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Abstract 

 
Tumor budding (TB), the presence of single cells or small clusters of up to four tumor cells, at the 

invasive front of colorectal cancer (CRC) is a proven risk factor for adverse outcomes. International 

definitions are necessary to reduce the interobserver variability. According to the current 

international guideline, hotspots at the invasive front should be counted in Hematoxylin and Eosin 

(H&E) stained slides. This is time-consuming and prone to interobserver variability, therefore there is 

a need for computer-aided diagnosis solutions. 

In this paper, we report on developing an Artificial Intelligence (AI) based method for detecting tumor 

budding in H&E-stained whole slide images. We propose a fully automated pipeline to identify the 

tumor border, detect tumor buds, characterize them based on their number of tumor cells, and 

produce a TB density map that we use to identify the TB hot spot. The method outputs the TB count 

in the hotspot as a computational biomarker. 

We show that the proposed automated TB detection workflow performs on par with a panel of five 

pathologists at detecting tumor buds, and that the hotspot-based TB count is an independent 

prognosticator in both the univariate and the multivariate analysis, validated on a cohort of n=981 

CRC patients.  

Computer-aided detection of tumor buds based on deep learning can perform on par with expert 

pathologists at detection and quantification of tumor buds in H&E-stained colorectal cancer 

histopathology slides, strongly facilitating the introduction of budding as an independent 

prognosticator in clinical routine and clinical trials. 
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Introduction 
Colorectal cancer (CRC) is among the most common cancers, responsible for almost 2,000,000 new 

cases every year and over 900,000 deaths globally [1]. Staging of CRC is based on invasion depth (T), 

number of involved lymph nodes (N), and the presence of distant metastases (M) [2]. However, to 

accurately predict disease progression of individual patients, this staging system is insufficient and 

additional biomarkers are required to decide on therapeutic strategies and prevent possible under- 

and overtreatment. Among the most promising histological biomarkers in CRC are tumor budding (TB) 

[3] and poorly differentiated clusters (PDC) [4]. TB is defined as isolated single cells or small clusters 

of up to four tumor cells located at the invasive tumor front. In contrast, clusters of five or more tumor 

cells without gland formation are defined as PDCs. Both biomarkers are associated with lymph node 

and distant metastasis, and increased patient mortality in CRC [5]. 

International harmonization of TB scoring was achieved by the International Tumor Budding 

Consensus Conference (ITBCC) recommendations in 2016 [3]: identification of the budding hotspot 

(measuring 0·785 mm2) at the invasive front of the tumor, and counting of the number of buds, results 

in a score that can be classified as Bd1 (0-4 buds, low budding), Bd2 (5-9 buds, intermediate budding) 

or Bd3 (10 or more buds, high budding). Although pan-cytokeratin immunohistochemical staining 

might be helpful in the recognition of TB, the definition is based on Hematoxylin and Eosin (H&E) slide 

scoring. Despite these clear definitions, interobserver agreement is moderate to substantial [6]. 

In recent years, the application of machine learning approaches based on deep learning has increased 

the accuracy, reproducibility, and efficiency of histopathologic slide analysis [7]. When presented with 

sufficient high-quality annotated training data, convolutional neural networks (CNNs), a special type 

of deep learning based on artificial neural networks, can learn complex histological patterns from 

structured data such as medical images. Current applications of artificial intelligence in computational 

pathology (CPATH) include recognition, segmentation, and classification of morphological structures 

in digital pathology whole-slide images (WSI), such as tumor (peripheral) regions or the detection and 
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classification of several types of cells, including tumor cells, to be used as a base for development of 

computational biomarkers [8]. 

Despite advances in the field of CPATH, computer-aided detection of tumor buds in H&E remains a 

challenging task, mostly due to 1) the small size of the objects to detect (i.e., the tumor buds), 2) a 

possible variation in phenotype due to an epithelial to mesenchymal transition [9], and 3) the very 

heterogeneous composition of the microenvironment in which they are located. In addition, observer 

variability in identifying individual buds makes collection of a large training set of TB and PDC 

challenging. To the best of our knowledge, to date most of the (semi-)automatic TB detection methods 

work on immunohistochemically stained slides (reviewed in [10]), and only a few H&E-based 

algorithms have been proposed [11,12], either based on single-center slides [11], limiting their 

generalizability, or not distinguishing TB from PDC [12].  

