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Deep computational image analysis of immune cell niches
reveals treatment-specific outcome associations in lung cancer
Cristian Barrera1, Germán Corredor 1,2, Vidya Sankar Viswanathan1, Ruiwen Ding3, Paula Toro4, Pingfu Fu 5, Christina Buzzy3,
Cheng Lu1, Priya Velu6, Philipp Zens7,8, Sabina Berezowska 7,9, Merzu Belete10, David Balli10, Han Chang10, Vipul Baxi10,
Konstantinos Syrigos11, David L. Rimm 12, Vamsidhar Velcheti13, Kurt Schalper12, Eduardo Romero14 and Anant Madabhushi 1,15✉

The tumor immune composition influences prognosis and treatment sensitivity in lung cancer. The presence of effective adaptive
immune responses is associated with increased clinical benefit after immune checkpoint blockers. Conversely, immunotherapy
resistance can occur as a consequence of local T-cell exhaustion/dysfunction and upregulation of immunosuppressive signals and
regulatory cells. Consequently, merely measuring the amount of tumor-infiltrating lymphocytes (TILs) may not accurately reflect the
complexity of tumor-immune interactions and T-cell functional states and may not be valuable as a treatment-specific biomarker. In
this work, we investigate an immune-related biomarker (PhenoTIL) and its value in associating with treatment-specific outcomes in
non-small cell lung cancer (NSCLC). PhenoTIL is a novel computational pathology approach that uses machine learning to capture
spatial interplay and infer functional features of immune cell niches associated with tumor rejection and patient outcomes.
PhenoTIL’s advantage is the computational characterization of the tumor immune microenvironment extracted from H&E-stained
preparations. Association with clinical outcome and major non-small cell lung cancer (NSCLC) histology variants was studied in
baseline tumor specimens from 1,774 lung cancer patients treated with immunotherapy and/or chemotherapy, including the
clinical trial Checkmate 057 (NCT01673867).
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INTRODUCTION
Adaptive immune responses to cancer include the local accumu-
lation of tumor-infiltrating lymphocytes (TILs) at the tumor site
comprising both B-cell and T-cell subsets. The interaction of these
cells occurs within lymphoid organs as well as at sites of
inflammation and tumor microenvironment; often, these struc-
tures are referred to as immune cell niches1,2. These TILs can
initiate, recognize, and destroy tumor cells thus propagating and
maintaining anti-cancer immune responses3,4. Despite increasing
evidence in the clinical scenarios and the novel design of
combination of different therapy strategies (e.g., chemotherapy+
immunotherapy), there is a need to understand the effect of said
therapies on the tumor microenvironment5. For instance,
immunotherapy-based treatment has yielded limited response
rates and unclear underlying biological mechanisms6, a phenom-
enon also observed in the context of chemotherapy7. To date,
there continue to be gaps in the comprehensive and systematic
characterization of the tumor milieu, limiting our ability to predict
treatment response for chemotherapy and immunotherapy.
The challenges deepen in the context of tumor-immune

characterization and association with treatment response
between tumor histology sub-types such as adenocarcinoma
(AD) and squamous cell carcinoma (SCC). These differences are
likely on account of the tumor immune milieu, which is extremely
diverse on account of unique and distinct cellular phenotypes
(immune deserts, immune-excluded, and inflamed tumors)8.

Further, the presence of specific immune cells such as cancer-
specific T-cells is required for effective anti-cancer immunity. Yet,
evidence indicates that only a small fraction of T-cells is cancer-
specific with most acting as ‘bystanders’ (non-tumor antigens)9.
Others are identified as exhausted or dysfunctional and have the
potential to be reinvigorated by immune checkpoint blockers10.
These cells are not homogeneous groups but highly diverse in
their specificities and effector functions.
A number of computational-based approaches have been

proposed to measure the total number of TILs and their density
on immunofluorescence (IF) images to assess the association of
these measures with prognosis and response to therapy11,12.
However, the preparation procedures not only requires a
fluorescence microscope, but the specific antibodies and fluor-
ochromes preparation can take up to 5 h (Leica Microsystems-
Immunofluorescence protocol), compared to H&E (Hematoxylin &
eosin) which is performed in minutes. Further, these approaches
tend to be very expensive, complex, and involve tissue destruc-
tion. On the other hand, studies using H&E images use
computational enumeration of TIL count and density12,13. Other
works14–17 have employed spatial arrangement-based approaches
to capture the spatial patterns of TILs on H&E tissue images, with
some studies showing association with response to treatment;15,18

however, these approaches have considered TILs as a single entity,
which assumes that all the TILs contribute equally to the outcome.
This assumption has been refuted by several studies11,19 that have
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identified activated immune cells (as opposed to exhausted T-cells
or bystander immune cells) as being responsible for engendering
an active response to therapies such as chemotherapies or
immune checkpoint inhibitors (ICI) blockade. This is only possible
on the IF scope, due to the difficulty in identifying subtypes of
immunes cells on H&E.
In this study, we present PhenoTIL, a computational pathology

approach that utilizes H&E-stained images to first identify immune
cell niches, and subsequently capture quantitative metrics relating
to the spatial interplay of TILs and cancer cells within these
immune cell niches. PhenoTIL assumes that the TILs within the
tumor microenvironment have different roles in relation to the
outcome of the patients and enable characterization of patient
risk based off composition of the constituent clusters. The
quantitative PhenoTIL metrics describe each of the TILs in
reference to their color, shape, texture and convey spatial
architectural information about the neighboring TILs and non-
TILs at different length scales. The main hypothesis is aimed to
investigate the value of PhenoTIL as the immune-related
biomarker for treatment-specific outcomes in NSCLC. An impor-
tant factor of PhenoTIL is the ability to identify distinct TIL clusters
on H&E images that bear a resemblance to activated immune
‘hotspots’ associated with tumor rejection or immune ‘cold spots’
associated with dysfunctional features and contributing to adverse

outcomes. We evaluated this approach in its ability to prognos-
ticate overall survival (OS) on pre-treatment H&E-stained samples
of 1774 patients with lung AD (n= 1189) and SCC (n= 585)
treated with different types of chemotherapy and immunotherapy
agents (Fig. 1); the study also included patients from a completed
clinical trial of immunotherapy in lung AD patients (Checkmate
057)20. Kaplan–Meier (KM) survival curves were generated to
evaluate the association of the phenoTIL signature with outcome.
The PhenoTIL signature was also evaluated in terms of the
molecular composition of immune cell subtypes (Fig. 2) by
identifying single cells molecularly using co-registered quantita-
tive immunofluorescence image (QIF) information on a subset of
H&E images. To identify which biological pathways were
associated with the PhenoTIL signature, gene-set enrichment
analysis (GSEA) was performed. Separate analyses were carried out
for AD and SCC cases considering their documented differences in
their pathophysiology, clinical features, immunogenicity, prog-
nosis, and treatment sensitivity21–25.

RESULTS
Description of patients cohorts
Eight datasets (D1–D8) were used in this multi-institutional study,
including seven retrospective institutional cohorts and one from a

