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Viral and bacterial infections continue to pose significant challenges for numerous
individuals globally. To develop novel therapies to combat infections, more insight
into the actions of the human innate and adaptive immune systemduring infection
is necessary. Human in vitromodels, such as organs-on-chip (OOC) models, have
proven to be a valuable addition to the tissuemodeling toolbox. The incorporation
of an immune component is needed to bring OOC models to the next level and
enable them to mimic complex biological responses. The immune system affects
many (patho)physiological processes in the human body, such as those taking
place during an infection. This tutorial review introduces the reader to the building
blocks of an OOC model of acute infection to investigate recruitment of
circulating immune cells into the infected tissue. The multi-step extravasation
cascade in vivo is described, followed by an in-depth guide on how to model this
process on a chip. Next to chip design, creation of a chemotactic gradient and
incorporation of endothelial, epithelial, and immune cells, the review focuses on
the hydrogel extracellular matrix (ECM) to accurately model the interstitial space
through which extravasated immune cells migrate towards the site of infection.
Overall, this tutorial review is a practical guide for developing an OOC model of
immune cell migration from the blood into the interstitial space during infection.
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Introduction

The COVID-19 pandemic has highlighted the ongoing danger posed by pathogens or
microbes to our society. New disruptive research is necessary to gain a deeper understanding
on how these pathogens infect specific cells in our body and the tissue damage they inflict,
and to develop methods to mitigate and prevent their spread. Organs-on-chip (OOC) are
microphysiological models aiming to replicate an organ’s functional unit. Over the past
decade, the OOC field has experienced exponential development (Ingber, 2022). Since the
first lung-on-chip was published in 2010 (Huh et al., 2010), many other OOCs and multi-
organ-on-chip models have been developed. Although advances in the OOC field have been
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remarkable, the inclusion of cellular immune components in these
systems is a recent development. The immune system plays a
significant role in organ homeostasis and the inflammatory tissue
response upon infection. Therefore, pathologies modeled in OOC
systems without the respective cellular immune component will
deviate significantly from human physiology.

Multiple reviews have summarized immunocompetentOOCmodels
(Maharjan et al., 2020; Miller et al., 2020; Morsink et al., 2020) and the
interactions between pathogens and the immune system on chip (Tang
et al., 2020; Feaugas and Sauvonnet, 2021; Saygili et al., 2021).While these
reviews excellently describe the state-of-the-art, the practical aspects of
infection-on-chip research are not discussed in-depth.

This tutorial review aims at providing a guide for both experts
and newcomers in the field on establishing an immunocompetent
OOC model of the inflammatory process during infection, either
by modelling inflammation with a chemoattractant or by
modelling infection with a pathogen. It includes an
introduction to the innate and adaptive immune system, with a
focus on recruitment of innate immune cells, followed by key
aspects to consider when modelling infection on a chip. Special
focus is provided on integrating an endothelial and epithelial
barrier on a chip using a hydrogel ECM, as well as important
experimental aspects to be considered. The review also discusses
incorporating immunity on-chip, mimicking infection,
monitoring immune cell transmigration across the vascular wall
and within the tissue and presents future perspectives on the next
level of immunocompetent OOC systems.

Immune cell extravasation cascade
in vivo

The inflammatory cascade involves a complex interplay of
various immune cells and signaling molecules interacting with
non-immune cells, such as epithelial and endothelial cells. Tissue
resident immune cells, the first to be activated by pathogens, release
cytokines that activate the local blood vascular endothelium. The
activated blood vascular endothelium increases its expression of
adhesion molecules and chemokines, which attracts circulating
immune cells (Maas et al., 2018). The immune cells transmigrate
through the endothelial layer, cross the underlying basement
membrane, and migrate through the tissue towards the site of
infection (Abbas et al., 2012). More exhaustive descriptions of
the mechanisms and pathways involved in immune cell
transmigration can be found in other reviews (Ley et al., 2007;
Abbas et al., 2012; Sturtzel et al., 2017; Maas et al., 2018).

It is essential to distinguish between the innate and adaptive
immune response: the innate immune response is the first, fast
response to infection, whereas the adaptive immune response is
pathogen-specific and generates memory cells for resolving future
infections with the same pathogen (Chaplin, 2010; Abbas et al.,
2012). For an effective adaptive immune response, incorporation of
the lymphatics is necessary, to allow for dendritic cell migration
from the site of infection to the lymph nodes, presenting antigens to
T Cells in the lymph nodes. This review will focus on the innate
immune response, where innate immune cells, mainly neutrophils
and monocytes, are recruited to the site of infection from the blood
vasculature.

Pathogen detection and innate immune
response

Pathogens are typically detected by their pathogen-associated
molecular patterns (PAMPs) (Alper et al., 2018), which, in turn, are
recognized by pattern recognition receptors (PRRs) on cells in
tissues. PRR activation induces an intracellular signaling cascade
that triggers pro-inflammatory actions, such as cytokine production,
to attract immune cells and activate blood vessel endothelial cells
(BECs). The activated endothelium attracts peripheral immune cells,
which transmigrate from the blood vessel to the infection site. This
transmigration cascade is a multistep process (Figure 1), which
includes the capture, rolling, arrest, crawling, and transmigration of
immune cells at the level of post-capillary venules (Ley et al., 2007;
Abbas et al., 2012; Sturtzel et al., 2017). After crossing the
microvascular endothelium, immune cells migrate through the
extracellular tissue space to the site of infection.

To initiate the process of capture and rolling, passively flowing
immune cells must come into contact with the endothelium, which
occurs when BECs are activated. BEC activation arises through
cytokine signaling but also through altered blood flow. In normal
laminar flow conditions, the BECs are tightly aligned, and the cells
are in a quiescent state. However, when the flow is disturbed and
oscillatory, BECs are less aligned because they sense the flow
variations, leading to BEC activation (Heo et al., 2011). In both
disturbed flow and cytokine activation, activated BECs upregulate
adhesion molecules like E- and P-selectins and members of the
IgCAM family such as ICAM-1 amd VCAM-1, the main molecules
involved in immune cell capture and rolling (Ley et al., 2007; Abbas
et al., 2012; Muller, 2013; Maas et al., 2018).

When the immune cells arrest after rolling, the cells flatten to
decrease their exposure to shear stress and other circulating cells
(Figure 1). (Maas et al., 2018) Chemoattractant exposure, as well as
binding to integrins, is essential in regulating arrest with different signals
inducing firmer adhesion of the immune cell to the endothelium. Firm
adhesion to the endothelium allows the cells to crawl along the
endothelium to find the optimal location for transmigration across
the endothelial cell wall. The majority of cells follow the paracellular
transmigration route, where the cell migrates between BECs, via the
cell-to-cell junctions (Muller, 2011). A smaller percentage of immune
cells opt for transcellular diapedesis, in which the immune cell crosses
the barrier by going through a BEC.

Immune cell migration through the
interstitium

After reaching the extracellular tissue space, the immune cells’
ability to migrate towards the site of infection is crucial. To
accomplish this, the cell tracks various chemokines through the
dense extracellular matrix (ECM) network. Tissue-resident
macrophages and the epithelium produce chemokines to
stimulate migration. To ensure that chemokines are correctly
positioned, they are bound to the ECM, often to proteoglycans in
the ECM (Gill et al., 2010; O’Dwyer et al., 2018). Immune cells
respond to chemokines based on factors such as chemoattractant
type, concentration, and exposure time (Amulic et al., 2012).
Resident cells interact with the migrating immune cells and can
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also produce matrix-modifying enzymes, such as matrix
metalloproteinases (MMPs) and collagenases, which specifically
degrade the ECM, thus potentially facilitating movement of
immune cells through the tissue (Parks et al., 2004; O’Dwyer
et al., 2018; Miskolci et al., 2021). The combined action of MMP
production, chemokine signaling, and cell-cell interaction facilitates
immune cell migration towards the site of infection in the
extracellular tissue space.

