A multivariate approach to investigate the associations of electrophysiological indices with schizophrenia clinical and functional outcome.

Giuliani, Luigi; Koutsouleris, Nikolaos; Giordano, Giulia Maria; Koenig, Thomas; Mucci, Armida; Perrottelli, Andrea; Reuf, Anne; Altamura, Mario; Bellomo, Antonello; Brugnoli, Roberto; Corrivetti, Giulio; Di Lorenzo, Giorgio; Girardi, Paolo; Monteleone, Palmiero; Niolu, Cinzia; Galderisi, Silvana; Maj, Mario (2023). A multivariate approach to investigate the associations of electrophysiological indices with schizophrenia clinical and functional outcome. European psychiatry, 66(1), e46. Cambridge University Press 10.1192/j.eurpsy.2023.2410

[img]
Preview
Text
a-multivariate-approach-to-investigate-the-associations-of-electrophysiological-indices-with-schizophrenia-clinical-and-functional-outcome.pdf - Accepted Version
Available under License Creative Commons: Attribution-Noncommercial-No Derivative Works (CC-BY-NC-ND).

Download (1MB) | Preview

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > University Psychiatric Services > University Hospital of Psychiatry and Psychotherapy > Translational Research Center
04 Faculty of Medicine > University Psychiatric Services > University Hospital of Psychiatry and Psychotherapy

UniBE Contributor:

König, Thomas

Subjects:

600 Technology > 610 Medicine & health

ISSN:

1778-3585

Publisher:

Cambridge University Press

Language:

English

Submitter:

Pubmed Import

Date Deposited:

26 May 2023 15:28

Last Modified:

27 Jun 2023 00:15

Publisher DOI:

10.1192/j.eurpsy.2023.2410

PubMed ID:

37231770

Uncontrolled Keywords:

EEG functional outcome machine learning schizophrenia

BORIS DOI:

10.48350/182947

URI:

https://boris.unibe.ch/id/eprint/182947

Actions (login required)

Edit item Edit item
Provide Feedback