Fig. 1 Detailed patient selection and exclusion criteria from the different NSCLC cohorts (D1-8). The inclusion criteria for the study. In total
1774 patients who satisfied all the inclusion criteria and who did not meet any of the exclusion criteria were identified. Images with low
quality, blurry effects, and significant artifacts were considered for all the datasets, and images that presented them were excluded from the
analysis. For D6, D7, and D8 the additional inclusion criteria invoked included the availability of histologic subtype AD. Inclusion criteria for D7
were as follows: from the initial 211 patients, those patients were considered who either underwent surgical resection after neoadjuvant
therapy or had a primary resection at a locally advanced stage, which qualified them for neoadjuvant therapy. Three patients had more than
one WSI scanned due to the following reasons: Firstly, the patient had a sample with neoadjuvant lung SCC with small AD as an incidental
finding, second was a patient with neoadjuvant adenosquamous carcinoma and the third patient had a primary lung AD with three regions
with quite different growth patterns within the primary. After invoking the inclusion and exclusion criteria for this study, 71 cases for D1 (49
excluded), 71 for D2 (35 excluded), 79 for D3 (57 excluded), 231 for D4 (49 excluded), 850 for D5 (239 excluded), 21 for D6 (49 excluded), 93 for
D7 (118 excluded) and 358 for D8 (224 excluded) were included.
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completed clinical trial. Figure 1 illustrates the inclusion and
exclusion criteria for patient selection. Out of the 2594 patients
available, a total of 1774 (68.4%) patients, who satisfied all the
inclusion criteria and did not meet any of the exclusion criteria,
were incorporated into this study. A total of 820 (31.6%) patients
were excluded from the study due to various reasons related to
the image samples. A total of 562 (21.7%) images were removed
due to insufficient quality (faulty image format, artifacts such as
complete image blurriness, color corruption, no tissue sample
available, etc.). In addition, 258 (9.9%) images were removed due
to missing medical information or were not classified as either
adenocarcinoma or squamous cell carcinoma. The quality control
was performed utilizing HistoQC26. The first three datasets (D1–D3)
consisted of pre-treatment formalin-fixed paraffin-embedded
tumor sections from 44 AD and 27 SCC patients (D1), 43 AD and
28 SCC patients (D2), and 58 AD and 21 SCC patients (D3) provided
by the Department of Pathology at Yale University (D2 were
collected at Sotiria General Hospital and Patras University General
Hospital at Greece, but were made available from Yale Pathol-
ogy)12. Corresponding QIF images from D3 had been previously
acquired and prepared via pan-cytokeratin staining, CD4+, CD8+,
and CD20+ using the sequential multiplexed immunofluorescence
protocol (See an example in the Supplementary fig. 1(A)), with
isotype-specific primary antibodies being employed for staining T
lymphocytes (CD3+ IgG, 1:100, clone E272, Novus biologicals, CO),
cytotoxic T-cells (CD8+ IgG1, 1:250, clone C8+ /144B, DAKO), and
B lymphocytes (CD20+ IgG2a, 1:150, clone L26, DAKO)12. D4

comprised 145 AD and 86 SCC patients obtained from the
Cleveland Clinic (CCF). D1-D3 were represented in tissue micro-
arrays (TMAs) with cores of size 0.6 mm from each paraffin block
(digitally scanned at 20×). D4 was represented in TMAs with cores
of size 1.2 mm from each paraffin blocks (digitally scanned at
40×)27. D5 comprised whole slide images (WSIs) of pre-treatment
H&E-stained pathology slides (scanned at 40×) of 427 AD and 423
SCC patients (D5) obtained from The Cancer Genome Atlas (TCGA).

D6 comprised diagnostic WSI samples (scanned at 40×) of 21 AD
patients who had received ICI-based immunotherapy at the
University of Pennsylvania Hospital (UPenn).
D7 (acquired at 20× resolution; ratio of 0.2431 μm/px) com-

prised 93 AD patients (from a larger cohort of 211 patients with
215 available WSIs); these patients had no neuroendocrine
histology and had a sufficient amount of primary tumor. A subset
of 43 patients (out of the 93) were treated with chemotherapy
prior to resection with neoadjuvant intention. 50 patients (out of
the 93) were primary resected LUAD with pathologically
confirmed infiltration of lymph nodes of at least the mediastinal
level. The patients which were neoadjuvantly treated, received
platinum-based chemotherapy combinations. Ultimately, slides
corresponding to 93 patients were included, along with corre-
sponding tumoral programmed cell death 1 ligand 1 (PD-L1)
expression values assessed on the resection samples, for these
patients28,29. PD-L1 expression was assessed by an expert
pathologist as the tumor proportional score (TPS), i.e., the
proportion of PD-L1 positive tumor cells to all tumor cells. PD-L1
positive tumor cells were defined as showing membranous
staining of any intensity. TPS was assessed as a continuous
parameter (1% increments up to 10 and 5% increments in cases
showing >10% expression). For statistical analyses, each patient
was categorized as high or low expression based on the intensity
of immunohistochemistry staining of the lung resection samples.
Patients with over 50% PD-L1 expression were classified as high
PD-L1 and patients with less than 50% expression were classified
as low PD-L1. The data was provided by the University of Bern in
Switzerland (UBern).
D8 comprised WSIs (scanned at 20×) of 358 AD patients

provided by Bristol-Myers Squibb (BMS), the clinical trial CA209-
05716 (ClinicalTrials.gov identifier: NCT01673867). The patients
from D8 were randomized from an open-label phase-3 study
(international) of non-squamous non-small cell lung cancer
(NSCLC), also referred to as CheckMate 057. Patients whose lung

Fig. 2 Workflow of the data preparation and experiments. A Tissue preparation: The cohorts were digitized and represented in the form of
patches extracted from whole slide images (WSIs) and tissue microarray (TMA) punches. B Image preprocessing: A subset composed of H&E-
stained TMA and corresponding immunofluorescence (IF) images were utilized to analyze tumor-infiltrating lymphocyte (TIL) subtypes. C Cell
Identification: Corresponding TILs from the H&E samples were associated with IF molecular labels (CD4+, CD8+, CD20+). D Feature extraction:
Phenotyping features were extracted from the TIL cells patches extracted from the WSI and TMAs. E Single-Cell Clustering: An unsupervised
clustering approach was applied to the phenotyping features of TILs. F Molecular Assessment: RNA-seq-based transcriptome data is obtained
from each WSI-TCGA sample. TIL clusters were used as the input matrix to build a model that associate with the clinical outcome overall
survival, using a Cox proportional hazards regression model with elastic net regularization. Associations between cluster conformation,
molecular, morphological and genomics composition were studied. Minor components of the figure were obtained from BioRender.
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cancer progressed during or after a platinum-based doublet
chemotherapy regimen received nivolumab or docetaxel. The
actual enrollment for the study was 782 participants from 115
international study locations16. A total of 204 patients received
nivolumab (at a dose of 3 mg per kilogram of body weight every
2 weeks) and 154 patients received docetaxel (at a dose of 75 mg
per square meter of body-surface area every 3 weeks). The primary
endpoint was OS. The validation on this dataset was carried out in
a blinded fashion in which we had access to whole slide images
but not to clinical data. Our algorithms were applied to the images

to predict risk scores and patient labels, and then these values
were sent to the BMS team, who carried out the statistical analysis
and provided us with the corresponding results.
Table 1 provide a summary of the datasets and images

employed in this study along with the corresponding clinico-
pathology and outcome information (Supplementary Table 1
shows the clinicopathology information in more detail for each
cohort).
Cohorts D1 (n= 71) and D2 (n= 71) were employed for feature

discovery and model training as they were previously employed in
studies12,30 that demonstrated association between TILs and
patient survival.

PhenoTIL identified immune cell niches from pretreatment
H&E samples are associated with overall survival in lung
adenocarcinoma and squamous cell carcinoma patients
treated with chemotherapy
Figure 3(A) illustrates the Kaplan Meier (KM) survival curves
corresponding to the model using the training sets (DAD

1, n= 44
and DAD

2= 43) with cluster TIL-based measures (MAD). MAD was
statistically significantly prognostic of OS on the training sets
(DAD

1 and DAD
2) with a hazard ratio (HR) of 1.73 (95% confidence

interval (95% CI)= 1.04–2.87, p value (p)= 0.035, concordance-
index (C-index)= 0.711 (standard error (SE)= 0.070), n= 87). MAD

was also prognostic of OS in D3 (p= 0.04, HR= 2.24, 95% CI
1.03–4.88, C-index: 0.705 (SE 0.091), n= 58), D4 (p= 0.015,
HR= 1.82; 95% CI, 1.12–2.94, C-index: 0.689 (SE 0.051), n= 145),
D5 (p= 0.02, HR= 5.88; 95% CI, 1.51–2.15, C-index: 0.645 (SE 0.07),
n= 427), and D7 (p= 0.037, HR= 1.89; 95% CI, 1.03–3.46, C-index:
0.645 (SE 0.07), n= 93) as illustrated in Fig. 2(B)–(E). Further, the
models (MAD and MSCC) were evaluated merging all the patients
from the testing cohorts (See Supplementary Fig. 3(A–B)). MAD was
evaluated across different lung AD stages (IA, IB, IIA, IIB, IIIA, IIIB,
and IV) for patients on datasets D3, D4, D5, D6 and D7; results are
shown in Supplementary Fig. 1(C–H) and Supplementary Fig.
2(A–F). MAD yielded a statistically significant separation between
low and high-risk groups (n= 97, p= 0.038, HR= 1.96, 95% CI:
1.03–3.76) in Stage III patients. For Stages IB (n= 127, p= 0.05,
HR= 1.95, 95% CI: 0.99–3.83) and IIIA (n= 80, p= 0.057, HR= 1.97,
95% CI: 0.97–4.0), MAD showed association with OS but did not
reach statistical significance.
Figure 3(F) illustrates the KM curves corresponding to the model

using the training sets (DSCC
1, n= 27 and DSCC

2= 28) with cluster
TIL-based measures (MSCC). MSCC was statistically significantly
prognostic of OS on the training sets (DSCC