In this study, we developed a novel fully automated pipeline for computer-aided detection and 

quantification of tumor buds in whole-slide images from H&E-stained CRC specimens. Following the 

recommendations of the ITBCC, our method automatically identifies the tumor invasive front, detects 

tumor buds, and quantifies them in a hot-spot driven fashion. We compared the detection 

performance of our computer-aided detection model with a panel of five pathologists, and we 

analyzed the prognostic value of our computer-based hotspot-derived TB count on a large external 

independent cohort or CRC cases. 
Jo

urn
al 

Pre-
pro

of



   
 

   
 

5 

Materials 
In this section, we describe the datasets used in this work, namely 1) a single-center model 

development dataset, containing H&E slides with manual annotations, used to train a deep learning 

algorithm to segment epithelial regions; 2) a multi-centric technical validation dataset, used to 

validate the tumor-bud detection performance of the developed method; 3) a multi-centric clinical 

validation dataset, used to assess the prognostic value of the automated TB count produced by the 

presented method.  

 

Model development dataset 
Between one and five slides from CRC patients (n=37) with the presence of tumor budding reported 

during the initial sign-out were collected from the Radboud University Medical Center (Radboudumc), 

Nijmegen (Netherlands). In total, 60 slides were included. Only slides where the invasive front was 

clearly visible were selected, stained with H&E, digitized, and subsequently restained with a 

cytokeratin 8-18 (CK8-18) immunohistochemical (IHC) marker after scanning, according to our 

established protocol [13], resulting in two versions of the same slide, that were digitized using the 

Pannoramic P250 Flash II scanner (3D-Histech, Budapest, Hungary), at 40X magnification (spatial 

resolution of 0·24μm/px). On each slide, regions of interest (ROI) near the invasive front were 

manually selected and transferred to CK8-18 slides, where all positive cells were delineated. These 

annotations were transferred back to H&E slides and removed when no bud was visible in the H&E 

slide. Subsequently, the remaining non-epithelium pixels within the ROI were labeled as either 

necrosis or background. Annotations were made using the in-house developed open-source software 

ASAP (https://github.com/computationalpathologygroup/ASAP). The dataset was randomly split into 

a training (n=42) and validation set (n=18). We will refer to this dataset as Dev. An overview of the 

annotating procedure can be found in Figure 1A.  

 

Technical validation dataset 
For technical validation, i.e., the comparison between detection performance of the proposed CAD 

system and a panel of pathologists, we included a set of n=15 whole slide images selected from four 
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different centers: Dublin University Hospital (Dublin, Ireland), Bayreuth University Hospital (Bayreuth, 

Germany), Bern University, Institute of Pathology (Bern, Switzerland), Mount Sinai Hospital (Toronto, 

Canada). Cases were selected based on the presence of high budding reported in the original 

diagnostic report. Glass slides were stained with H&E at the pathology laboratory of each center, 

therefore generating variation in the H&E staining, scanned, re-stained with CK8-18 

immunohistochemical marker and re-scanned at Radboudumc using a Pannoramic P250 Flash II 

scanner (3D-Histech, Budapest, Hungary), at 40X magnification. Manual annotations were made as 

described above. We will refer to this dataset as Val-t.  

 

Clinical validation dataset 
For clinical validation, i.e., the analysis of the prognostic value of an automated TB score, n=557 CRC 

patients from Radboudumc and n=568 CRC patients from Mount Sinai Hospital, Toronto (Canada) 

were included. Based on the pathologists' assessment of multiple sections, the clinical validation set 

was established by visual selection of a single slide per case in line with the ITBCC guidelines. 

Radboudumc slides were scanned using the same 3DHistech scanner used in Val-t; the Canadian cases 

were scanned with Aperio AT2 scanner (Leica Biosystems, Buffalo Grove, IL, USA). All slides were 

scanned at 40X magnification yielding a spatial resolution of 0·24um/px. In the Canadian cohort a 

tumor bud count was established by an expert, according to ITBCC recommendations; n=144 patients 

received neoadjuvant treatment and were therefore excluded from this study. As a result, n=981 CRC 

patients were included in the clinical validation, for a total of n=1125 WSIs.  

 

We will refer to these sets in the clinical validation dataset as Cohort C and D for the Canadian and the 

Radboudumc cohort, respectively.  
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Method 
Our deep learning pipeline for automated quantification of tumor buds in H&E whole-slide images 

consists of four steps (see Figure 2).  

