
maps using a DDN with the goal of solving the pose esti-
mation problem, inspired by the recent DiffPoseNet [10]
approach. Similarly to theirs, ourmethod exploits the expres-
siveness of neural networkswhile leveraging robustness from
the geometric optimization approach.This allowsourmethod
to adapt the contribution of the image region depending on
the image content, for each loss but also between the two
losses. We thoroughly evaluate our approach by characteriz-
ing its performance in comparisonwith the state-of-the-art on
various practical scenarios: rigid scenes, breathing, scanning
and deforming sequences. This validation is performed on
two different datasets, and we show that our method allows
for more precise pose estimation in a wide range of cases.

Method

In the following, we present our depth-based pose estimation
approach from an optimization perspective. We first derive
ourmethod in terms of context-specific adaptiveweightmaps
in the pose estimation optimization and then show how to
learn these from data in an end-to-end way using DDNs to
facilitate differentiation [9]. Our proposed method is illus-
trated inFig. 1, andweprovide a notation overview inTable 1.

For all images in an image sequence, we first employ
RAFT [11] to establish correspondences between frames
for both the stereo and temporal domain. This model allows
disparity and optical flow estimation to be computed simul-
taneously, based on the observation that both share similar
constraints on relative pixel displacements. From these esti-
mates, we extract the horizontal component of the parallax
flow F ′

t at time t as the stereo disparity to compute depth
maps Dt . As we would typically expect large vertical dis-
parities in areas of low-texture or for de-calibrated stereo
endoscopes, we use this parallax flow F ′

t as input for the
weight map estimation described in the following.

Pose estimation

In contrast to most existing VO methods, we estimate the
camera motion exclusively based on a geometric loss func-
tion given that photometric consistency is entailed in optical
flow estimation. We thus compute a 2D residual function
based on a single-depth map by,

r2D(pt , x) =
√

1

XY

∥∥∥π2D

(
exp(pt ) π3D

(Dt , x
))

−(
x + Ft (x)

)∥∥
2 , (1)

whereπ2D(exp(pt ) π3D(Dt , x)) is the pixel location based on
depth projection and the relative camera pose pt that aligns

views I(l)
t to I(l)

t−1. We scale these residuals by the image
dimensions X andY tomake values independent of the image
size. Note that we normalize depth maps by the maximum
expected depth value, such that rotation and translation com-
ponents of pt have the same order of magnitude and thus
equally contribute to the residuals, which is important for
a well-conditioned optimization. Ideally, a projected pixel
position coincides with the optical flow when the observed
scene is rigid and when flow and depth maps are correct.

Whileminimizing r2D(pt , x) helps to reliably estimate the
camera motion in rigid scenes, detection of deformations is
most effective by looking at the displacement of points in 3D
space. To address this need, we propose to leverage the depth
map at t − 1 and introduce a 3D residual function by,

r3D(pt , x) =
∥∥∥ exp(pt ) π3D

(Dt , x
)

− π3D
(Dt−1, x + Ft (x)

)∥∥∥
2

, (2)

which measures the point-to-point alignment of the re-
projected depth maps. As opposed to [2], we avoid using a
point-to-plane distance as it is less constrained on planar sur-
faces such as organs (e.g., liver). While a known weakness of
the point-to-point distance is its sensitivity to noise in regions
with large perspectives, we mitigate this effect by combining
2D and 3D residuals. Intuitively, we expect r2D(pt , x) to be
most accurate when camera motion is large and r3D(pt , x)
when deformations are significant. Similar to [11], we use
bilinear sampling to warp point clouds from π3D

(Dt−1, x
)

to π3D
(Dt−1, x + Ft (x)

)
, using our optical flow estimates.

In contrast to conventional scalar-weighted sum of resid-
uals, we propose to weigh each residual using a dedicated
weight map that is inferred from the image data. The final
residual is computed as,

r(pt , x) = ω2D(x) r2D(pt , x) + ω3D(x) r3D(pt , x) , (3)

where ω2D(x) and ω3D(x) are the per-pixel weight maps for
the 2D and 3D residuals, respectively.