In vivo models of immune cell extravasation

In vivo studies on innate immune cell extravasation across the
vascular wall have primarily focused on easily accessible structures, such
as muscle, skin, and mesentery (Halin et al., 2005). Research on these
tissues benefits from better imaging quality than internal tissues that are
challenging to reach. Within these tissues, immune cells mostly
transmigrate from the postcapillary venule (Hickey and Westhorpe,
2013; Weirather and Frantz, 2015). The specific transmigration
mechanisms used by immune cells vary considerably depending on
the organ of interest, the immune cell subset, and the time during
inflammation caused by infection. For example, in the skin, immune

cells migrate from the postcapillary venule through a large extracellular
space to reach the site of infection, whereas in the lung, the air-blood
barrier is very narrow, resulting in the immune cells mostly
transmigrating from the capillaries into the airspace (Maas et al.,
2018). Thus, the molecular mechanisms by which immune cells
transmigrate depend on their microenvironment, specifically the
vascular characteristics of the respective tissue. Unfortunately, live
imaging of extravasation in internal organ vessels can only be
carried out after a complex surgical procedure or with expensive
equipment such as a two-photon microscope to perform intravital
imaging (Kim et al., 2019a). Surgery not only causes stress for the
animals, which may activate immune cells, but anesthesia also
influences vascular dilation and immune cell activation, making it
crucial to identify alternative methods to study the mechanisms of
inflammation and infection in vitro (Hickey and Westhorpe, 2013).

In vitro models of immune cell
extravasation

Two main types of in vitro models for immune cell
extravasation are commonly used: (1) static models and (2)

FIGURE 1
Immune cell transmigration cascade upon infection. The immune cell transmigration cascade is a multistep process. During infection, gaps in the
epithelium, endothelium, and ECM are observed. Tissue-resident immune cells detect the pathogen and secrete cytokines to activate the endothelium
and attract peripheral immune cells. Through multiple steps, peripheral immune cells are attracted towards the site of infection. This figure is based on
numerous reviews and research publications (Ley et al., 2007; Abbas et al., 2012; Sturtzel et al., 2017; Alper et al., 2018; Maas et al., 2018). Created
with BioRender.com.
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basic flow chambers (Muller and Luscinskas, 2008; Salminen
et al., 2020). In these models, a monolayer of BECs is cultured to
confluency and immune cells are introduced either statically or
under flow conditions. To generate an innate immune response,
BECs and/or innate immune cells are exposed to a pro-
inflammatory stimulus. In contrast, adaptive immune cells
inherently extravasate, but a pro-inflammatory stimulus is
necessary for activation of adaptive immune cells. The process
of immune cell extravasation is visualized and analyzed using
microscopy.

Static models consist of two compartments between which
immune cells migrate by crossing the endothelium and then
entering the second compartment. The most well-known model
is the two-chamber migration assay, also known as the transwell
assay (Falasca et al., 2011). In this assay, BECs are grown in a filter
insert, and immune cells cross the endothelium and then squeeze
through the pores of the filter insert to reach the lower
compartment. Unfortunately, this system does not incorporate
an ECM environment for immune cells to migrate into. A more
elaborate assay, the collagen hydrogel transendothelial migration
assay, was developed to address this issue. In this modified assay,
an endothelial monolayer is formed on a collagen hydrogel, and
immune cells migrate from the media space across the

endothelial monolayer into the underlying hydrogel (Muller
and Luscinskas, 2008).

In the bloodstream, immune cells are exposed to shear stress,
affecting BEC function and immune cell transmigration (Brooks
et al., 2002). To investigate this further, laminar flow chamber assays
have been utilized to study immune cell adhesion and
transmigration under flow conditions, allowing a better
understanding of the extravasation cascade and the role of
selectins in adhesion and rolling (Salminen et al., 2020).
However, these assays involve culturing BECs on stiff and rigid
substrates without an ECM hydrogel to simulate the soft interstitial
space. To address this limitation, OOC models offer a more
advanced platform, allowing for the co-culture of multiple cell
types, including physiological fluid flow, and cell culture on soft
hydrogel ECMs.

Immune cell extravasation in organs-
on-chip

In the following sections, the development of an OOC model of
infection (infection-on-chip) will be discussed. Individual
components of the model are shown in Figure 2: the chip design,

FIGURE 2
Requirements of an infection-on-chip model. The infection-on-chip schematic shows the main elements needed to create an infection-on-chip
model: microvascular endothelial cells, epithelial cells, immune cells (optimally peripheral immune cells in the blood vessel and tissue resident immune
cells in the ECM), a hydrogel mimicking the ECM environment, and a chemotactic gradient to induce inflammation or a pathogen tomodel infection. The
chemoattractant diffusion is depicted (right side). Created with BioRender.com.
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hydrogel ECM, microvascular endothelium, epithelium, tissue
resident and circulating immune cells, and induction of
inflammation with a chemotactic gradient or mimicking infection
with a pathogen. These components, with practical aspects on how
to establish them in the laboratory, will be elaborated on later in this
review.

Microfluidic chip design

A microfluidic chip to model immune cell extravasation and
migration during infection should bemulticompartmental, to enable
the creation of an endothelium-hydrogel-epithelium barrier, and
perfusable, to perfuse immune cells and create a chemotactic

FIGURE 3
Examples of organ-on-chip designs incorporating hydrogels. (A) Pillar-based system for microvasculature formation. Image from Boussommier
et al. (Boussommier-Calleja et al., 2019) (B)Neutrophil extravasation system. Image fromHan et al. (Han et al., 2012) (C)Hydrogel-based chipwithmolded
vessel structure within PDMS device. Image from Zheng et al. (Zheng et al., 2012) (D) A phaseguide separates the hydrogel from the media channel,
creating a single blood vessel in themedia channel. (E)Neutrophil extravasation on chip using stacks. Image fromMcMinn et al. (McMinn et al., 2019).
Figure D was adapted from De Haan et al. (de Haan et al., 2021), under the terms of the Creative Commons Attribution License (CC BY). (https://
creativecommons.org/licenses/by/4.0/).
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gradient (Figure 2). Several commercialized microfluidic chips are
available, such as from Mimetas, AimBiotech, and BEOnChip
(Zhang and Radisic, 2017; Zommiti et al., 2022). However, a
customized microfluidic chip can be developed if a specific
design is desired. Figure 3 gives an overview of possible chip
designs. Information concerning chip fabrication, typically using
soft lithography, can be found elsewhere. (Cameron et al., 2022; Cho
et al., 2022; Leung et al., 2022). Briefly, a mold is created by 3D
printing or stereolithography and filled with polydimethylsiloxane
(PDMS) mixed with a curing agent. Cured PDMS is post-processed
and bonded to another PDMS part or a glass slide to close channel
structures. The chip’s design is based on the abovementioned
requirements: multi-compartmentalization with a hydrogel ECM
and perfusability. Generally, designs can be categorized into two
groups: chips with channels created inside the hydrogel structure
and chips with a hydrogel barrier separating the microfluidic
channels.