First, we determine the region of the invasive front of the tumor; second, we identify all the epithelial 

regions in the proximity of the invasive front via segmentation of epithelial structures at high 

resolution; third, we detect and characterize TB and PDC by detecting and counting neoplastic cell 

nuclei within the segmented epithelium compartments. Fourth, we compute the density of TBs in the 

entire invasive front and report the TB count as the number of TB in the hot spot. All steps of the 

proposed pipeline are described in the next sections. 

 

Step 1. Find the tumor border 
In the ITBCC guideline, tumor buds are be quantified within the region of the invasive front of the 

tumor. For this reason, the first step of our approach consists of the fully automated delineation of 

the tumor border, which we achieve in three steps. 

First, we segment the entire whole-slide image into multiple morphological categories by applying a 

multi-class tissue segmentation algorithm previously developed by our group [14]. In brief, a U-Net 

deep learning model was trained to segment n=14 different morphological regions in the entire WSI, 

namely 1) normal glands, 2) low-grade dysplasia, 3) high-grade dysplasia/tumor, 4) submucosal 

stroma, 5) desmoplastic stroma, 6) stroma lamina propria, 7) mucus, 8) necrosis and debris, 9) 

lymphocytes, 10) erythrocytes, 11) adipose tissue, 12) muscle, 13) nerve, 14) background. The model 

was trained to operate at 10X magnification, to guarantee a fast yet accurate interpretation of the 

slide morphology. Additional details about this model can be found in [14]. 

Second, we identify the tumor bulk region by running a convex-hull algorithm on the tumor 

segmentation mask obtained by considering regions segmented as tumor by the multi-class algorithm. 

As a result, a polygon identifying the tumor bulk border is obtained. 

Third, following the approach proposed in [15], we define the border as the region within 500μm from 

the outer side of the tumor border line. 
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Step 2. Segment epithelial regions 
Once the tumor border region is defined, we restrict our focus to epithelial regions within the invasive 

front area. For this, we developed a binary segmentation model based on the U-Net architecture [16] 

with an EfficientNetB4 [17], to segment epithelial regions in H&E at the maximum resolution available, 

i.e., 0·24μm/px (40X magnification) to differentiate between very small epithelial regions, potentially 

containing tumor buds, and non-epithelium particles, such as activated fibroblasts to construct a 

binary map of all epithelial regions, which was then intersected with the invasive tumor map to 

generate potential candidates of TB and PDC. An overview of the training procedure can be found in 

Supplementary 1.  

 

Step 3. Find tumor buds via nuclei detection 
Within epithelial regions segmented inside the tumor invasive front, we identify TBs and PDCs by 

detecting neoplastic cell nuclei. For this purpose, we used the nuclei segmentation method based on 

the HoVerNet model presented by Graham et al. [18]. This network is able to segment and classify cell 

nuclei from six different cell types, including neoplastic cells. Here, we run HoVerNet only in epithelial 

regions in the invasive front, and only consider neoplastic cells within epithelial regions. In this way, 

we define TBs as connected components of epithelial regions containing up to four neoplastic cells, 

and the rest as PDC. This approach allows to 1) use HoVerNet efficiently, solely running it in selected 

regions, guaranteeing a fast inference time; 2) enable the analysis of the role of different number of 

tumor cells in TBs and their potential impact on prognosis. Step 4: Count the buds and find the hot 

spot. 

 

Step 4. Find the tumor budding hotspot 
The final step of our method consists in finding the hotspot of tumor buds in the entire slide and 

output both the location and the count of TBs in the hotspot. For this, we first slide a circular region 

of 0·785mm2 over every location (within the tumor border. For each location, we consider the TBs 

Jo
urn

al 
Pre-

pro
of



   
 

   
 

9 

inside the circle and associate the TB count to the central location of the circle within the invasive 

front. As a result, a TB density map within the invasive front is obtained (see Figure 3C).  

 

Reader study 
In order to assess the performance of the proposed framework at the level of TB detection, we 

involved five pathologists in a reader study and asked them to manually mark TBs within predefined 

hotspots. The goal was to use the results of this study to assess human performance and inter-

observer variability at the specific task of TB detection and compare our CAD system with a panel of 

experienced pathologists, (AL, MV, RK, SO, AE), with on average 10 years of experience in the field of 

tumor budding in both clinical and research setting. 

We asked each pathologist to manually mark each individual tumor bud in the manually predefined 

hotspots of each WSI in the Val-t dataset (n=15). The hotspots were selected in line with the ITBCC 

guidelines and contain high amount of tumor buds. Additionally, more difficult regions were also 

selected (i.e., including regions with high inflammation). Slides were uploaded to the Reader Study 

section of the grand-challenge.org platform, and pathologists were shown both the H&E slide and the 

corresponding CK slide side by side. 