At its core, our hypothesis is that we can learn how
the weight maps should combine the contributions of both
ω2D(x) and ω3D(x) even in challenging situations where
tissue deformations are taking place. That is, the role of
(ω2D(x), ω3D(x)) is to (1) weigh relative focus based on the
context of tissue deformations, (2) weigh reliable residual
functions (2D vs 3D) given a motion pattern and (3) balance
the scale of the loss. In “Learning the weight maps” section,
we detail how we learn a model to infer these weight maps.
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Fig. 1 Overview of our
proposed VO framework, which
can be sub-divided into 3 parts
(from left to right): (1) optical
flow and depth are computed
using RAFT [11], (2) weight
maps computed and used in (3)
to estimate the camera pose p�

t .
Weight maps (ω2D(x), ω3D(x))
are learned via backpropagation
using the Deep Declarative
Network (DDN) [9]

Optimization: To compute the relative pose p�
t ∈ se(3),

we then optimize,

p�
t = argmin

pt

{∑
x∈�

r(pt , x)2
}

, (4)

in a Nonlinear Least-Squares (NLLS) problem. Here, � is
a set containing all spatial image coordinates x. We choose
to optimize the pose in the Lie algebra vector space se(3)
because this is a unique representation of the pose and has
the same number of parameters as degrees of freedom. NLLS
problems are typically solved iteratively using a second-
order optimizer. To do this, we use the quasi-Newton method
L-BFGS [12] due to its fast convergence properties and
computational efficiency. Identical to [10], we simply chain
relative camera poses to obtain the full trajectory.

Learning the weight maps

In Eq. (3), we propose to learn residual weight maps ω2D(x)
and ω3D(x), as determining these otherwise is not trivial.

To this end, we train a separate encoder–decoder network,
denoted by g(·), for each weight map. The input to these
networks is all the elements used to compute residuals,

ω2D(x) =g
(
x, I(l)

t ,Dt ,Ft ,F ′
t , θ2D

)
, (5)

ω3D(x) =g
(
x, I(l)

t ,Dt ,Ft ,F ′
t , I(l)

t−1,Dt−1,F ′
t−1, θ3D

)
,

(6)

where θ2D and θ3D are the network parameters that are
learned at training time. For g(·), we employ a 3-layer
UNet [13] with Sigmoid activation function to ensure out-
puts in [0, 1].

To train g(·), we aim to learn weight maps that lead to
improved pose estimation by minimizing the �1 supervised
training loss,

Ltrain = ‖p�
t − p(gt)

t ‖1, (7)

where p(gt)
t is the ground-truth pose. Because the pose opti-

mization in Eq. (4) is not directly differentiable, we leverage
a DDN [9] to enable end-to-end learning. This approach uses

Table 1 Summary of used
notation

Symbol Description

t ∈ Z Time frame index

I(l)
t ∈ R

X×Y×3 Rectified left stereo image at time t

Dt ∈ R
X×Y Depth map w.r.t. to left image at time t

Ft ∈ R
X×Y Optical flow from I(l)

t to I(l)
t−1

F ′
t ∈ R

X×Y Parallax flow displacement across stereo images

x ∈ Z
2 Pixel index in 2D Cartesian coordinate system

pt ∈ se(3) ⊂ R
6 Relative pose from t to t − 1 in Lie algebra space

p�
t ∈ se(3) ⊂ R

6 Relative pose solution in Lie algebra space

exp(p) : se(3) → SE(3) Matrix exponential from Lie algebra to Lie group

π2D(v) : R4 → R
2 Projection of homogeneous 3D to 2D coordinates

π3D(Dt , x) : RX×Y × Z
2 → R

4 Re-projection of 2D to 3D homogeneous coordinates

Ft (x) : Z2 → R
2 Optical flow function across temporal domain

ω2D(x) : Z2 → [0, 1] Learned per-pixel weight for 2D residuals

ω3D(x) : Z2 → [0, 1] Learned per-pixel weight for 3D residuals

‖·‖n : Rm → R
+ �n Vector norm
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implicit differentiation of Eq. (4) to compute the gradients of
the weight map parameters (θ2D, θ3D) with respect to Ltrain.
Therefore, the only requirements are that (1) the function to
be optimized

∑
x∈� r(pt , x)2 is twice differentiable and (2)

we find a local or global minimum in the forward pass.