Blood vessels created in hydrogel chips
In hydrogel-based chips, the microfluidic channels are created

into the hydrogel itself, and structural material, like PDMS, is only
utilized to encapsulate the structure for easier handling. To create
channels inside a hydrogel, a mold can be generated out of a
substrate such as PDMS, and the hydrogel is polymerized on top of
the mold to create the channels (Figure 3C). (Zheng et al., 2012)
These channels can be used to assess bacterial and mammalian cell
chemotaxis (Cheng et al., 2007) and microvessels can be molded
(Qiu et al., 2018). To create a single cylindrical blood vessel, a
hydrogel is formed with a removable needle inside (Park et al.,
2010; Tourovskaia et al., 2014; Zeinali et al., 2021). Such devices
can be used to study immune cell extravasation from the blood
vessel lumen into the hydrogel (Lee et al., 2017), to create multiple
vessels inside a hydrogel with different BEC types (Hasan et al.,
2015), and create hydrogel stacks on top of the blood vessel to
investigate neutrophil migration distance (Figure 3E). (McMinn
et al., 2019) Moreover, the hydrogel surrounding the vessel can be
dried to create a stable, dense collagen construct in which
endothelial cells can be grown and neutrophil extravasation can
be observed (Chen et al., 2018). A sacrificial hydrogel can be used
to create structures within different hydrogels. For example,
agarose can be encapsulated by crosslinked gelatin hydrogels.
After gelatin gelation, the agarose can be flushed out, and a
cylindrical lumen remains (Bertassoni et al., 2014). Lastly,
structures inside a hydrogel can be formed through laser
ablation. With this method, a laser specifically ablates the
regions of interest to create a unique microchannel design
inside a hydrogel on chip (Brandenberg et al., 2016; Nikolaev
et al., 2020).

Microfluidic chips with hydrogel barrier
compartment

To confine the hydrogel in one compartment, one can make use
of surface tension. The hydrogel can be restricted within one channel
using pillar structures (Huang et al., 2009; Bichsel et al., 2015;
Adriani et al., 2017; Aizel et al., 2017; Campisi et al., 2018; Li
et al., 2018; Zeinali et al., 2018; Boussommier-Calleja et al., 2019)
(Figure 3A) or a channel height difference (Vulto et al., 2011;
Poussin et al., 2020; de Haan et al., 2021; Riddle et al., 2022)

(Figure 3D). This allows the user to create an endothelial and
epithelial barrier alongside the hydrogel and observe immune cell
migration through the hydrogel (Poussin et al., 2020; de Haan et al.,
2021; Riddle et al., 2022). In another model, migration between the
media and the gel channel is only possible via a number of smaller
openings in the center of the chip (Shin et al., 2012). This model has
been used to examine breast cancer metastasis as well as neutrophil
transendothelial migration into the collagen hydrogel (Figure 3B).
(Han et al., 2012; Bersini et al., 2014; Na et al., 2017) Lastly, a model
with a suspended hydrogel can be created, for example, to model an
airway-on-chip (Humayun et al., 2018).

Most designs discussed here currently do not include pump-
assisted uni-directional flow. To include a pump-assisted flow of
immune cells, a chip has to be adapted to be connected to a
pump. This has been accomplished to investigate immune cell
migration across an endothelial layer on chip (Zhang et al., 2016;
Menon et al., 2017). Where one system focuses on forming a single
channel with the aid of a collagen hydrogel (Menon et al., 2017), the
other system engineers a biodegradable scaffold for a microvascular
network from which immune cells can migrate (Zhang et al., 2016).

Experimental aspects of the chip design
With the aid of surface tension, a hydrogel can be contained in

one microfluidic compartment of the chip. During the design phase,
it is crucial to calculate the change in contact angle necessary to
maintain the hydrogel in the correct compartment. These
calculations, based on the Young–Laplace equation, have been
extensively described (Huang et al., 2009).

A tight connection between the pipette tip and the hydrogel inlet
is recommended to simplify pipetting the hydrogel into the
chip. Ensuring this tight connection involves designing the inlet
size with precise dimensions matching the end of the pipette tip.

The PDMS chip material is known for its poor cellular
adherence (Leung et al., 2022). Hence, surface modification of
the material to allow for cell attachment is essential. Usually, the
material is coated with an ECM mixture, such as collagen-
fibronectin (Dabaghi et al., 2021). The hydrophobicity of PDMS
results in poor attachment of ECM proteins unless further
modifications are made. Thus, PDMS pre-treatment with oxygen
plasma or chemicals like polydopamine or (3-aminopropyl)
triethoxy silane (APTES) is recommended (Dabaghi et al., 2021).
Adding a pre-treatment with ECM coating improves BEC and
hydrogel adhesion to the OOC, preventing cell detachment and
hydrogel contraction.

Hydrogels used to model the ECM
environment

Hydrogels, as their name suggests, mainly consist of water, with
a 3D polymer network forming the structure. The wide variety of
available polymers with different properties enables the
recapitulation of different ECM types (Liu et al., 2019).
Importantly, a hydrogel’s mechanical properties can be tuned
through various methods to be similar to those of human tissues.
Hydrogel chemical composition and topographies can be adjusted to
mimic the tissue of interest, and specific ECM components can be
included if desired. An organ-specific hydrogel resembles the
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instructive native environment of the cells, to emulate a functional
tissue environment.

The most commonly used hydrogels for on-chip culture are
created from collagen, fibrinogen, Matrigel, gelatin, polyacrylamide
(PA), polyethylene glycol (PEG), or hyaluronic acid (HA) (Caliari
and Burdick, 2016). More recently, hydrogels comprising native
tissue ECM have also been created to recapitulate the ECM of the
organ of interest more accurately (Marhuenda et al., 2022). In most
of the infection-on-chip models, hydrogels are the central
environment between the epithelium and endothelium (Figure 2).

Effects of hydrogel properties on immune cell
migration

Immune cells, like other cells, interact with the proteins in
hydrogels. On top of a 2D hydrogel surface, the cells are less
constrained. On the other hand, encapsulated inside a 3D
hydrogel, the cells are more constrained but have more points of
adhesion to thematrix which can be used for immune cell migration,
but are not necessary for immune cells to migrate (Caliari and
Burdick, 2016). Figure 4 gives an overview of the hydrogel properties
that influence immune cell migration.

Natural and synthetic hydrogels
Synthetic hydrogels are created from non-natural polymers,

such as polyacrylamide (PA) or polyethylene glycol (PEG), while
naturally derived hydrogels are produced from, for example,
collagen, fibrinogen, or gelatin (Lee et al., 2017; Liu et al., 2019).
While naturally derived hydrogels are considered closest to the
composition of native ECM, they are susceptible to biodegradation

and contraction, leading to the deformation of the intended
structure (Liu et al., 2019). In contrast, synthetic hydrogels are
often bioinert, meaning they do not interact with immune cells
unless activated by adding specific peptides to these hydrogels.

Hybrid hydrogels
Hybrid hydrogels are created by mixing different hydrogels, for

example, by mixing one natural hydrogel with another, such as
collagen and fibrinogen (Sano et al., 2018). A hybrid hydrogel,
consisting of a mixture of Geltrex and collagen, was used to
investigate neutrophil extravasation (Riddle et al., 2022). Results
showed that neutrophils extravasated to a larger extent in geltrex/
collagen mix gel compared to collagen only, exemplifying the effect
of hydrogel composition on neutrophil migration.

Hydrogel chemistry
The functionalization of hydrogels with specific peptides can

improve adhesion and alter cell behavior. This has been mainly
observed with PEG hydrogels and the RGD peptide, a sequence of
the three amino acids arginine, glycine, and aspartate. For example,
implanting PEG alone induced a foreign body reaction with
macrophage accumulation, which did not occur upon PEG-RGD
conjugated hydrogel implantation (Lynn et al., 2010). On the other
hand, naturally-derived hydrogels suffer from batch-to-batch
variability, and their chemical structure can have unwanted
effects on immune cells. For instance, fibrin is essential in
inflammation and wound healing. In vitro, fibrin retains its
chemotactic properties, attracting macrophages to the area where
fibrin is present (Tanaka et al., 2019), which could influence
experimental results.

Hydrogel porosity
Hydrogel porosity affects the mechanical structure and oxygen

and nutrient diffusion. Collagen hydrogel density can be modified
by altering collagen concentration in the hydrogel, which affects
macrophage migration. In a dense collagen gel, macrophages
migrate less than in a highly porous collagen gel (Ford et al.,
2019; Pérez-Rodríguez et al., 2022). Another method of
controlling density is by integrating soluble particles into a
hydrogel, which, upon dissolution, leaves pores with a specific
size (Lee et al., 2017). This method can be used to control pore
size accurately.