 

Statistical analysis 
Statistical analyses for clinical validation were performed after entry in an anonymized database using 

R 4.1.2 (R Foundation for Statistical Computing, Vienna, Austria [19]). Both patient cohorts were 

analyzed separately. Relation of TB with outcome (overall survival (OS) and disease-free survival (DFS)) 

was carried out using Kaplan Meier curves and Cox regression analysis.  A complete overview of the 

patient information can be found in Table 1. 

 

Cut-off values for TB categories needed to be adjusted because of the increased numbers in 

comparison with the manual counting. To create three risk categories, we used the 30- and 60 

percentiles from cohort C, which was subsequently validated in cohort D. A p-value of 0·05 was 

considered significant.  
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Comparison of manual and automatic scoring was evaluated by Cox’s regression analysis in 

combination with the Akaike Informational Criterion (AIC, based on the log-likelihood of the model). 

The AIC score is a number that describes how the models compare in terms of performance given a 

certain dataset. When comparing two methods this value helps to identify how identical the models 

are.  

Results 
The performance of the epithelium segmentation algorithm has been assessed on dataset Val-t using 

the DICE coefficient. We applied the algorithm to the 15 whole slide images and calculated the DICE 

scores on the manually annotated regions. A DICE coefficient of 0·86 and 0·97 was found for the 

epithelium and non-epithelium class respectively.  

Some examples of the segmented epithelium are shown in Figure 5A.  

 

Validation of the tumor bud detection pipeline.  
To evaluate the performance of the full detection pipeline we compared the results to the manual 

detections made by the five observers. Because pathologists' annotations may vary, we calculated the 

recall, precision, and F1 scores of all observers (the algorithm considered observer 5) relative to each 

other in a one-vs-one fashion. The algorithm has F1 value of 0·58 at max and recall of 0·95, but 

precision is suboptimal (Figure 3), with on average an amount of detected TB seven times as the other 

observers. An example of the manual vs. computer outputs can be found in Figure 5D. 

In addition we determined per hotspot how many TB were missed by the algorithm (false negative 

number) compared to cumulative TB annotations of all five, all five minus 1, all five minus 2, etc. 

observers. In this way, we found a recall percentage of 1·0, 0·90, 0·84 for objects that have been TB 

annotated by at least 5, 4, 3 observers respectively.  
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The size of tumor buds: 
For each patient group, we determined the size of TB present (Figure 4) and compared this with the 

manual TB annotations on dataset Val-t. In the algorithm groups these was an over-representation of 

single-cell TB in all groups, in contrast to the manual scores, where less single-cell TB were scored. 

Two-cell TB (45%) and three-cell TB (28%) were more common in the manual scoring. There was no 

effect of TB size on outcome. 
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Hotspot overlap: 
We visually evaluated cases to ensure that the automatically chosen hotspots were in regions that 

could be used for clinical assessment according to the ITBCC guidelines. We discovered that in 

roughly 4 out of 5 cases the top five automatically identified hotspots were on the invasive front. In 

the other cases, the top 5 hotspots were incorrectly located. For example, they are not located in 

the invasive front but on the luminal side of the WSI. 

 

Clinical validation: Prognostic value of TB 
The presence of low TB was associated with better DFS, both in the manual scoring (cohort C: HR 2·1, 

95% CI 1·6-2·8) and in the automatic scoring (cohort C HR 1·8, 95% CI 1·2 – 2·6, cohort D; HR 1·3, 95% 

CI 1·0 – 1·6). In the multivariable analysis, after we corrected for age, sex, T-stage, N-stage, M-stage, 

histological grade, and perineural invasion status for cohort C, the prognostic value of TB was still 

retained (cohort C manual:  HR 1·8, 95% CI 1·3 – 2·5, cohort C automatic HR 1·6 95% CI 1·03 - 2·4, 

cohort D HR 1·2 95% CI 0·9 – 1.6) (Figure 6). 

Similarly, improved overall survival was observed in patients with low TB, both in the manual scoring 

(cohort C: HR 2·0, 95% CI 1·6 – 2·6) and in the automatic scoring (cohort C HR 2·6, 95% CI 1·7 – 3·8, 

cohort D; HR 1·3, 95% CI 1·1-1·5). In the multivariable analysis, after we corrected for age, sex, T-stage, 

N-stage, M-stage, and histological grade, the prognostic value of TB was still retained (cohort C 

manual: HR 1·3, 95% CI 1·0 – 1·7, cohort C automatic HR 1·5 95% CI 1·0 - 2·3, cohort D HR 1·2 95% CI 

1·0 – 2·3).  