Experiments

Datasets

We evaluate our method on two separate stereo video
datasets: one containing rigid MIS scenes and another con-
taining non-rigid scenes:

SCARED dataset [14]: consists of 9 in vivo porcine sub-
jects with 4 sequences for each subject. The dataset contains
a video stream captured using a da Vinci Xi surgical robot
and camera forward kinematics. All sequences show rigid
scenes without breathing motion or surgical instruments. We
split the dataset into training (d2, d3, d6, d7) and testing
sequences (d1, d8, and d9) where we exclude d4 and d5 due
to bad camera calibrations.

StereoMIS: Additionally, we introduce a new in vivo
dataset also recorded using a da Vinci Xi surgical robot. Sim-
ilarly to [14], ground-truth camera poses are generated from
the endoscope forward kinematics and synchronizedwith the
video feed. While we expect errors in the absolute camera
pose due to accumulated errors in the forward kinematics,
relative camera motions are expected to be accurate. It con-
sists of 3 porcine (P1, P2, and P3) and 3 human subjects
(H1, H2, and H3) with a total of 16 recorded sequences. We
denote sequences with Px_y where Px is the subject and y
the sequence number. Sequence durations range from 50s
to 30min. They contain challenging scenes with breathing
motions, tissue deformations, resections, bleeding, and pres-
ence of smoke. We assign P1 and H1 to the training set and
the rest is kept for testing.

To provide a finer grained performance characterization of
methods with this data, we extract from each video a number
of short sequences that visually depict one of several possible
settings:

• breathing: only depicts breathing deformations and con-
tains no camera or tool motion,

• scanning: includes camera motion in addition to breath-
ing deformations,

• deforming: comprises tissue deformations due to breath-
ing and manipulation or resection of tissue, while the
camera is static.

In practice, we select 88 different, non-overlapping, and 150-
frames-long sequences from P2, P3, H2, H3 and assigned

each to one of the above categories or surgical scenarios
(see supplementary material for more information).

Implementation details

Segmentation of surgical instruments

For all experiments, we mask out surgical instrument pixels
by setting corresponding residuals to 0. To do this, we use the
DeepLabv3+ architecture [15] trained on the EndoVis2018
segmentation dataset [16] to generate instrument masks for
each frame. Additionally, we mask out specularities, by
means of maximum intensity detection, as they cause optical
flow estimations to be ill-defined.

Training and inference

First, we classify all training frames from the SCARED and
StereoMIS training sequences into "moving" and "static"
based on the camera forward kinematics. We then randomly
sample 4000 frames from each sequence keeping a balance
between moving and static frames. For each sampled frame,
wegenerate a sample pairwith an interval of 1 to 5 frames.We
use the forward kinematics of the camera as the ground truth
poses change between two frames in a sample pair. Note that
forward kinematics entail minor deviations that may propa-
gate during training. We randomly assign 80% of the sample
pairs to the training set and 20% to the validation set.

For all experiments, we resize images to half resolution
(512x640 pixels).We use a batch size of 8 and theAdamopti-
mizer with learning rate 10−5. We train for 200 epochs and
perform early stopping on the validation loss. We implement
our method using PyTorch and train on a NVIDIA RTX3090
GPU. We reach 6.5 frames per second at test time. RAFT is
trained on the FlyingThings3D dataset, and we do not per-
form any fine-tuning.

Metrics and baselinemethods

We use trajectory error metrics as defined in [17], namely the
absolute trajectory error ATE-RMSE to evaluate the overall
shape of the trajectory and the relative pose errors, RPE-trans
and RPE-rot, to evaluate relative pose changes from frame to
frame. The ATE-RMSE is sensitive to drift and depends on
the length of the sequence, whereas the RPE measures the
average performance for frame-to-frame pose estimation.

As no stereo SLAM method dedicated for MIS has open-
source code or is evaluated on a public dataset with trajectory
ground truth, we compare our method to two general state-
of-the art rigid SLAMmethods that contain loop closure and
are based on the rigid scene assumption:
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• ORB-SLAM2 [1], a sparse SLAM leveraging bundle
adjustment to compensate drift,

• ElasticFusion [2], a dense SLAM and as such closer to
our proposed method.

In addition, we compare our method to [8] on the frames of
the SCARED dataset for which they reported performances.
For fair comparison, we use the same input depth maps for
all methods.

Results

Surgical scenarios and ablation study: Table 2 reports the
performance of our approach on the StereoMIS surgical sce-
narios. To show the importance of learning the weight maps
we perform an ablation study where we evaluate the impact
of (1) constant weights, denoted by ours (w/o weight), where
ω2D(x) = ω3D(x) = 1 for each x; (2) our method with only
2D-residuals, denoted by ours (only 2D); and (3) using only
3D-residuals, denoted by ours (only 3D).