Stiffness
Substrate stiffness is a crucial factor influencing immune cell

migration. Hydrogels generally have low stiffness, which can be fine-
tuned, making them optimal for assessing cell migration on different
stiffness substrates. To create stiffness gradients, most studies adapt
the concentration of hydrogel molecules or utilize a crosslinker
(Whang and Kim, 2016).

On stiffer hydrogels, neutrophils flatten and spread more than
on soft hydrogels, where they remain rounded (Oakes et al., 2009).
This correlates to less total migration and more directional
migration on stiffer hydrogels, whereas on soft hydrogels,
neutrophils exhibit random walk behavior. When the
chemoattractant fMLP is added, neutrophils on stiffer substrates
migrate less and more directional than cells on a soft substrate. In
another system, neutrophils are perfused through a microfluidic

FIGURE 4
Hydrogel properties affecting innate immune cell migration. Innate
immune cell migration is affected by hydrogel chemistry, type, stiffness,
porosity, topology, and crosslinking. This figure shows graphically how
innate immune cells can be affected. Created with BioRender.com.
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system with a polyacrylamide (PA) hydrogel (Jannat et al., 2010).
Similar to the previous example, higher hydrogel stiffness leads to
more directional migration, which could be visualized using traction
force microscopy (Jannat et al., 2011).

BECs form more vessel-like structures on hydrogels with lower
stiffness, whereas more MMPs are produced on higher-stiffness
hydrogels (Hanjaya-Putra et al., 2010; Onken et al., 2014).
Peripheral blood lymphocytes or neutrophils added to an
endothelial monolayer created on soft and stiff hydrogels were
found to transmigrate more on more rigid substrates (Onken
et al., 2014; Lauridsen and Gonzalez, 2017).

Crosslinking/patterning of hydrogel
By specific hydrogel crosslinking, a pattern of altered stiffness

can be created. For instance, fibrin hydrogel can be crosslinked with
blue light exposure when using a ruthenium crosslinker. A pattern
can be created by only exposing specific areas to blue light (Keating
et al., 2019). This technique was used to investigate macrophage
migration (Hsieh et al., 2019). Again, it was observed that
macrophages are flatter and less round on stiff, crosslinked gels
compared to soft, not crosslinked gels. In addition, macrophages
migrated more on crosslinked hydrogels than non-crosslinked ones,
which correlated to increased TNF-α secretion.

Topology
Topotaxis is the directional migration of cells across a specific

topology. These 3D patterns influence cellular behavior (Matellan
et al., 2019). In a study with melanoma cells, it was observed that
cells form long filopodia when cultured on areas with fewer pillars.
In contrast, cells form short and randomly oriented protrusions in
highly dense pillar areas (Park et al., 2016). A study of macrophage
migration examined the effect of differently shaped collagen gels
(more fibrous or more globular) and found that more macrophages
transmigrated across the fibrous collagen compared to the globular
collagen (Vasse et al., 2018).

In summary, hydrogel chemistry, composition, porosity,
stiffness, crosslinking, and topology play a crucial role in
immune cell migration and can affect the in vitro modeling of
immune cell migration.

Experimental aspects of hydrogel ECM creation
Hydrogels are produced from various precursor solutions

with different properties. The production and gelation process
depends on the hydrogel (Lee et al., 2017). Collagen gelation is
both pH- and temperature dependent, and the hydrogel is
produced from an acidic precursor solution that is neutralized
(Doyle, 2016). GelMA, the modified version of gelatin, is photo-
crosslinkable with UV light. Fibrinogen forms a hydrogel upon
contact with thrombin within minutes, whereas collagen gelation
can take between 30 min and multiple hours, depending on the
gelation temperature (Liu et al., 2019). Many hydrogels (e.g.,
collagen, fibrin, Matrigel) require working on ice during
preparation to prevent fast gelation.

The hydrogel properties of different hydrogels also have an effect
on pipetting method. Due to the fast gelation time, pipetting of fibrin
hydrogels has to be carried out on ice in small volumes that can
immediately be transferred from the mixing tube into the chips. On
the other hand, collagen gelates slower but the solution is very

viscous, hence pipetting of collagen is often carried out with pipette
tips with an extra wide opening. These tips are commercially
available, but can also be generated in-house by cutting the end
off a standard pipette tip.

More information on hydrogel production and gelation, as well
as hydrogel incorporation on chip, can be found in these reviews
(Caliari and Burdick, 2016; Jiang et al., 2016; Terrell et al., 2020).
Depending on the chip design required for the assay, the hydrogel
production requirements can play a prominent role in choosing the
hydrogel for the organ-on-chip.

One of the key features of hydrogels is their permeability. It can
easily be assessed using a permeability assay. A dye coupled to a
fluorescent molecule with a known molecular weight (e.g., a RITC-
dextran or FITC-dextran) is added, and dye diffusion into the
hydrogel is monitored using timelapse microscopy. The
permeability can then be calculated based on the following
equation (Haase and Kamm, 2017; Ho et al., 2017; Van Duinen
et al., 2017):

Papp � dCECM

dt
×

VECM

AEC × Cvessel
( ) (1)

Papp: permeability coefficient.
CECM: concentration (measured through dye intensity) of the
dye in the ECM.
VECM: volume of the ECM compartment.
AEC: surface of the monolayer where the dye interfaces with
the ECM.
CVessel: concentration (measured through dye intensity) of the
dye in the microchannel.

Microvascular endothelial barrier

Culturing BECs on chip utilizes two main methods to model
blood vessels: (1) generating a vessel-like three-dimensional
structure and culturing monolayers of BECs on this defined
structure (Figure 2) or (2) mixing BECs with mural cells inside a
hydrogel to create self-assembled microvessels (Jeon et al., 2015;
Zeinali et al., 2018; McMinn et al., 2019; Zeinali et al., 2021).

Vascular endothelial cell type affects immune cell
behavior

Recent advances in genetic screening, such as single-cell RNA
sequencing, have shown that there is not one type but a wide variety
of vascular endothelial cell (EC) subtypes specific to the vascular
segment and the organ of interest. There are differences in
morphology and gene expression between arterial, venous, and
capillary BECs without even mentioning lymphatic ECs (Gifre-
Renom et al., 2022). Moreover, BECs from different organs
function differently, for example, the highly permeable liver
sinusoids differ from the tight blood-brain barrier (Gifre-Renom
et al., 2022). A human BEC type frequently used in research is the
human umbilical vein endothelial cell (HUVEC), as these cells are
widely available and easy to obtain from the umbilical cord.
Although HUVECs are not microvascular cells, but venous cells,
they have allowed for identification of molecular mechanisms of
immune cell extravasation. Nevertheless, the choice of endothelial
cell type is essential: when comparing a brain microvascular EC line
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to primary brain microvascular ECs, it was observed that the T Cell
diapedesis was lower across primary brain microvascular ECs when
compared to the brain microvascular cell line, with higher crawling
distance on the primary brain microvascular ECs (Steiner et al.,
2011).

Experimental aspects of endothelial barrier culture
Culturing BECs seems trivial, but many factors play a role in

endothelial function and barrier tightness, such as confluency, cell
culture media, culture substrate, shear stress, and perfusion mode.

Cell culture substrate affects endothelial cell growth
The choice of culturematerial influences BEC growth. For example,

in a chip with different hydrogels, HUVECs attach and grow nicely on
gelatin-gelMA and alginate-gelMA but not on gelatin-alginate (Nie
et al., 2018). Similarly, BECs attach more to fibrin hydrogels than to
collagen I hydrogels. The most commonly used hydrogels for
endothelial cell culture on chip are bovine-derived fibrin and rat
tail-derived collagen I, due to their ease of use and low cost.