1 and DSCC
2) with HR of

6.19 (95% CI: 2.08–18.4, p= 0.001, C-index: 0.664 (SE 0.059),
n= 55). MSCC was also prognostic of OS in D3 (p= 0.04, HR= 3.36;
95% CI, 1.08–10.5, C-index: 0.910 (SE 0.061), n= 21), D4 (p= 0.01,
HR= 2.34; 95% CI, 1.21–4.5, C-index: 0.654 (SE 0.07), n= 86), and
D5 (p= 0.07, HR= 1.38; 95% CI, 1.05–1.82, C-index: 0.590 (SE
0.039), n= 423) as illustrated in Fig. 2(G)–(I). MSCC was evaluated
using different lung SCC stages (I, II, III, and IV) across the cohorts
D3–D7; results are shown in Supplementary Fig. 3(C–H). MSCC

yielded a statistically significant separation between low and high-
risk groups (n= 279, p= 0.007, HR= 1.53, 95% CI: 1.12–2.09) in
Stage I patients. Similarly, the trend is seen for Stage III (n= 73,
p= 0.05, HR= 1.97, 95% CI: 0.99–3.92) and slight separation can
be seen for Stage II (n= 167, p= 0.772, HR= 1.06, 95% CI:
0.72–1.55) but the differences did not rise to the level of statistical
significance. MSCC showed association with OS for Early-Stage
disease (combined Stage I and II) (n= 446, p= 0.018, HR= 1.33,
95% CI: 1.05–1.7). For Late-Stage disease, the separation of the risk
groups (n= 79, p= 0.064, HR= 1.84, 95% CI: 0.96–3.53) can be
visually appreciated but the differences did not rise to the level of
statistical significance. Interestingly, when MAD and MSCC were
evaluated on SCC and AD patients respectively, neither model
yielded a significant association with OS (See Supplementary Fig.

Table 1. Summary of the clinical and pathologic information for the
whole datasets and treatment information for the cohorts involved.

Adenocarcinoma (ad)
(n= 1189)

Squamous cell
carcinoma (scc)
(n= 585)

All
(n= 1774)

Dataset

D1 (Yale) 44 (3.7%) 27 (4.6%) 71 (4.0%)

D2 (Yale) 43 (3.6%) 28 (4.8%) 71 (4.0%)

D3 (Yale) 58 (4.9%) 21 (3.6%) 79 (4.5%)

D4 (CCF) 145 (12.2%) 86 (14.7%) 231 (13.0%)

D5 (TCGA) 427 (35.9%) 423 (72.3%) 850 (47.9%)

D6 (UPenn) 21 (1.8%) 0 (0%) 21 (1.2%)

D7 (UBern) 93 (7.8%) 0 (0%) 93 (5.2%)

D8 (BMS) 358 (30.1%) 0 (0%) 358 (20.2%)

Sex

Female 518 (43.7%) 127 (21.7%) 645 (36.4%)

Male 471 (39.6%) 372 (63.6%) 843 (47.5%)

Missing information 200 (16.7%) 86 (14.7%) 286 (16.1%)

Status

Alive 380 (32.0%) 288 (49.2%) 668 (37.7%)

Dead 451 (37.9%) 297 (50.8%) 748 (42.2%)

Missing information 358 (30.1%) 0 (0%) 358 (20.2%)

Age (years)

Mean (sd) 64.6 (9.97) 67.2 (8.49) 65.7 (9.44)

Median [min, max] 65.0 [33.0, 88.0] 68.0 [39.0, 90.0] 67.0 [33.0,
90.0]

Missing information 511 (43.0%) 91 (15.6%) 602 (33.9%)

Stage

I 4 (0.3%) 3 (0.5%) 7 0.4%)

IA 227 (19.1%) 133 (22.7%) 360 (20.3%)

IB 183 (15.4%) 179 (30.6%) 362 (20.4%)

II 1 (0.1%) 3 (0.5%) 4 (0.2%)

IIA 81 (6.8%) 80 (13.7%) 161 (9.1%)

IIB 102 (8.6%) 95 (16.2%) 197 (11.1%)

III 25 (2.1%) 1 (0.2%) 26 (1.5%)

IIIA 111 (9.3%) 59 (10.1%) 170 (9.6%)

IIIB 45 (3.8%) 18 (3.1%) 63 (3.6%)

IV 321 (27.0%) 6 (1.0%) 327 (18.4%)

IVA 16 (1.3%) 1 (0.2%) 17 (1.0%)

Missing information 73 (6.1%) 7 (1.2%) 80 (4.5%)

Stage (grouped)

Early-stage (I/IA/IB/II/
IIA/IIB)

598 (50.3%) 493 (84.3%) 1091 (61.5%)

Late-stage (III/IIIA/IIIB/
IV/IVA)

518 (43.6%) 85 (14.5%) 603 (34.0%)

Missing information 73 (6.1%) 7 (1.2%) 80 (4.5%)

Therapy

Chemotherapy 964 (78%) 585 (100%) 1549(85%)

Immunotherapy 225 (18%) 0 (0%) 225 (12%)

Radchemotherapy 14 (1%) 0 (0%) 14 (1%)

Radiotherapy 10 (1%) 0 (0%) 10 (1%)

Other 24 (2%) 0 (0%) 0 (0%)

C Barrera et al.

4

npj Precision Oncology (2023)    52 Published in partnership with The Hormel Institute, University of Minnesota



2(G–H)). A multivariable analysis was performed on the cohorts,
after adjusting for the effects of clinicopathological variables
(Table 2). Only the clinco-pathologic variables that were available
across all cohorts were considered for this analysis. Gender was
found to be significant for D1, D2, D3 and D7. Histological subtype
was also found to be significant for D1, D2 and D3. Only partial
clinical information for D8 was available. Supplementary Table 3
shows the multivariable survival analysis performed using the
training models (MAD and MSCC) for some clinical variables (age,
gender, and stage). In D7, M

AD was able to identify high and low
risk groups in patients treated with Docetaxel plus Cisplatin or
Carboplatin (p= 0.002, HR= 4.1, 95% CI: 1.55–10.82) (Supplemen-
tary Fig. 2(I–L)). A similar trend was observed for patients who
received Cisplatin plus Navelbine or Docetaxel or Pemetrexed

(p= 0.041, HR= 2.04, 95% CI: 1.02–4.08). For patients in D8 treated
with single monotherapy Docetaxel, MAD did not show to be
prognostic of OS with an HR of 0.91 (95% CI: 0.66–1.26) (See
Supplementary Fig. 2(M)). Further, MAD was significantly asso-
ciated with OS for those patients who received radiotherapy but
not radiochemotherapy from D5 and D7 (n= 208, p= 8.7e-07,
HR= 2.94, 95% CI: 1.88–4.62) (See Supplementary Fig. 6 (A–B)).
For D7, patients were divided into low (≤50%) and high (>50%)

PD-L1. Also, patients were represented into positive (>1%) and
negative (≤1%) PD-L1 expression groups. MAD was also found to
be associated with OS for the low PD-L1 arm, with HR of 2.41
(n= 69, p= 0.013, 95% CI: 1.17–4.94, C-index: 0.689 (SE 0.074))
(See Fig. 3(M)). Conversely, for the high PD-L1 arm, MAD did not
show an association with OS (See Supplementary Fig. 6(C–F)).