Our proposedmethod outperforms the baselines in all sce-
narios. Improvements in breathing and scanning are partly
due to correct identification of errors in the optical flow
and depth estimation as well as optimal balancing of the
2D and 3D residuals. Indeed, exploiting the complementary
properties of 2D and 3D residuals improves the average per-
formance. The fact that ours (only 3D) outperforms ours
(only 2D) in breathing and deforming supports our intu-
ition that it is easier to learn tissue deformations from the
3D residuals. Contrarily, in scanning where the optical flow
is dominated by the camera motion, the 2D residuals lead to
a more accurate pose estimation.

In general, it is not possible to detect or completely com-
pensate the breathing motion on a frame-to-frame basis in
our proposed optimization scheme as we cannot completely
disambiguate the camera and tissue motion. However, the
method learns which regions are more affected by breathing
deformations and consequently assigns a smaller weight to
those regions.

Wenote that theweightmaps inFig. 2 (seebreathing rows)
support our claims that theweightmapshave lowvalues in the
dark regions (A) where we expect the optical flow to be inac-
curate and where tissue is moving most (B). The scanning
example also illustrates that the weight maps have a different
response depending on the motion pattern and deformation.
Note that the presence of surgical instruments has no influ-
ence on the weight maps in scanning, as no tissue interaction
takes place. As expected, the largest improvements can be
seen in the deforming scenario. Inspecting the two last rows
in Fig. 2 reveals that regions where the instruments deform
tissue (C) are correctly ignored in the pose estimation. Sim-
ilarly, the region occluded by smoke (D) has low values in

the weight maps. Additionally, we observe that ω2D usually
has 100 times larger magnitude than ω3D compensating for
the different scale of the 2D and 3D residuals.

Results on full test StereoMIS sequences: Table 3
shows the pose estimation performance on the complete
sequences in the StereoMIS testset. As the sequences are
much longer than in the scenario experiment, accumulation
of drift results in a large ATE-RMSE for all methods. Even
though our frame-to-frame approach does not include any
bundle adjustment or regularization over time, it still has the
lowest ATE-RMSE on average. The reason for this good per-
formance is reflected in the relative metrics RPE-trans and
RPE-rot, where our method outperforms all others by almost
a factor of three and five, respectively. Our method robustly
estimates the pose in challenging situations, whereas ORB-
SLAM2 fails in two sequences (H2_0, P2_5). Figure3 shows
two example trajectories. P2_7 does not include any tool–
tissue interactions and consists of smooth camera motions.
Its trajectory illustrates the drift of our method which results
in an ATE-RMSE of 9.28 versus 3.76mm for ORB-SLAM2.
On the other hand, P3_0 consists of strong tissue deforma-
tions and abrupt cameramovements. Despite visible drift, we
can see that our method is able to follow the abrupt move-
ments. The small-scale oscillations in the trajectories are due
to breathingmotion. The trajectories of all test sequences and
evaluation results excluding frames where the SLAM meth-
ods fail can be found in the supplementary materials.

Results on SCARED dataset: Wei et al. reported ATE-
RMSE results for rigid surgical scenes of the SCARED
dataset in a frame-to-model approach [8]. For the sake of fair
comparison, we extend our method to SLAM by accommo-
dating a surfel map model denoted by ours (frame2model),
which is equivalent to that used in [8]. Specifically,we replace

input images I(l)
t−1, I(r)

t−1 by rendered images from the surfel
map. Note, we can only adopt this approach for the SCARED
dataset, as the surfel map model assumes scene rigidity.
Results are provided in Table 4.

Conclusion

We proposed a visual odometry method for robust pose esti-
mation in the challenging context of endoscopic surgeries.
To do so, we learn adaptive weight maps for two geometrical
residuals to leverage pose estimation performance on com-
mon surgical scenes including breathing motion and tissue
deformations. Thanks to a performance analysis in com-
mon scenarios, we observed the complementary action of the
2D/3D residuals and the strong contribution of their specific
weighting at pixel level. This results in better performances
compared to state-of-the-art methods, on average and in the
most challenging cases.We believe that our contributions are
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Table 2 The ATE-RMSE
(mean±std mm) for the
different scenarios from the
StereoMIS dataset with average
over sequences (microavg.) and
scenarios (macroavg.)