Cell culture media affects endothelial cell function
Cell culture media significantly affects cell morphology and

function due to the presence or absence of various soluble factors
(growth factors, chemokines, metabolites). For example, HUVECs
cultured in M199 media lose their typical morphology only after a
few passages, whereas HUVECs cultured in EGM-2 media retain
their typical cobblestone morphology for up to 10 passages, most
likely due to the additional growth factors present in EGM-2 media
(Bala et al., 2011). Specialized media solutions have been developed
for specific types of microvascular BECs, or to induce angiogenesis
using a pro-angiogenic cocktail (van Duinen et al., 2019).

Shear stress and perfusion system
In the human body, BECs experience shear stress from the blood

flow. Arterial BECs experience high shear stress, while venous BECs
generally experience low shear stress. In vitro, shear stress can be
applied in microfluidic systems, causing BECs to align along the flow
direction and increase barrier tightness (Ohta et al., 2022). When
applying alternating flow, this BEC alignment is not observed,
indicating that this method of applying shear stress is non-
physiological (Lee et al., 2019).

Characterization of the endothelial barrier
To experimentally validate if the endothelial barrier is intact and

functional, barrier protein expression analysis and permeability assays are
important tools. Junctional maturation can be assessed by
immunostaining of junctional localisation of VE-cadherin, PECAM-1,
JAMs, and possibly other tight junction proteins, to assess the confluency
and barrier morphology. On the other hand, a permeability assay
quantifies barrier tightness. The permeability of an endothelial
monolayer bordering a hydrogel interface can be calculated with Eq.
(1). More information on measuring endothelial permeability values in
OOCs can be found elsewhere (Haase and Kamm, 2017).

Functionally, it is crucial to know the BEC type in your culture.
For example, does this endothelial cell type express and relocate
adhesion molecules to the cell membrane upon an infectious
stimulus, and does it express known markers for the BEC type of
interest? Also, while HUVEC are broadly used for their ease to

culture, studies involving tissue-specific BEC are starting to emerge,
to take the specificities of these cells into account, for example, in a
model of pulmonary infection on chip (Bai et al., 2022). Optimizing
the culture conditions mentioned in this chapter can create a
favorable BEC culture environment.

Epithelial barrier

In barrier organs, such as the lung, intestine, and skin, the
epithelium is the first physical barrier pathogens encounter upon
entry. In the infection-on-chip model, the epithelial barrier is
located next to the hydrogel ECM environment and acts as the
site of infection (Figure 2).

In the lung, the alveolar epithelium comprises two main cell
types: alveolar type I and II cells. The thin type I cells line the
alveolar sac and allow gas exchange, covering around 95% of the
alveolus (Weibel, 2015). Type II cells, on the other hand, are more
stem cell-like, have regenerative potential, and produce surfactant.
During infection, alveolar epithelial cells secrete cytokines to
activate the endothelial barrier and attract immune cells from
the bloodstream (Manicone, 2009). Throughout the pathogen
removal process, the epithelium is severely damaged, leading to
the accumulation of liquid and cell debris in the alveolar space
(Yamada et al., 2016). Multiple lung-on-chip models with an
epithelial barrier have been used to study lung infection
(Deinhardt-Emmer et al., 2020; Deinhardt-Emmer et al., 2021;
Bai et al., 2022).

The intestinal epithelial barrier consists of a multitude of cell
types. During infection, the intestinal barrier is disrupted and
immune cells can migrate into the underlying tissue. This was
shown in a model of T Cell migration across the intestinal
epithelial barrier (de Haan et al., 2021).

The skin has a complex, multilayered cellular barrier, that is
often modelled in cell culture inserts (Kosten et al., 2016). To model
skin toxicity from oral exposure to metals, a multi-organ on chip
with gingiva and skin tissue was developed (Koning et al., 2022). In
another model, T Cell migration upon skin inflammation was
investigated (Ren et al., 2021).

Experimental aspects of epithelial cell culture
Epithelial cells can be obtained from primary tissue, but due to

limited availability and high variability between donors, on-chip
culture of these cells is challenging. In the case of alveolar epithelial
cells, alveolar type II cells are highly susceptible to their
environment and quickly differentiate to type I cells when
placed in culture, leading to a loss of the regenerative type II
population. Therefore, cell lines have been used in lung-on-chip
models of infection (Huh et al., 2010; Deinhardt-Emmer et al.,
2020). However, these cell lines are derived from cancerous tissue
and are thus not representing the cells present in normal tissue
homeostasis. Similarly, the intestinal epithelium is a complex, self-
renewing environment that is often modelled with simple
epithelial cell lines on chip (de Haan et al., 2021). However,
recent research has shown that intestinal organoids can be
grown inside a hydrogel with an in vivo-like anatomical
structure, leading to a highly in vivo-like intestinal model
(Nikolaev et al., 2020).
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The cell culture media of epithelial cells affects their growth and
differentiation. Since alveolar type II cells differentiate in standard
culture media, a defined media composition has been developed to
maintain alveolar type II cells (Sun et al., 2021). However, not only
the epithelial cells are affected by the culture media, but BECs can
sense this media too and can migrate from the endothelial
compartment towards the pro-angiogenic factors in the epithelial
cell compartment.

When co-culturing multiple cell types, optimizing how long cells
need to form a functional barrier is necessary. For example, an
immortalized alveolar epithelial cell line can take up to 3 weeks to
establish a functional barrier, whereas the co-cultured BECs in the
model do not need this long culture time to form a functional barrier
(Sengupta et al., 2022). Moreover, the air-liquid interface (ALI)
culture of pulmonary epithelial cells improves their function
(Hiemstra et al., 2019), but a liquid interface is required for
chemoattractant perfusion through the epithelial channel. Future
studies should look into nebulization of the infectious agent to retain
ALI, but this is out of the scope of the current review.

Immune cells

For modeling the innate immune response on chip,
macrophages, monocytes or neutrophils can be cultured inside
the OOC (Figure 2; Table 1). The organ of interest plays a
significant role in immune cell action, as immune cells are very
responsive to the other cells in their environment. Table 1 gives an
overview of immune cells used on chip, their source, and isolation
method. Both the innate and adaptive immune response have been
modeled on chip, or a mixed population of peripheral immune cells
was utilized.

Even though the most physiological model would contain
only freshly isolated human immune cells, the choice of cells also
highly depends on the availability of specific cell types, the
research question, and the organ of interest (Granton et al.,
2018). Generally, combining multiple immune cell types to
investigate their role during infection would be interesting, for
example, by combining tissue-resident macrophages in the ECM
hydrogel compartment with monocytes in the vascular

TABLE 1 Immune cell sources for on-chip culture. This table lists different types of immune cells, their source, isolation method, and examples of chips on which
these cells were cultivated. This is a non-exhaustive list of examples of how immune cells were incorporated into OOC models. More methods of immune cell
isolation are possible, but have not been tested on chip yet.

Immune cell type Cell source Culture/isolation information Examples of on-chip studies

Mixed population

Peripheral bloodmononuclear cells
(PBMCs, mixed population)

Human blood-
derived

Density gradient separation to obtain PBMCs Lu et al. (2022)

Innate immune response

Macrophages Mouse bone
marrow

Isolation from bone marrow, differentiation with
M-CSF

Li et al. (2018), Thacker et al. (2020)

RAW264.7 Cell line Huang et al. (2009), Zervantonakis et al. (2012)

THP-1 Monocyte cell line, can be differentiated
with PMA

Sharifi et al. (2019), Yin et al. (2019), Gjorevski et al. (2020),
Pérez-Rodríguez et al. (2022)

Human blood-
derived

Density gradient separation to obtain PBMCs
followed by monocyte selection and
differentiation

Deinhardt-Emmer et al. (2020)

Neutrophils HL-60 Cell line Han et al. (2012), Chen et al. (2018)

Human blood-
derived (1)

Density gradient separation Jannat et al. (2010), Han et al. (2012), Wu et al. (2015), Yang
et al. (2017), McMinn et al. (2019), Gjorevski et al. (2020),
Riddle et al. (2022)

Human blood-
derived (2)

Neutrophil isolation with microfluidics Hamza and Irimia (2015), Wang and Irimia (2018)

Adaptive immune response

Dendritic cells Mouse bone
marrow

Isolation from bone marrow and differentiation
in vitro

Haessler et al. (2011), Aizel et al. (2017)

MutuDC Cell line Moura Rosa et al. (2016)

Human blood-
derived

Density gradient separation to obtain PBMCs
followed by cell differentiation

Parlato et al. (2017)

T Cells Human blood-
derived (1)

Density gradient separation to obtain PBMCs
followed by T Cell selection

de Haan et al. (2021), Van Steen et al. (2021)

Human blood-
derived (2)

T and B Cell isolation with microfluidics Chiu et al. (2019)
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compartment (Chen et al., 2023). In the infection-on-chip model,
the main focus is the extravasation and migration of peripheral
immune cells perfused through the blood vessel (Figure 2).