Fig. 3 KM curves using OS as endpoint for the TIL cluster model (MAD). A Training set (DAD
1 and DAD

2) applied to (B) chemotherapy treated
cohorts D3, (C) D4, (D) D5 and (E) D7. KM curves for the TIL cluster model (MSCC (F) training (DSCC

1 and DSCC
2) set applied to (G) D3, (H) D4 and (I)

D5. KM of TIL cluster model (MAD) applied to immunotherapy treated cohorts (J) D6 and (K) D8. L Bar plot displaying the correlation between
the dichotomous risk groups determined by TIL cluster model (MAD) for cohort D6 on Adenocarcinoma patients and the manual assessment of
percentage of TILs. The high-risk group contains 63.6% of Low TIL and the low-risk group contains 80% of High TIL content. M Bar plot
displaying the correlation between the risk groups determined by TIL cluster model (MAD) on D7 and the PD-L1 expressions (High expression
>50%, low expression ≤50%, Positive >1% and Negative expression ≤1%). The low-risk group contains 79.5% of the low PD-L1. The high-risk
group contains 30% of the high PD-L1.
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PhenoTIL comparison with density and spatial aspects of TIL
For comparison purposes, the prognostic ability of two models
based on density of TILs (denTILSCC and denTILAD) was assessed on
datasets D3, D4, D5, and D7. These models, however, were not able
to distinguish between patients treated with chemotherapy at
low- and high- risk of death (p > 0.05) (Supplementary Fig. 4).
Validation of the PhenoTIL models on D8 was done blindly in
which we had access to whole slide images but not clinical data.

Table 2. Multivariable analysis of OS with PhenoTIL (MAD+MSCC)
and clinical variables for each cohort (D1, D2, D3, D4, D5, D6, D7).

Characteristics Hazard ratio 95% CI P n

D1 Gender

Male 0.48 0.26–0.91 0.025

Female

Histologycal Subtpes

Squamous Cell
Carcinoma

0.42 0.21–0.84 0.014 71

Adenocarcinoma

Clinical Stage

I

II 0.22 0.05–0.94 0.042 66

III 3.35 0.94–11.92 0.062

IV 1.44 0.44–4.77 0.55 66

TNM Staging

N0

N1 0.69 0.35–1.36 0.287 59

T1

T2 0.82 0.44–1.53 0.535 59

PhenoTIL

Low Risk 0.81 0.45–1.46 0.489 71

D2 Gender

Male 0.39 0.21–0.72 0.003 71

Female

Histologycal Subtpes

Squamous Cell
Carcinoma

0.53 0.29–0.99 0.048

Adenocarcinoma

Clinical Stage

I

II 0.93 0.42–2.00 0.849 70

III 2.16 0.91–5.12 0.081 70

IV 3.09 1.04–9.16 0.042

TNM Staging

T1

T2 0.95 0.47–1.93 0.894 54

T3 0.7 0.15–3.14 0.637 64

PhenoTIL

Low Risk 0.43 0.23–0.79 0.006

D3 Gender

Male 0.45 0.26–0.79 0.005

Female

Histologycal Subtpes

Squamous Cell
Carcinoma

0.31 0.17–0.59 <0.001 79

Adenocarcinoma

Clinical Stage

I

II 0.48 0.21–1.10 0.082 72

III 2.62 1.23–5.58 0.012

IV 2.21 0.66–7.44 0.201 72

PhenoTIL

Low Risk 0.54 0.31–0.92 0.023 79

D4 Histologycal Subtpes

Squamous Cell
Carcinoma

0.79 0.58–1.07 0.13 376

Adenocarcinoma

Clinical Stage

I

II 1.07 0.76–1.50 0.714 351

Table 2 continued

Characteristics Hazard ratio 95% CI P n

TNM Staging
T1

T2 0.83 0.12–5.92 0.849 376

PhenoTIL

Low Risk 0.9 0.71–1.14 0.365

D5 Gender

Male 1.28 1.03–1.60 0.026

Female

Histologycal Subtpes

Squamous Cell
Carcinoma

1.15 0.93–1.42 0.209 850

Adenocarcinoma

Clinical Stage

I

II 1.94 1.27–2.11 <0.001 838

III 2.12 1.59–2.81 <0.001 838

IV 2.72 1.68–4.39 <0.001 838

TNM Staging

T1

T2 1.29 0.99–1.68 0.06 841

T3 1.96 1.36–2.82 <0.001 841

T4 3.28 1.98–5.43 <0.001 841

Tx 3.62 0.89–14.79 0.073

N0

N1 1.53 1.20–1.96 <0.001

N2 1.96 1.42–2.69 <0.001 840

N3 1.39 0.34–5.59 0.646

Nx 1.29 0.57–2.92 0.538 840

M0

M1 2.12 1.31–3.43 0.002 834

Mx 1.08 0.81–1.43 0.598 834

PhenoTIL

Low Risk 1.06 0.78–1.44 0.688 849

D6 Gender

Male 0.96 0.29–3.21 0.946 21

Female

PhenoTIL

Low Risk 5.83 1.53–22.26 0.01

D7 Gender

Male 2 1.14–3.52 0.0016 93

Female

Clinical stage

I

II 1.34 0.36–4.99 0.665 43

III 2.76 0.90–8.52 0.077

IV 2.64 0.48–14.44 0.263 43

PhenoTIL

Low Risk 0.53 0.29–0.97 0.041 93

Values in bold are statistically significant by two-tailed test (P < 0.05).
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Our algorithms were applied to the images to predict risk scores
and patient labels, and then these values were sent to the BMS
team, who carried out the statistical analysis and provided us with
the corresponding results. Therefore, it was not possible to validate
the current density of TILs models (denTILSCC and denTILAD)”.

“In addition, the prognostic ability of two models based on
density of TILs (denTILSCC and denTILAD) was assessed on dataset
D6. These models, however, were not able to distinguish between
patients treated with immunotherapy at low and high risk of
death (p > 0.05) (Supplementary Fig. 5).
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The prognostic ability of the two models based on spatial
location of TILs (spaTILSCC and spaTILAD) was assessed on datasets
D3, D4, D5, and D7. These models, however, were not able to
distinguish between patients treated with chemotherapy at low
and high-risk of death (p > 0.05) (Supplementary Fig. 5).

PhenoTIL identified immune cell niches from pretreatment
H&E samples were associated with overall survival in lung
adenocarcinoma and squamous cell carcinoma patients
treated with immunotherapy
For D6, patients who received nivolumab and were identified by
MAD as having a “low risk of death” had significantly longer
survival time (p= 0.004, HR= 5.83, 95% CI: 1.53–22.26) compared
to patients identified as high risk, (see Fig. 3(J)). An expert
pathologist manually assessed and categorized the quantity of
TILs as low TIL (1–33%), moderate TIL (34–66%), and high TIL
(67–99%) (for more details see Fig. 3(L)). A total of 70% of the
patients labeled as “high risk” by MAD were found to have a low
TIL count (1–33% of TILs) while 63.6% of the patients labeled as
“low risk” by MAD had a high TIL count (34–99% of TILs). For D8,
MAD showed an association with OS but did not reach statistical
significance within the trial arm of patients who received
nivolumab with an HR of 1.27 (n= 204, p= 0.15, 95% CI:
0.93–1.7), see Fig. 3(K)).

Identified cluster patterns of TILs in H&E images are different
morphologically and molecularly between lungs
adenocarcinoma and squamous cell carcinoma
A qualitative and quantitative evaluation of the TIL niches
identified by PhenoTIL from H&E images was performed on
images from D3. Differences in composition, spatial behavior, and
intercellular communication of TIL subtypes (i.e., CD4, CD8, CD20)
were analyzed for the different PhenoTIL clusters. Since TIL
subtypes are not discernible on standard H&E samples, this
analysis was carried out only on dataset D3 as it was the only one
with subtype information available via QmIF. An illustration of the
molecularly identified TIL subtypes (CD4+, CD8+ and CD20+) on
the QmIF image is shown alongside the corresponding TIL cluster
identified by MAD on the co-registered H&E image (See Fig. 4(A)). A
similar illustration was constructed for MSCC (See Fig. 4(B)). A two-
dimensional UMAP representation of the cell’s features was
performed for the AD and SCC samples (See Fig. 4(D) and 4(H)),
with corresponding QmIF labels (See Fig. 4(C) and 4(G)). The
percentage of the QmIF subtype concentration among the MAD

and MSCC clusters can be seen in Fig. 4(E) and 4(I) respectively.
By using the Elastic Net31 coefficients, major differences in the

cluster involvement on survival for both the AD (MAD) and SCC
(MSCC) can be observed in Fig. 3(F) and 3(J). When a cluster
contribution toward a patients’ survival is found to be ‘con-
structive,’ it is interpreted as patients having longer survival times.
For instance, for AD, clusters C1, C4, C5, C6, and C7 play
constructive roles (Fig. 4(F)) while C2, C3, and C8 play obstructive
roles. On the other hand, for SCC, clusters C2, C3, C4, C5, C6, and
C8 play constructive roles while C1 and C8 play obstructive roles