 

To compare the manual and automatic scoring systems we used the AIC for cohort C. For both DFS 

and OS the AIC was slightly lower in the manual group (790 versus 806 and 1145 versus 1148). 
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Discussion 
In this study, we used a CNN for the segmentation of epithelium in WSI in combination with a nuclei 

detection network to develop a new deep learning-based automated TB assessment tool for H&E 

stained WSI, which we compared to the ITBCC recommended method of TB assessment, performed 

by five GI pathologists from different countries in an initial validation setting. We show that our 

method is technically sound and clinically relevant. As such, our method is not yet optimized for clinical 

use and could be further improved for time-efficient processing of slides. One of the main 

improvements that can be made is with increasing the efficiency of the epithelium segmentation and 

nuclei detection part of the pipeline. For example, both networks are currently applied to the invasive 

front at the maximum image resolution, i.e., 40X. Future work will be dedicated to investigating 

lowering the resolution (e.g., to 20X) for some parts of the pipeline (e.g., epithelium segmentation) 

without reducing overall performance, which would result in a reduction of processing time  

 

The evident benefit of automatic assessment is standardization and minimization of interobserver 

variability [10]. Interobserver variability for TB is considerable [5], even when single objects should be 

graded [20]. In the current study variation is observed between the observers for both 

sensitivity/recall and specificity/precision. The algorithm is in line with the two observers who have 

the highest degree of interobserver agreement.  

 

The determination of the invasive front remains a point of discussion, between pathologists and 

consequently, by the application of the algorithm. In this study, we opted for a fully automated 

selection of the tumor border to reduce the possible observer variability in hotspot selection.  

Although in most of the cases the hotspot was in a region pathologists would use for tumor bud 

scoring, the automatically selected hotspot is in some cases not in a correct location. A practical 

approach to circumvent this issue is a visual assessment of tumor budding heatmaps (as shown in 

Figure 5C) to determine the adequacy of the selected hotspot and manual correction. 
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The ITBCC guideline defines three different budding grades based on H&E slides, which consist of 0–4 

(BD1), 5–9 (BD2) and 10 or more (BD3) buds in a hotspot. Three categories are essential, since for 

different clinical questions different cut-off levels are required. For example, high risk in pT1 CRC is 

characterized by BD2 and BD3. In contrast, only BD3 is an indication for adjuvant therapy in stage II 

CRC. We also assessed three-tier classifications for TB (supplemental data) with similar results to the 

two-tiered classification (Figure 6). Formal TB score according to the guidelines is manual, for H&E 

slides. For IHC it is likely that other cut-off levels need to be defined, as for automatic scoring. A recent 

addition to the three-tiered score is the BD0 category [21], characterized by the complete absence of 

TB and very good outcome. Since we trained our algorithm on TB-containing slides, and might overcall 

TB compared to manual scoring, we cannot be sure of adequate automatic BD0 detection. Additional 

testing on cases in this part of the spectrum is necessary. 

TB are defined based on size: they vary between 1 and 4 tumor cells. Automatic detection shows an 

overrepresentation of single-cell TB (45% of TB), which partly explains the difference with the total 

number of TB on manual scoring. Previous studies have indicated that TB detection in IHC generates 

approximately three to six times more TB than TB detection in H&E [22], most likely also because of 

higher numbers of single-cell TB. In line, semi-automatic and automatic detection methods, that are 

mainly based on IHC, report higher TB [10]. With the high sensitivity of our detection tool, we detect 

on average about seven times as much TB as the GI pathologists per hotspot. Since we annotated our 

H&E slides based on cytokeratin staining patters, this can be expected.  

However, another part of the increased TB can be contributed to so-called pseudobudding [6] that 

occurs in areas with inflammation and necrosis. These areas are avoided by pathologists. Proper 

segmentation is necessary to overcome this problem, illustrating that we need a combined approach 

in which the algorithm considers TB microenvironment.   
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Indeed, the overcalling of TB might be responsible for the slight loss of information when comparing 

manual versus automatic TB assessment, as is evident from the AIC. However, our clinical validation 

confirms in two different cohorts with different (local) staining protocols the prognostic value of 

automated TB count using the proposed algorithm. TB has independent prognostic value for both DFS 

and OS. Larger cohorts are required to determine the prognostic value when correcting for more 

extensive clinicopathological parameters (e.g., MMR, extramural venous invasion).  