Experimental aspects of immune cell culture on
chip

Isolation of human peripheral immune cells is traditionally
carried out by gradient separation from whole blood or buffy
coat, with post-processing of the cells to obtain specific
populations, such as differentiated macrophages (Grievink et al.,
2016; Golke et al., 2022). Recently, negative and positive selection-
based methods with magnetic sorting have been developed
(Chometon et al., 2020). These methods, although more costly
than traditional gradient separation, achieve a higher purity of
the immune cell subset of interest. Depending on the immune
cell type of interest, different isolation methods can be elected
(Table 1).

Culture conditions influence immune cells
Like endothelial and epithelial cells, immune cells also react to

their cell culture media. For example, the foreign material in fetal
bovine serum (FBS) can cause monocyte activation. Hence, human
autologous serum is used for immune cell culture to prevent
activation (Deinhardt-Emmer et al., 2020). To visualize immune
cell migration, fluorescent labelling of immune cells is standard
practice. However, this chemical labeling can activate immune cells
or when membrane labeling is used, limit their migration by
inhibiting cell membrane motility, which is why one should label
the cytoplasm or genetically modify the cells. Thus, the correct
labelling solution should be used, and immune cell activation should
be checked. Methods to check for immune cell activation are flow
cytometry, microscopy, or assessing cytokine secretion to measure
activation markers.

Shear stress on immune cells
In the human body, immune cells in the bloodstream experience

different levels of shear stress. A majority of in vitro research is
carried out statically, without the perfusion of immune cells (Huang
et al., 2009; Han et al., 2012;Wu et al., 2015; Aizel et al., 2017; Parlato
et al., 2017; McMinn et al., 2019). For a more physiological model,
immune cells should be perfused through the blood vessel channel to
observe rolling, arrest, polarization, crawling and finally diapedesis
across the microvascular endothelial layer into the hydrogel (Bianchi
et al., 2013). Adding perfusion has a significant effect on immune cell
migration in general, as shown in a study where macrophages
embedded inside a hydrogel were exposed to interstitial flow or
kept under static conditions (Li et al., 2018). In this model,
interstitial flow increased macrophage migration inside the
hydrogel. Furthermore, adding tumor cells showed that both
interstitial flow and the presence of tumor cells increase
macrophage motility (Lee et al., 2020). In another study,
perfusing neutrophils through a microfluidic channel increased
the number of neutrophils migrating into a collagen matrix
towards tumor spheroids, compared to keeping the neutrophils
static (Surendran et al., 2021). Additionally, T Cells, but not
neutrophils, can migrate against the physiological flow in an
in vitro flow chamber coated with ICAM-1 and SDF-1 or fMLP
(Valignat et al., 2013). Physiological shear stress values between

2–12 dyne/cm2 were compared, and the higher the shear stress, the
straighter the cells moved along or against the flow direction. Under
low shear stress, more random walk behavior was observed.
Although the flow rate influences migration direction, the
migration speed was not affected, which was confirmed in
another study (Rainger et al., 1999). Overall, these results
indicate that shear stress impacts immune cell migration,
showing increased migration capacity of immune cells under
physiological fluid flow.

Cell-cell interactions
Next to the interactions with the microenvironment, cell-cell

interaction is crucial for immune cell function. In a study of
macrophage migration within hydrogels, co-culture with
fibroblasts increased macrophage migration and led to tunnel
formation (Ford et al., 2019). Hydrogel stiffness only decreased
in cocultures of fibroblasts and macrophages, and remained
unaltered in monocultures. Moreover, macrophages differentiated
more towards an M2 phenotype in co-culture, whereas in
monoculture, a mixed M1/M2 population is observed. In a study
of neutrophil migration, in the presence of an IL-8 gradient,
neutrophils do not migrate much, but with an endothelial layer
between the neutrophils and the IL-8 gradient, neutrophil migration
is significantly increased (McMinn et al., 2019). In a lymph node-on-
chip system, naïve T Cells were exposed to antigen-presenting
dendritic cells and binding was analyzed, showing interactions
between different types of immune cells (Chiu et al., 2019).
Generally, cell-cell interaction influences immune cell behavior
and is an important consideration when testing immune cell
migration on chip.

Inflammation or infection

To attract innate immune cells, a chemical signal to direct them
is necessary. This chapter focuses on solutions to generate a
chemotactic gradient for immune cell migration. First, it should
be mentioned that chemotaxis and haptotaxis are different processes
that both take place in-vivo. Chemotaxis is defined as the directional
migration of immune cells following a gradient of soluble
chemokines in the environment, released from the site of
infection (Petri and Sanz, 2018), while haptotaxis describes the
migration of immune cells induced by a gradient of ECM-bound
chemokines within themicroenvironment. Here, the focus will be on
chemotaxis, however, with ECM-based hydrogels, haptotaxis can
also occur.

Many chemotactic agents are available, such as bacteria or
viruses, factors secreted by other cells cultured in the system, or
factors added to the cell culture media. For example, in an OOC,
neutrophil extravasation can be induced by the presence of bacteria,
pre-activated BECs, or a gradient of the bacterial peptide fMLP (Han
et al., 2012; Hind et al., 2021). Here, we discuss forming a
chemotactic gradient in a microfluidic device and some common
chemotactic agents used for attracting immune cells.

Forming a chemotactic gradient
The formation of a chemotactic gradient is crucial to investigate

immune cell migration. In the absence of a gradient, when fMLP
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concentration is uniform, neutrophils migrate randomly in an
inflammation-on-chip model using a polyacrylamide (PA)
hydrogel. However, when an fMLP gradient is established, the
cells move towards the higher concentration of the gradient
(Jannat et al., 2010). The dominating transport mechanism in
static microfluidic systems is diffusion, the random movement of
particles inside a space, which eventually leads to an even spread of
these particles (Figure 2). Diffusion is driven by a concentration
difference of particles within a given space and is described by Fick’s
first and second laws of diffusion (Figure 2). It is important to realize
that the diffusion coefficient depends on the viscosity, which can
vary importantly from one hydrogel to the other. It is thus essential
to measure the hydrogel viscosity used and adjust the gradient’s
setup accordingly. Moreover, the environment temperature and the
chemoattractant’s particle size should be accounted for as well.

Many microfluidic systems use diffusion to create a chemotactic
gradient (Zhao et al., 2020). A gradient can be created by simply
pipetting the chemoattractant next to the hydrogel and letting it
diffuse through the hydrogel or by using a pipette tip as
chemottractant reservoir that is placed in one corner of the
hydrogel and slowly releasing the chemoattractant, which can
then diffuse through the hydrogel (Oakes et al., 2009). The
drawback of using these basic gradients is that the diffusion flux
(as shown in Figure 2) will decrease until the concentration is
uniform throughout the entire space. To avoid this limitation,
one can perfuse the chemoattractant continuously in the
epithelial channel (source channel, Figure 2), while perfusing cell

culture medium without chemoattractant in the endothelial channel
(sink channel, Figure 2). Two main methods aimed at perfusing
microfluidic channels are commonly used: pressure-driven and
flow-controlled pumping systems. Tilters, also called rocking
platforms, are broadly used pressure-driven systems for their
simplicity as they do not require any tubings. Piston-pumps and
peristaltic pumps are typical flow-controlled pumping systems.