(See Methods or more details). Intercellular communication is
examined using a chord diagram, which interrogates the inter-
and intra-relationship between TIL subtypes and the clusters. The
influence of the TIL subtypes among clusters for AD (See
Fig. 4(K)–4(M)) and SCC (See Fig. 4(N)–4(P)) varies greatly.
In Fig. 5, the density of cells for two low- and high-risk samples

(two AD and two SCC) is illustrated. The density plots are
illustrated next to their corresponding H&E and IF images. This is
performed for both models (MAD and MSCC). The clusters on MAD

were grouped based on their roles as either ‘constructive’ (C (+))
or ‘obstructive’ (C (−)). They were represented by a bivariate
histogram (hexagonal bin plot), useful for visualizing the structure
of multiple clusters of cells. The spatial arrangement of the TIL
clusters is illustrated at the WSI level for a PhenoTIL identified low-
and high-risk AD tumor (See Fig. 6). In addition, the spatial cell
interaction of the ‘constructive’ and ‘obstructive’ clusters is shown
across two SCC and AD tumors (See Fig. 7).
The distribution of the clusters across the risk groups revealed

that for MAD, cluster C1 is more abundant for the low-risk cases. A
similar trend is seen for TIL subtype CD8+. For MSCC, the trend is
less clear, showing that the combination of clusters C2 and C6
participate in the low-risk cases (See Supplementary Fig. 7 (B–E)).
The morphometric measures used to construct TIL clusters by

the models (MAD and MSCC), are also shown across the risk groups
for lung AD (Supplementary Fig. 8(A–D)) and SCC (Supplementary
Fig. 8(E–H)). Further, the morphometric features identified as part
of the model MAD, found to be associated with cluster C1, are
mostly related to the texture of the TIL. For the low-risk groups,
the feature shows a low variation in texture and color intensity, as
opposed to the high-risk groups in which there is significantly
high variation. Another feature implicated in MAD is the distance
between a TIL and non-TIL cell, which was significantly different,
being shorter for tumors identified in the low-risk group and
longer for the tumors in the high-risk group. This can be seen in
the cluster of TILs associated with cluster C1 (See more details in
the Supplementary Data 15).

Biological pathway association of PhenoTIL clusters with
Immune activation, regulation, and antigen presentation
To understand the underlying biological processes associated with
the PhenoTIL identified clusters, a gene enrichment analysis was
performed. RNA sequencing of 20,531 genes was available for D5.
For lung AD (n= 427), a functional profile of 1159 sets of genes
were found to be significantly associated with the risk scores
derived using the PhenoTIL-derived cluster measurements (MAD).
From the identified set of genes for lung AD, the enrichment
analysis identified 342 biological pathways (results with false
discovery rate (FDR) p < 0.05), obtained from the Gene Ontology
(GO) analysis platform32,33. Out of the 242 identified for AD, 24
pathways were found to be immune-related, from which 8 were
shown to be associated directly with each PhenoTIL cluster for
ADs. Pearson’s correlation coefficient was used to measure the
strength and direction of the linear association between the
immune-related pathways and the AD TIL clusters. The AD TIL

Fig. 4 The molecular composition of immune subtypes and cluster association for lung AD and SCC sample. TIL subtype single-cell visual
representation on an (A) lung AD and (B) SCC samples from cohort D3. The IF channels are displayed highlighting the spatial distribution of
CD4+, CD8+, and CD20+ cells. Cluster labels are overlaid with corresponding H&E images. Smaller patches are shown to visualize the
magnitude of complexity of cell detection and identification, depicting niche structures. C UMAP representation of TIL subtype composition
for the lung AD. D UMAP of a lung AD sample cluster. E TIL subtype composition of clusters lung AD sample clusters has some concentrations
of C1: CD4+ 10%, CD8+ 86%, CD20+ 4%; C4: CD4+ 25%, CD8+ 50%, CD20+ 25%; C6: CD4+ 9%, CD8+ 72%, CD20+ 19%. F The β coefficients
(C1: 4.0, C2: −3.2, C3: −10.2, C4: 15.4, C5: 0.2, C6: 0.5, C7: 0.2, C8: −12.7) of the TIL cluster model (MAD). G UMAP representation of TIL subtype
composition for the lung SCC. H UMAP of SCC sample clusters. I TIL subtype composition of SCC sample cluster. J The β coefficients (C1: −2.5,
C2: 9.9, C3: 0.2, C4: 5.2, C5: 1.8, C6: 8.9, C7: −2.6, C8: 2.1) of the TIL cluster model (MSCC). K Chord diagram representing the cluster composition
for lung AD. L Interconnection between the TIL subtypes and (M) between ‘constructive’ clusters. N Chord diagram representing the cluster
composition for lung SCC. O Interconnection between the TIL subtypes and (P) ‘constructive’ clusters. CD4+ has a broader influence among
clusters for SCC compared to AD. CD20+ plays a bigger role on the AD clusters.

C Barrera et al.

8

npj Precision Oncology (2023)    52 Published in partnership with The Hormel Institute, University of Minnesota



clusters C3, C6, C7, and C8 were correlated with NRF2-mediated
Oxidative Stress Response, C4 with IL-6 and IL-9 pathways. A
heatmap illustrating the association between the most associated
GO class and the individual TIL clusters determined by the TIL
model (MAD) was constructed and illustrated in Fig. 8(A). The top
20 immune-related pathways, such as P13K signaling in B
lymphocytes (B cell development) and TNFR2 signaling on
regulatory T-cells (Increment on T-reg stability) are illustrated in
Fig. 8(B).

For lung SCC (n= 423), 2710 genes were found to be
significantly associated with the risk scores derived using MSCC.
A total of 413 biological pathways (results with FDR p < 0.05) were
found from which 30 pathways were immune-related. 10 were
shown to be associated directly with each TIL cluster. TIL cluster
C4 was found to negatively correlate with mTOR signaling
pathway, which regulates T cell proliferation and orchestrates T
cell quiescence34, and tRNA charging and was positively
correlated with an antigen presentation pathway. Cluster C1 had

Fig. 5 The density plots of TIL subtypes and cluster groups for lung AD and SCC are displayed alongside their corresponding H&E-
stained and IF TMAs. The density plots based on the cluster’constructive’ C (+) and’obstructive’ C (−) are shown, depicting the concentration
of each cluster group concentration. The TIL density plots also display concentration of TIL cells at the same position for each subtype, CD4+,
CD8+ and CD20+. H&E samples are displayed at the outer layer of the figure and IF samples in the inside layer. The plots are shown for low-
and high-risk groups assigned by the trained models (MAD and MSCC). For lung AD, CD20+ had a few cells spatially located to CD4+ pockets.
high-risk TIL density plot (HRTD) sample displays CD8+ pockets to be sparse. CD20+ was found to be less frequent around CD8+ pockets. The
‘constructive’ clusters are seen to be forming highly concentrated pockets, compared to the ‘obstructive’ clusters, for both AD and SCC low-
risk samples. Similarly, on the low-risk TIL density plot (LRTD), CD8+ can be seen forming concentrated pockets for AD. For SCC, the CD8+

pockets are sparser.
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a negative correlation with CD28 T-helper signaling. C7 positively
correlates with CDK5 and apoptosis signaling. Cluster C6 had a
positive correlation with cell cycle regulation by GTB1 and GTB2.
Figure 8(C) illustrates the heatmap of the GO class associated with
each TIL cluster from lung SCC determined by the model (MSCC).
Figure 8(D) shows the top 20 immune-related pathways, such as
natural killer cell signaling, T helper cell differentiation, ICos-ICosL
signaling in T helper cells, and mTOR signaling identified for SCC
tumors. The complete biological process, cellular component,
molecular function, and gene pathways results based on the GO
analysis are shown in Supplementary Fig. 9(A–B). In general terms,

the most significant pathways found in lung AD and SCC were
involved in, (a) the immune recognition, (b) the antigen
presentation, (c) the antigen response and (d) the antigen
regulation.