Scenario Breathing Scanning Deforming Microavg. Macroavg.

# Sequences 17 60 9

Camera motion �
Breathing � � �
Tool interactions �
ORB-SLAM2 [1] 2.35 ± 1.81 3.26 ± 1.65 4.29 ± 2.30 3.19 ± 1.81 3.30 ± 0.97

ElasticFusion [2] 1.94 ± 0.93 4.04 ± 3.46 6.47 ± 8.64 3.88 ± 4.12 4.15 ± 2.27

Ours (w/o weight) 1.65 ± 0.97 3.01 ± 1.60 4.67 ± 2.13 2.91 ± 1.74 3.11 ± 1.51

Ours (only 2D) 1.15 ± 0.72 3.01 ± 1.66 2.83 ± 1.41 2.62 ± 1.66 2.33 ± 1.03

Ours (only 3D) 0.78 ± 2.03 7.02 ± 5.86 2.72 ± 1.90 5.34 ± 5.64 3.51 ± 3.20

Ours (2D & 3D) 1.01 ± 0.59 2.89 ± 2.33 2.23 ± 1.07 2.45 ± 2.12 2.04 ± 0.95

Fig. 2 Exemplary results for 5 different scenarios. Surgical instruments
and specularities are masked out. From left to right: left image, its depth
map, its optical flow displacement as well as its weights ω2D(x) and

ω3D(x). Weight maps are normalized (lowest value in dark blue and
highest value in yellow). Best viewed in color
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Table 3 Pose estimation results
on full StereoMIS test
sequences for ORB-SLAM2 [1],
ElasticFusion [2], and ours.
Metrics are reported in
(mean±std) when applicable

H2 H3 P2 P3 Macroavg

ATE-RMSE (mm)

ORB-SLAM2 [1] 18.0 9.1 14.0 21.4 15.6 ± 5.3

ElasticFusion [2] 30.8 72.1 33.6 37.7 43.6 ± 19.3

Ours 10.9 21.2 13.8 8.8 13.7 ± 5.4

RPE-trans (mm)

ORB-SLAM2 [1] 0.20 ± 0.43 0.24 ± 0.25 0.35 ± 0.46 0.54 ± 0.47 0.33 ± 0.13

ElasticFusion [2] 0.87 ± 1.11 0.56 ± 1.03 0.81 ± 1.11 0.71 ± 0.79 0.74 ± 0.12

Ours 0.10 ± 0.27 0.10 ± 0.18 0.16 ± 0.32 0.19 ± 0.31 0.14 ± 0.04

RPE-rot (deg)

ORB-SLAM2 [1] 0.16 ± 0.36 0.16 ± 0.22 0.19 ± 0.24 0.28 ± 0.27 0.20 ± 0.05

ElasticFusion [2] 0.73 ± 1.06 0.41 ± 0.96 0.50 ± 1.11 0.38 ± 0.40 0.51 ± 0.14

Ours 0.04 ± 0.20 0.04 ± 0.13 0.07 ± 0.14 0.05 ± 0.10 0.05 ± 0.01

Fig. 3 Two example trajectories of the StereoMIS test set. Top: trajectory of P2_7. Bottom: trajectory of P3_0

Table 4 The ATE-RMSE in
mm for SCARED sequences
reported by [8] and
microaverage over all SCARED
test sequences (SCARED avg.)
using surfel maps

d1_k2 d8_k1 d9_k1 d9_k3 Avg SCARED avg

ORB-SLAM2 [1] 0.91 2.97 4.33 3.79 3.00 2.34 ± 1.24

ElasticFusion [2] 1.02 3.62 4.30 3.36 3.08 2.91 ± 1.77

Wei et al. [8] 0.74 2.47 4.07 1.54 2.21 –

Ours (frame2model) 0.37 2.08 2.04 0.84 1.33 1.38 ± 0.93

beneficial for some SLAM components, e.g., map building,
and therefore downstream applications in MIS. Future work
will focus on drift and breathing compensation.

Supplementary information Appendix A: details on Stere-
oMIS. Appendix B: trajectories of StereoMIS test set.
Appendix C: Results on full StereoMIS sequences. Appendix
D: trajectories of SCARED test set.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-023-02919-
w.
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