Perfusion in microfluidic devices
Pressure controlled pumping systems

A simple yet effective method to create flow inside a microfluidic
system is by applying a pressure in a closed reservoir connected to a
microfluidic channel (Luo et al., 2009). The pressure acting on the
liquid contained in the reservoir induces a flow rate in the channel
according to Poiseuille law. The flow rate is a linear function of the
applied pressure and is limited by the fluidic resistance of the
microfluidic channel (equations in Figure 5). The fluidic
resistance of channels with rectangular cross-sections that are
typical in microfluidics, can be calculated using the hydraulic
diameter approximation. To avoid the need of tubing (de Graaf
et al., 2022) to pressurize the reservoir, a hydrostatic pressure
difference between the inlet and the outlet reservoirs can simply
be used. One popular method that uses this approach is tilting
platforms, also called rockers. They do not need much space and can
thus be implemented for higher thoughput solutions (Luo et al.,
2009; Yang et al., 2017; Li et al., 2018). A tilter is illustrated in
Figure 5, in which the fluid level in the two reservoirs equilibrate

FIGURE 5
Hydrostatic pressure-induced perfusion of microfluidic systems. By tilting the microfluidic chip, a height difference in the liquid reservoirs is
established, with a correlated difference in pressure, leading to fluid flow. Formulas to calculate the flow rate inside a tilting microfluidic system are
presented. Created with BioRender.com.
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with time. Once the levels are identical, the platform is tilted in the
opposite direction, resulting in an alternating (bi-directional) flow
with variable flow rate (Kim et al., 2015; Poussin et al., 2020; de Haan
et al., 2021).

Tilter platforms have some drawbacks, such as the limited range
of flow rates than can be generated, which depends on both the
platform’s tilting angle and the channel geometry. In addition, the
flow is not constant and cannot be controlled. For instance, when an
air bubble or cells obstruct the channel, the fluidic resistance
increases, resulting in a decrease in flow rate. Finally, alternating
flows are non-physiological. Recently, more evolved microfluidic
systems allow for a uni-directional flow with tilter platforms (Wang
and Shuler, 2018).

Controlled flow pumping systems
In contrast to pressure driven flow, controlled flows can be

created by piston-pumps or peristaltic pumps, which can generate
constant and uni-directional flow (Huh et al., 2010; Moura Rosa
et al., 2016; Menon et al., 2017). In contrast to peristaltic pumps,
piston pumps do not mechanically stress the cells, however, cells
might sediment inside the piston or syringe. Peristaltic pumps do
not present this limitation, however may induce hemolysis and/or
cell activation due to the mechanical forces exerted on the cells
(Hajipouran Benam et al., 2016; Sharifi et al., 2019).

Practical aspects of inducing infection
Perfusion

While pumps are very accurate and are a good option for
perfusion, there are some disadvantages to consider. First, the
tubing must be sterilized and kept sterile throughout the
experiment. Second, there is a high risk of bubble formation
inside the tubing, which could damage the cell culture. To
prevent bubbles in the OOC, bubble traps have been developed,
and all media/buffers and tubing are placed inside the incubator to
prevent bubble formation through changes in the humidity and
temperature. Thirdly, connecting multiple OOCs to a pump can be
cumbersome and time-consuming, leading to lower experimental
throughput. A final consideration is the pump location: when the
pump is placed inside the incubator, it is close to the chips, and the
tubing can be short. However, this can cause overheating of the
incubator, pose sterility issues, and the humid environment is
detrimental to the pump. The pump can also be placed outside
the incubator, increasing the tubing length required and, thus, the
system’s complexity, especially if multiple OOCs are connected.
Overall, pumps offer a reliable method to apply shear stress to an
OOC, but throughput is decreased.

Chemotactic agents: choices and considerations
Chemotactic agents can be subdivided into two main categories:

chemoattractant molecules, and living agents or pathogens.
Importantly, when using a chemoattractant molecule,
inflammation is modelled on chip, and only when adding a
pathogen, infection is modelled. Of course, an infection will also
cause inflammation on chip. To attract immune cells, different types
of chemotactic molecules can be used. For example, these can be
cytokines normally produced by other cells in the environment after
infection, such as IL-2 or IL-8 (Irimia et al., 2006; Han et al., 2012;
Wu et al., 2015). Pathogen-specific particles can also be used as a

chemoattractant. Here, an infection with a pathogen is mimicked by
inducing inflammation without needing to cultivate actual
pathogens and apply the safety restrictions that accompany the
use of dangerous pathogens. Some generally used molecules are
PolyI:C, a viral mimic; lipopolysaccharides (LPS), a bacterial
membrane saccharide; and fMLP, an immune cell-binding
molecule secreted by bacteria (Jones et al., 2014; Hajipouran
Benam et al., 2016; Chandrasekaran et al., 2017; Wang and
Irimia, 2018). Lastly, exposure to nanoparticles can also lead to
immune cell activation and migration. For all these chemotactic
agents, it is crucial to choose the right concentration in which
immune cells are activated but not overstimulated.

To model infection, viruses, fungi, or bacteria can be added to
the infection-on-chip model. Because bacteria are still alive,
interactions between the bacteria and the immune cells can be
studied, which was already reported with E. Coli and tuberculosis
bacteria (Huh et al., 2010; Thacker et al., 2020). Similarly, inhibiting
fungal growth on chip through a neutrophil response can be
investigated (Barkal et al., 2017). Various organ-on-chip systems
of SARS-CoV2 infection and other viral infections have been
recently developed, as described in other reviews (Chakraborty
et al., 2020; Tang et al., 2020). The interactions between viruses,
bacteria, and immune cells can also be studied, such as in a lung-on-
chip with a double influenza and Staphylococcus aureus infection
(Deinhardt-Emmer et al., 2020). Using live bacteria or viruses is
more clinically relevant than a synthetic mimic but also poses more
danger to the researcher handling these agents. Thus, appropriate
safety measures have to be taken. One can also use cells to produce
the chemoattractant within the system. For example, tumor cells
secrete various agents that can attract dendritic cells, neutrophils,
and macrophages (Huang et al., 2009; Parlato et al., 2017; Lee et al.,
2021).

Overall, there are several options to model infection or create a
chemotactic gradient, varying in complexity and type of infection.

Readouts of migration

To assess immune cell migration during infection, microscopy,
specifically live cell imaging, is an essential tool. Accurate
visualization of immune cell migration can be obtained with live
cell imaging, where timelapse intervals and total imaging time are
crucial to capture the process of interest (Figure 6A). However, there
must be a balance between avoiding phototoxicity and increasing
imaging frequency and length to capture all processes of interest.