DISCUSSION
T cells are generated in the thymus and undergo further
differentiation in the periphery to become specialized T cells such
as CD8+ and CD4+ T cells. These cells effectively navigate to
acute viral infection or tumor presence35. The tumor immune
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plots for (P) clusters, (Q) ‘constructive’ and ‘obstructive,’ and (R) lymphocyte density plot.
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microenvironment (TIME) comprises abundant activated effector
cytotoxic CD8+ and helper CD4+ tumor-infiltrating lymphocytes
(TILs). The function of CD8+ T cells is to suppress tumors, by
killing cancer cells with cytotoxic molecules. CD4+ T cells’ primary
role is to mediate the anti-tumor immunity by stimulating
CD8+ T cells36. Interestingly, a large quantity of cytotoxic CD8+
TILs found in TIME that have not been activated by tumor antigens
behave as “bystanders”9. After a period of hyperresponsive state
caused by chronic antigen stimulation, an activated CD8+ TIL
undergoes ‘exhaustion’, characterized by high inhibitory expres-
sion and reduced cytotoxicity10,37. These diverse populations of
immune cells form heterogeneous clusters with intricate commu-
nications within the TIME38. Due to the TIME complexity,
estimating immunological frequency and TIL density may not be
sufficient to describe cellular heterogeneity and their spatial
distribution. However, capturing the complexity of the TIME could
allow the development of prognostic and predictive biomarkers of
response to current cancer treatments that target tumors

(chemotherapy and radiation) and modulators of immune
responses (immunotherapy).
Several studies have explored immune response mechanisms

and their role in lung cancer treatment response39. For instance,
Nejati et al. 40 demonstrated that high concentrations of intra-
tumoral CD8+ and CD4+ TILs were associated with prolonged OS
in patients treated with chemotherapy. A similar scenario was
seen in lung SCC19 in which elevated levels of CD8+ or CD4+ TILs
was associated with a longer disease-specific survival and disease-
free survival, compared to patients with a lower concentration. In
experiments using H&E slides, Wang et al. 18 explored the
interplay between TIL and non-TIL cells in the tumor epithelium
area, and identified spatial statistics related to TIL-cancer cell
distances that were associated with OS and progression-free
survival. Similarly, Azarianpour et al. 15 examined the spatial
arrangement of TIL and cancer nuclei on H&E images, demon-
strating an association between these spatial distance statistics
with clinical benefit to chemotherapy, radiation therapy and
nivolumab in gynecological cancers. Furthermore Ding et al. 21

Fig. 7 Cluster importance comparison among lung AD and SCC. The first two columns are squamous cell carcinoma cases (First and second
columns are low and high-risk respectively). The last two columns are adenocarcinoma cases (Third and fourth columns are low and high-risk
respectively). The first row represents the H&E WSI samples for lung AD (A, B) and SCC (C, D). Second row represents the plotting of cluster
position that were assigned as ‘obstructive’ by the TIL model (MSCC) for (E, F) lung SCC and TIL model (MAD) for (G, H) lung AD. Third row
represents the plotting of cluster position that were assigned as ‘constructive’ by the TIL model (MSCC) for (I, J) lung SCC and TIL model (MAD)
for (K, L) lung AD model. For the low-risk samples (I, K), the influence of ‘constructive’ Cluster C4 around other clusters, is highlighted by the
dotted-line region.
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explored both the density and spatial aspects of TILs and their
association with outcome in patients treated with chemotherapy
and nivolumab for lung AD and SCC. Also, finding the TIL density
to be more crucial in patients with SCC and TIL spatial distribution
for AD patients.
In this study, we introduced a new computationally-derived TIL

phenotyping approach called ‘PhenoTIL’. PhenoTIL is a computa-
tional pathology approach that captures and employs the
phenotypic and morphologic characteristics and spatial organiza-
tion of TILs in the tumor microenvironment on H&E-stained tumor
samples to identify distinct immune clusters, composition of
which are associated with clinically relevant outcomes. In addition,
PhenoTIL signature was able to stratify patients based on their risk
of death using pre-treatment biopsy H&E-stained samples and a
single cohort with post-neoadjuvant sections (D7), in the context
of different therapy scenarios such as chemotherapy and targeted
immunotherapy. Dedicated PhenoTIL models for characterizing
the TIME in SCC and AD tumors were developed using 87 lung AD
and 53 lung SCC patients respectively, subsequently evaluated for
predicting OS on 1102 lung AD patients and 530 SCC patients.
Unique PhenoTIL signatures that were associated with clinically
relevant outcomes for squamous cell carcinomas and adenocarci-
nomas were identified.
In the context of adenocarcinomas, PhenoTIL was able to risk-

stratify patients undergoing different therapies including che-
motherapy and radiotherapy (Supplementary Fig. 6(A–B)). This
trend was seen across dataset D7, in which chemotherapy was
used in a neoadjuvant setting (i.e., before surgical resection) and

scenarios with a combination of two chemo agents (Taxol plus
platinum-based). The PhenoTIL model for adenocarcinomas (MAD)
and squamous cell carcinoma (MSCC) were trained with most
patients with early-stage (I and II) lung cancer, and the validation
cohorts corresponded to patients from a plurality of staging
groups (58.45%), indicating that the signatures were not specific
to a particular disease stage, but the prognostic trend was
observed most emphatically for early-stage disease. Most likely
the immune reaction across the stages is highly variable, with late-
stage immune landscape predominantly characterized by high
levels of T-cell exhaustion41 and early-stage represented by a
gradual transition from immune activation to immunosuppression,
including the decrease of T-cell clonotypes, increase in regulatory
T-cells infiltration and reduced infiltration of anti-tumor helper
T cells42. For instance, despite PhenoTIL model MAD not having a
statistically significant stratification of risk (p= 0.12, HR= 1.27
(0.93–1.7)) in the phase 3 clinical trial cohort D8 (NCT01673867) of
patients who received just Nivolumab, the Kaplan–Meir plots
clearly revealed distinct risk groups (Fig. 3(K)). These patients were
predominantly late-stage IV, so, surgery was not a viable option
due to tumor dissemination. A similar behavior was seen for
cohort D6, in which most of the patients were stage III and IV
(76%) and were treated with Nivolumab (57%). More importantly,
the PhenoTIL model MAD was able to discriminate between
groups of patients with a low and high risk of death in a low PD-L1
(<50%) setting, potentially allowing these patients who might
otherwise be recommended for ICI-chemo combination therapy,
to be candidates for ICI monotherapy; thereby potentially

Fig. 8 Gene expression and molecular pathways association with the immune clusters for lung AD and SCC. Heatmap representation of
the significant gene expression for (A) lung AD. Each row represents an overly expressed gene. Each column indicates the cluster. The colors of
the heatmap represent the Pearson correlation coefficient. The grouped genes are color-coded with a GO term representation. B The
biological and molecular pathways are described in box plots. The most significant (FDR adjusted p value) terms are illustrated. The number of
total associated gene signatures is shown as number of regulatory genes (nRG). Similarly, for lung SCC is shown (C) the gene expression
heatmap and the (D) biological and molecular pathways is also included.
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obviating the need for chemotherapy in a subset of LUAD patients
with low PD-L1 expression.
At the tumor microenvironment level, we observed differences

between the two NSCLC subtypes, with SCC exhibiting higher
inter- and intra-tumoral heterogeneity than lung AD, which aligns
with previous findings. For instance, some studies found that SCC
tissue displayed enriched neutrophils at the cellular level
compared to AD and has a more robust interaction with tumor
cells43. Another study found that the spatial differences in PD-1
and CD8+ cells were significantly different between AD and SCC,
regardless of the infiltration in the tumor proximity. In AD, a higher
density of PD-1+ cells in the stroma and tumor islet cells was
associated with shorter survival times while, in SCC, it was
associated with better outcomes44. Using molecular and genomic
analysis, we found that CD4+ and CD8+ T cell interactions played
a key role in SCC patients with low risk of death while CD8+ and
C20+ T cells were key components for lung AD patients with low
risk of death. Regulation of the B-cells activation and proliferation,
which play a critical role in recognizing antigens45, were correlated
with ‘constructive’ clusters of TIL signature (MAD). Similarly, the
‘obstructive’ clusters were associated with NRF2-mediated oxida-
tive stress response pathways, whose deficiency causes enhanced
susceptibility to inflammatory diseases, deterioration, and oxida-
tion;46,47, ultimately correlating with the exhausted state of T-cells.
For the SCC PhenoTIL signature, the desirable clusters were found
to be associated with mTOR signaling, which influences T-cell
differentiation, stimulation, and proliferation, a major regulator of
memory antigen-activated CD8+ T-cell differentiation, whose
correlates play important roles in the TIME.
PhenoTIL is not the only approach that has characterized and