 
The proposed pipeline for automated tumor bud detection opens the door to validate the role of 

tumor budding in different stages or clinicopathological parameters on large multi-centric cohorts. 

Furthermore, it might help to understand the budding phenomenon better, as we can now start to 

investigate the dynamics with the surrounding macro-system, the spatial distribution throughout a 

single or multiple section(s). This is now possible because we can identify tumor budding in larger 

fields compared to the current detection area of 0.785mm2 

 
In conclusion, TB is an independent and relevant prognostic factor in CRC, that can be assessed by 

automatic methods. High TB scores show that there is a low miss rate by the algorithm, but precision 

might be improved, by taking the TB microenvironment into consideration and ignoring parts with 

pseudobudding. However, the application of novel scoring methodology requires reevaluation of 

current definitions and cut-off values.  
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Figure and table legends 
Figure 1. Schematic overview of model development. A) Within corresponding H&E stained 
and CK-stained images manual regions of interest (ROI) were selected. Within the ROIs, all 
cytokeratin (CK) positive cells were annotated as either Bud or Tumor in the CK stained 
image. These were subsequently checked in the Hematoxylin and Eosin (H&E) stained tissue 
and removed if not visible or modified to follow border in H&E. B) Manual annotations were 
used to train the deep learning network, after which the network was applied to the train 
and validation set to identify hard-negatives and false-positives. In the next training session, 
we sampled more of these difficult objects. 
Figure 2. Overview of the workflow of the algorithm. First, the input whole slide image (WSI) 
is segmented into fourteen tissue types. Based on the detected tumor, a 500μm invasive 
front border is drawn on both sides of the edge of the tumor. Within the invasive front, we 
identify each nucleus and segment all epithelium. After combining the two outputs we can 
discard all objects that have more than 4 nuclei. Based on the detected buds we can create 
a density map to show the regions that have the most TB. 
Figure 3. F1 – scores (A) Precision (B), Recall (C), in a one-vs-one setup. For every score, one 
observer was set as a reference and compared to the other observers + algorithm. 
Figure 4. The absolute number of 1/2/3/4 cell tumor buds found by the algorithm per 
patient risk group in cohorts C (left) and D (right). 
Figure 5. A) Example of the output of the epithelium segmentation network (left) and the 
combined results (right) B) Manually (5 observers) and per algorithm obtained tumor bud 
(TB) counts per hotspot, where manually obtained TB range is shown from min to max with 
median values (marked in red), boxed by 25th and 75th percentile values. Per algorithm, 
detected numbers are shown as blue dots. The hotspots are sorted according to the degree 
of spread, from low (left) to high (right). C) Example of density heatmap generated based on 
the automatic tumor bud detections. D) Example of technical validation results with 
Hematoxylin and Eosin (H&E) stained image with manual annotations (left), corresponding 
Immunohistochemistry image (middle) and in blue (right) the segmented epithelium. 
Figure 6. Kaplan Meier curves on disease-free survival (DFS) for A) Automatic tumor bud 
count in Cohort C with 30/60 percentile as cut-off values, B) Manual tumor bud counts in 
Cohort C with cut-off values according to the International Tumor Budding Consensus 
Conference, C) Automatic tumor bud counts in cohort D, with cut-off values determined by 
the 30/60 percentile of cohort C. 
 
Table 1. Clinicopathological characteristics of cohort C and D. 
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Cohort C 
 

Cohort D 
 

Age      
 

<65 226 57% 425 66%  
>65 169 43% 219 34% 

Sex 
     

 

M 215 54% 339 53%  
F 180 46% 305 47% 

Invasion 

depth 

     

 

T1 27 7% 18 3%  
T2 74 19% 90 14%  
T3 218 55% 402 62%  
T4 76 19% 134 21% 

Nodal status 
     

 

N0 224 57% 371 58%  
N+ 171 43% 273 42%       

Synchronous 

metastases 

     

 

M0 351 89% 618 96%  
M1 44 11% 26 4% 

Perineural 
invasion 

     

 no 83 21% n/a n/a 

 yes 312 79% n/a n/a 

Grade 
    

 

low grade 350 89% 462 71% 
 

High grade 45 11% 182 29% 

Recurrence 
     

 

no 318 81% 502 78%  
yes 77 19% 142 22% 

Death 
     

 

no 292 74% 414 64%  
yes 103 26% 230 36% 
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