Not only themicroscopy itself but also the chip design influences
the quality of the imaging and subsequent data analysis. For
example, in the first lung on chip published by Huh et al. (Huh
et al., 2010), neutrophils were migrating towards the site of infection,
but migration dynamics could not be quantified, as it was occurring
vertically across a porous membrane, and the immune cell migrated
out of focus. Thus, to fully image the extravasation process,
generating a model where immune cells migrate in a horizontal
plane instead of vertically across a membrane is essential, as
exemplified by multiple experimental designs (de Haan et al.,
2021; Pérez-Rodríguez et al., 2022; Riddle et al., 2022). Live
imaging of one focal plane can be carried out, and immune cell
migration can be tracked.
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FIGURE 6
Quantification of immune cell migration. (A) For assessing immune cell location, the number of cells in a predefined area can be counted
automatically. (B) Timelapse imaging of migrating immune cells results in a collection of images in which immune cells can be traced. (C) Tracking of
immune cell migration shows different track patterns from which directionality, speed, and step length can be analyzed. This figure shows tracks of a
single cell as an example for simple visualization purposes, but multiple cells can be tracked using thesemethods. Figure Cwas adapted fromMattei
et al. (2021), under the terms of the Creative Commons Attribution License(CC BY). (https://creativecommons.org/licenses/by/4.0/).
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After a timelapse video has been created, analysis of
migration distance, speed, and direction is the next challenge
(Figure 6). The authors refer to the following review for a more
detailed overview of which parameters can be measured from a
live imaging dataset of immune cell migration (Mattei et al.,
2021). Traditional image analysis software such as ImageJ/FIJI or
Imaris can aid in cell tracking, but these semi-automated
solutions do not work for all imaged time-lapses. Thus, a
tracking algorithm to track immune cell migration on chip
can be developed in-house, for example, with Matlab (Pérez-
Rodríguez et al., 2022). To simplify the analysis, an alternative to
tracking individual immune cells is quantifying immune cells
inside the hydrogel and their distance from the endothelial
barrier over time (Figure 6B). With this method, no decisions
on cell tracking are made, making the analysis less detailed but
more robust. Next to imaging and tracking immune cells
migrating horizontally in one focal plane, recent advances in
spinning disk confocal microscopy have allowed for 3D timelapse
imaging, to track cellular migration in all directions (Wen et al.,
2021). This technique has not been applied in OOC models of
infection yet, but would be of interest.

Advances in artificial intelligence (AI) have enhanced analysis
methods, with the potential for more automation of (tracking) data
analysis in the future (Ren et al., 2022). The first microfluidic
experiments with deep learning algorithms to track cells have
already been performed, such as an analysis pipeline to track
bacteria in a microfluidic chip (Lugagne et al., 2020) and an
algorithm to track tumor cell migration on chip (Zhang et al.,
2018). In the second study, the migration direction and speed of
the cells could be analyzed. So far, this technology is mainly used on
relatively simple, single-cell OOC models and relies on manual
adaptation during training (Ren et al., 2022). However, with more
andmore data becoming available, deep learning algorithms provide
an immense opportunity for future analysis of immune cell
migration on chip.

Future perspectives

Engineering the next-generation organ-on-
chip models

Current models of infection on chip have the common
drawbacks of most OOC models, including only low to
medium throughput, using the highly absorbing material
PDMS for molding structures, and a lack of translation to
clinical data. These issues must be addressed to engineer the
next-generation of OOC models. To increase fabrication
throughput and replace PDMS, OOCs have been fabricated
with injection molding of polystyrene or similar transparent
polymers, for example, to fabricate a high throughput OOC of
cancer spheroid vascularization (Kim et al., 2022). Comparison
of the data generated with OOCs to previously acquired data
from animal studies and clinical trials is ongoing. For example, in
the field of infection, many studies of immune cell extravasation
have been carried out in mouse, rat, and rabbit models. With the
appearance of new OOC models, it is important to investigate

how these data can be compared and how both animal and OOC
models translate to human diseases.

Towards in vivo complexity

Additional complexity can be added to increase the relevance of
OOC models of infection even further, for instance by mimicking
both the innate and adaptive immune responses. This and other
improvements may include replacing cell culture media with whole
blood, adding tissue-resident immune cells, and integrating the
lymphatic system.

Currently, only a subset of immune cells is perfused into a
culture media or a buffer, but whole blood could be perfused to
increase relevance. Not only does whole blood contain all cell types
of interest, but blood also has a different viscosity and, therefore a
different effect on the endothelium. Preliminary tests with whole
blood perfusion in OOCs have been carried out and appear
promising (Menon et al., 2017; Golomingi et al., 2022).
Microfluidic devices can be modified to directly use whole blood
for selective migration of neutrophils toward a site of infection. For
example, whole blood was added in a microfluidic device with
infected skin tissues, and neutrophil migration towards the
infected skin tissues was observed (Kim et al., 2019b).

Another important part of immune surveillance is the tissue-
resident immune cell population. These cells, mainly tissue-
resident macrophages and T Cells, have a distinct gene
expression profile and monitor the tissue microenvironment.
Since these cells are present inside the tissue and their numbers
are low, isolation is challenging, and source material is scarce.
Further research is necessary to understand how these cells can be
best isolated and cultured in vitro.

Lastly, a crucial part of the immune system, the lymphatics, is
often overlooked. Generally, the main focus of infection-on-chip
models is the interaction between immune cells circulating in
blood vessels and the infected tissue, but for activation of the
adaptive immune response, migration of dendritic cells from the
site of infection to the lymph nodes to activate antigen-specific
T Cells is necessary. Individual systems modeling lymph nodes or
vessels on chip have been developed (Selahi et al., 2021; Shanti
et al., 2021), however, to our knowledge, lymph vessels have not
been incorporated into an OOC model of vasculature or other
organs.

Cancer-immune cell interactions:
Immunotherapy

Next to infection, immune cells are also involved in other conditions,
such as cancer, which adds the opportunity to utilize immunocompetent
OOC models not only to model infection but also to model cancer
immunotherapy. Using the human body’s natural defense system, cancer
immunotherapy targets tumor tissue with the immune system, especially
T Cells. Multiple studies are emerging with microfluidic models of
immune cell migration towards a tumor, with known and unknown
immunotherapy drugs enhancing tumor suppression by T Cells (Pavesi
et al., 2017; Deng et al., 2018).
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Correlating OOC data to the clinics: towards
clinical relevance of OOC models

This review has discussed the generation of an infection-on-chip
model to investigate infectious processes in a 3D in vitro model. By
incorporating various cell types, cultured on or in hydrogel ECM
environments, and perfusing the endothelial vessels, OOC models
provide a more sophisticated alternative to basic 2D in vitro cultures.
The modularity and versatility of OOC models enable the study of
(disease) mechanisms in the presence or absence of particular
aspects of the system. For example, research has demonstrated
that the lack of endothelial cells prevents the migration of
immune cells into a hydrogel, whereas the presence of
endothelial cells significantly increases the number of immune
cells that migrate (Wu et al., 2015; McMinn et al., 2019). It is
impossible to study the impact of endothelium on immune cell
migration in vivo as it is not feasible to completely eliminate
endothelial cells from an animal. Consequently, OOC models
offer an opportunity to supplement the findings from animal
studies.

However, the challenge remains in translating the data obtained
from these complex models to human disease. Initially, OOCmodels
aim to replicate the disease symptoms observed in the clinic, such as
drug-induced pulmonary oedema (Huh et al., 2012). Moreover,
during the COVID-19 pandemic, a list of antivirals were tested in a
lung-on-chip, showing that hydroxychloroquine, a drug that
demonstrates efficacy against SARS-CoV2 in cell lines, did not
exhibit antiviral effect on chip (Si et al., 2021). This finding
translated to the clinic, where this drug proved ineffective against
SARS-CoV2. Thus, to establish a correlation between research
findings on infection-on-chip models and clinical data, clinical
observations and readouts must be shown on chip.

Conclusion/summary

Overall, the OOC field continues to develop at a fast pace with
innovations occuring regularly. With new chip materials, the
addition of AI, and the integration of different types of primary
cells, these models will continue to evolve in the future.

The constant enhancement of OOC models aims to replicate
human (patho)physiology with greater precision. In this review,

attention was directed towards a particular category of OOCmodels
that imitate the innate immune cell extravasation process during
infection by means of a hydrogel ECM. To model an innate immune
response on chip, the following main components are needed: the
barrier (microvascular endothelium, hydrogel ECM, epithelium),
the (perfused) immune cell, and the chemotactic gradient
mimicking the infection. With this tutorial review, practical
experience for designing an infection-on-chip experiment has
been summarized to encourage the further development of these
models in research institutions worldwide.
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