used the spatial interplay of TILs, for instance studies carried out
by Park et al. 48, Lopez de Rodas et al. 49, Wang et al. 50 and Ding
et al. 21 have been exploring the use of computational imaging
and artificial intelligence-based approaches for characterizing the
density and spatial architecture of TILs in H&E images and their
association with response to ICI and survival. Differences between
our approach and these previously published studies include (1)
the use of tiles or patches to obtain TIL-related features as
opposed to our study which used the TIL immunophenotyping
information on a cell-by-cell basis via the use of qmIF images, (2)
risk stratification based on phenotypic traits of the TIL clusters, and
(3) identifying molecular differences and distinct functions of the
stratified TILs groups between lung tumor subtypes AD and SCC.
In addition, the underlying hypothesis behind these stu-
dies14,16–18,21,48–50 remains the same, namely that all TILs are
treated in a consistent and homogeneous manner.
The PhenoTIL approach identified clusters on the H&E images

potentially represent individual aggregates of activated,
exhausted, and ‘bystander’ immune cells, this hypothesis will
need to be explicitly validated in future work. While we have not
explicitly validated that PhenoTIL cluster mimics the functionality
of each specific TIL subtype, we assume that the PhenoTIL
signature appears to distinguish the unique formation of TIL
clusters that resemble the functional aspects of activated TILs,
which are prone to have a ‘constructive’ behavior toward tumor
regulation and exhausted and bystander T cells, which have a
more ‘obstructive’ behavior. The fundamental hypothesis of
PhenoTIL, is that not all TILs uniformly contribute toward a
prognostic signature for lung AD and SCC subtypes. Even though
PhenoTIL does not explicitly identify individual molecular sub-
types of TILs, it does appear to cluster the TILs into unique
immune cell niches within the TIME, the architecture of which has
clinical relevance with outcome for multiple therapy types.
Our study did have its limitations. One limitation was that the

study design was retrospective in nature. In addition, although
PhenoTIL was found to be prognostic of OS in both lung AD and
SCC, the PhenoTIL signature MAD was not associated with OS for
patients who received either single-agent platinum or three-agent

variations of multiple Taxol plus platinum. This behavior has been
seen in patients benefiting from receiving combination compared
to single-agent use51. This is probably due to the monotherapy
scheme and outcome effects, relating to the biological difference
reflected on the survival effect of TILs. Similar trends have been
observed in the use of single chemo-agents which could inflict
deleterious and inhibitory effects on the immune system and
lymphocyte activation52. In addition, since both PhenoTIL
signatures MAD and MSCC were trained solely on cohorts of
patients treated with different chemotherapy agents, our signa-
tures while associated with OS for individual therapies, were not
explicitly validated as predictive for benefit of specific therapies.
However, a strength of our approach was that the signature was
associated with clinically relevant outcomes across different
treatment types, reflecting the ability of the PhenoTIL signature
to pick up biological hallmarks of good and poor tumor biology.
Further, in this work, we studied the association between patient
prognosis and nuclei clusters, built from contextual features
(PhenoTIL), on the premise that cells in the tumor tend to act as
groups rather than individually53. However, future work may
benefit from analysis of the association between patient outcome
and PhenoTIL features, independent of clusters.
In summary, we have developed and validated a computational

biomarker, ‘PhenoTIL’, an immune-related biomarker associated
with treatment-specific outcomes in NSCLC. It is also capable of
capturing the immune phenotypes of TILs and their spatial
interplay, allocating them into unique ‘immune clusters’ using
digitized H&E-stained biopsy samples. PhenoTIL can also identify
low-risk lung AD and SCC patients, which would allow clinicians to
make adequate changes in their therapy management. Future
work will involve prospective validation across independent
cohorts and validation of the PhenoTIL signature as predictive of
benefit of specific therapies.

METHODS
Data and image processing
Figure 2 shows the overall workflow including image preparation,
feature extraction, TIL single-cell cluster formation, molecular
identification of TIL, and genomic pathway association for the
PhenoTIL approach. As part of the inclusion criteria for all the
datasets, images with low quality, blurry effects, and significant
artefacts were excluded from the analysis. Image quality was
checked using HistoQC26, an open-source quality control tool for
digital pathology slides. HistoQC analyzes a set of WSIs and
generates image masks indicating the regions that are not useful
for analysis because of large blurry areas, obstructive dotting pen
markings, or sub-coverslip bubbles. Images where the computa-
tionally valuable regions were either empty or smaller than 40% of
the total real-estate of the slide were discarded. For this project,
HistoQC was run using its default parameters26. This was
performed for datasets D5, D6, D7, and D8. For cohorts with TMA
images, a previous study54 have mentioned that their use for
evaluating TILs may be an issue due to TMAs not having
substantial cell-related information and small core diameter may
not reflect the entire tissue composition, nevertheless further
studies as indicated by55 have shown that well-annotated TMAs
datasets were optimal for drawing concordant results with TIL-
related biomarkers and clinical outcome, indicating TMAs to be
good option for this type of study. Regarding the TMA cohorts on
our study, D1, D2, D3, and D4, images that were not able to be
processed for feature extraction due to lack of tissue (images
containing 20% or less percentage of pixels in the tissue area) and
sufficient nuclei detection (images containing 20 or less identified
TIL and non-TILs) were removed. For D6, D7, and D8 the additional
inclusion criteria invoked included the availability of histologic
subtype AD (See Fig. 1). Inclusion criteria for D7 were as follows:
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From the initial 211 patients, the considered patients were those
who either underwent surgical resection after neoadjuvant
therapy or had a primary resection at a locally advanced stage,
which qualified them for neoadjuvant therapy. Three patients had
more than one WSI scanned due to the following reasons: the first
patient had a sample with neoadjuvant lung SCC with small AD as
an incidental finding, the second was a patient with neoadjuvant
adenosquamous carcinoma, and the third patient had a primary
lung AD with three regions with very different growth patterns
within the primary. Only one WSI containing the most tissue
sample was selected for each patient. After invoking the inclusion
and exclusion criteria for this study, 71 cases for D1 (49 excluded),
71 for D2 (35 excluded), 79 for D3 (57 excluded), 231 for D4 (49
excluded), 850 for D5 (239 excluded), 21 for D6 (49 excluded), 93
for D7 (118 excluded) and 358 for D8 (224 excluded) were
included. Tiles of size 2048 by 2048 pixels (at 20× resolution;
approx. 990 μm) were extracted from an automatic segmented
tumor area18 of each WSI, from cohorts D5, D6, D7, and D8. TMA
spots from cohorts D1, D2, and D3 were directly utilized. TMAs from
D4 were down-sampled to 20× using nearest-neighbor interpola-
tion. Supplementary Table 2 provides a summary of the image-
related information for each cohort.
An inspection for assessing batch effects was performed using

the subsequent full set of 288 PhenoTIL features across the
different histologic image tiles and TMAs. The set of features were
embedded into a two-dimensional feature space and plotted
using UMAP56. The embedding shows (See Supplementary Fig.
7(A)) that there were no significant clusters of patients or isolation
of samples by institutional site (cohort). This suggests that
PhenoTIL features are resilient to batch effects and appear to be
reproducible across the multiple sites/cohorts; in other words, no
evidence of batch effects was identified.

Nuclei segmentation and TIL identification
In D5, for each patient, 10 tiles of pixel size 2048 × 2048 (~990 μm)
were extracted. Similarly, from D6, D7, and D8, 10 tiles were
obtained per WSI, outlined from an automatically segmented
tumor area. For D7 multiple tiles were obtained from 4 WSIs for
visualization purposes. The method developed by Wang et al. 18

was employed for the task of tumor segmentation. This method is
a U-Net based convolutional network tuned using adversarial
training, and it receives as input a WSI and outputs a tumor
heatmap (See Supplementary Fig. 1(B)). Authors of the method
report that, in a validation testing set containing 45 WSIs, the
detector achieved a 90.6% patch-level accuracy18. The validation
set is from the lung TCGA archives (TCGA-LUAD). The same cohort
is used in the present study (D5). In addition, this model was used
as is, i.e., it was not retrained or adjusted. The model was applied
on each WSI and subsequently down-sampled to 20× through
nearest-neighbor interpolation. The tumor detector was used to
generate the heatmap for WSI to indicate the probability of tumor
(90.6% patch-level accuracy) (See Supplementary Fig. 1(B)). D4

TMAs were down-sampled to 20× through nearest-neighbor
interpolation. Two nuclei segmentation models were used to
detect and segmentate the nuclei. First, the deep learning model
introduced by Wang et al. 18 was used “as is” to delineate the
boundary pixels of each nucleus. This model is also a U-Net
network-tuned model, using adversarial training that receives a
patch as input and then generates a mask indicating the location
of the nuclei within the patch (and Supplementary Data 2).
According to the authors, this model yielded an f-score of 0.88 in a
dataset with 8000 nuclei annotated18. A second machine learning
model based on morphological transformations and image
processing using a watershed-based algorithm was used to
further segmentate the nuclei57, resulted in a positive predictive
value of 90% (Supplementary Data 3). Both models’ outputs were
combined, and a single binary nuclei mask was obtained. Next, the

model developed by Corredor et al. 58 is employed, as is, for
classifying each segmented nucleus as either a TIL or non-TIL. It
receives as input both an image patch and its respective nuclei
segmentation mask (obtained using the method previously
described), and it outputs the location of TILs and non-TILs within
the image. Authors report that this model is a support vector
machine trained visual features (texture, shape, and color), which
yielded an f-score of 0.86 in validation phase58. Approximately
53,000 TILs were identified by automatically counting the total
detected amount from lung AD patients (n= 87) in DAD

1 and DAD
2,

and 40,000 TILs were identified from SCC (n= 55) in DSCC
1 and

DSCC
2. Due to the color variation of images acquired from different

scanners, color-normalization was applied to the H&E images
using a technique a spectral matching named Macenko’s normal-
ization59 to ensure coherent color representation across all
datasets. An expert pathologist performed a manual TIL assess-
ment for cohort D6 and assigned a label of 1–33%, 34–66%, and
67–99%, based on the percentage of infiltrating lymphocytes.

PhenoTIL: TIL-based feature extraction and cluster
computation
Characterization of the interaction of TILs within the tumor
microenvironment was done by quantifying their spatial interac-
tion with all other neighboring cells30. The algorithm comprises
four steps: (1) The rectangular position (two-dimensional coordi-
nate with positions, x, and y) of each TIL is obtained. (2) Iteratively,
the algorithm locates each TIL and from its centroid coordinate,
three circles are defined with incremental increasing radii of
k= dL*10, dL*20, and dL*30 pixels (dL= 20 pixels, the average
diameter of lymphocytes at 20× resolution. For a visual
representation, see Supplementary Fig. 10(A)). (3) At each circle,
a set of cell features were extracted from the neighboring cells
including morphological characteristics (e.g., size, orientation,
diameter, color intensity), density (e.g., number of surrounding
lymphocytes), cell texture (Haralick et al. 60) And graph-based
metrics (e.g., distances between lymphocytes and non-lympho-
cytes) were computed (The complete list can be seen in the
Supplementary Table 4 and Supplementary Data 1 and 4). This set
of 288 features (See PhenoTIL: TIL-based digital risk score and
statistical analysis) characterize each TIL. 4) TILs were then
clustered based on the features using a Gaussian Mixture Model61,
from which a total of 8 unique TIL clusters were found (For more
details of the clustering process, see the Supplementary Data 5).
Finally, a patient is represented by eight vectors. These vectors
represent the eight unique TIL clusters (C1, C2, C3, C4, C5, C6, C7,
C8). The total TIL-related data is represented as a single matrix of
size 1774 × 8 (1774 patients and eight TIL vector clusters).

IF and H&E image registration
For D3, two challenges were found when processing the
immunofluorescence (IF) images. One of the challenges was the
overexposure found across the different IF markers intensities,
affecting the comparison between the different images. To
address this issue, the quantitative immunofluorescence score
calculated by AQUA (Automated quantitative analysis) was used12

for intensity normalization. Another challenge was that the IF and
H&E-stained images were generated from consecutive tissue
sections. Their alignment is imperfect on account of the partial
overlap of different TIL subtypes markers on a single-cell basis and
the variation in the degrees of misalignment between the
corresponding H&E TMA boundaries. To match both images and
address the geometric misalignment of the images, a piece-wise
linear transformation62 and spatial transformation via MATLAB
function “cp2tform” was applied.
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Single-cell molecular pairing of TIL in H&E with IF images
One of the first steps to interrogate the TILs was to assign a unique
molecular label to each identified TIL on H&E images. Once the
images are co-registered, the identification of the TIL subtypes is
performed. The process is based on the comparison on a pixel
level, of the intensities of each cell. For each detected cell, the
membrane is isolated. The intensity of the immunofluorescence
stain of each marker (CD4+ , CD8+ and CD20+ ) is quantified
from within the membrane (See the Supplementary Fig. 10(B–D)).
These values are then normalized by the AQUA value12 (See
Methods section, IF and H&E Image Registration). Finally, the
marker with the highest value is taken as the true label for the cell.
This process is repeated for each TIL.

Gene enrichment and pathway analysis
The enrichment of genes and pathway analysis is performed for
dataset D5. The gene collection was obtained from TCGA. The
quantification of gene expression by RNA-seq is obtained for both
lung AD (TCGA-LUAD) and SCC (TCGA-LUSC). The data is prepared
into a matrix of gene expressions for each patient. A correlation
matrix is computed between the gene expression matrix and the
TIL clusters obtained from each model (MAD and MSCC). Pearson’s
correlation coefficient is calculated to identify the genes highly
associated (values higher than 50% of the maximum correlation
value). These genes are referred to as ‘activation genes’ or
differentially expressed genes. These genes were used to find on
the gene ontology (GO) knowledgebase32, pathways of biological
processes through enrichment analysis. The pathways for each
cluster were identified and visualized using a heatmap and bar
plot displaying the canonical pathways significantly overrepre-
sented. The most significant pathways are identified and listed
according to their FDR corrected p value, shown as (−) log10(FDR).
The analysis was performed using the R package TCGAbiolinks33,
an integrative analysis with genomic data commons data.

PhenoTIL: TIL-based digital risk score and statistical analysis
Overall survival was defined as the time interval between the date
of diagnosis and the date of death and was censored at the date
of the last follow-up for those patients known to be alive. An OS
risk score (OSRS) for each ith patient is defined as
OSRSi ¼

Pn
i¼1Nijβj , where βj is the regularizing coefficients

returned by the Elastic Net31 method and Nij is the number of
clusters for the ith patient. These steps were performed for
developing the PhenoTIL signatures for lung AD using DAD

1 and
DAD

2 and SCC using DSCC
1 and DSCC

2. The βj coefficients are also
indicators of cluster contribution toward patients’ survival, clusters
with +βj value is ‘constructive’ and those with −βj values are
‘obstructive.’ In summary an OSRS was computed for each patient
as a linear combination of the clusters and their respective
coefficients (Supplementary Data 6). The median value of all risk
scores of patients was computed and used as a cutoff, so a patient
whose risk score value is higher than the median is considered
“high risk”, and a patient with a risk score value lower than the
median is considered “low risk”. Two different survival Cox
proportional hazard regression models63 are obtained for lung
AD (MAD) and SCC (MSCC) from (DAD

1 and DAD
2) and (DSCC

1 and
DSCC

2), respectively, and are validated on D3, D4, D5, D6, D7, and D8.
MSCC is validated only on D3, D4, and D5. To evaluate the efficacy of
MAD and MSCC to predict OS, the Mantel-Haenszel log-rank test64

was used to assess the difference in OS. P values were two-sided,
and values under 0.05 were considered to be statistically
significant. The performance of the models MAD and MSCC were
evaluated employing Harrell’s concordance-index (C-index)65.
Kaplan–Meier survival analysis was utilized to determine the
difference of OS across the different patient risk groups.

Three statistical analyses were performed between the TIL
clusters across lung AD and SCC on D3. First, the statistical
differences across the TIL clusters, e.g., how statistically different is
cluster C1 on AD compared to cluster C1 on SCC (See
Supplementary Table 5(A)). Second, the difference between AD
from SCC regardless of the cluster labels, e.g., how statistically
different are the TIL phenotypic features from AD vs SCC samples
(See Supplementary Table 5(B)). Third, the statistical differences
across the TIL subtypes (CD4+, CD8+, CD20+), e.g., how statistically
different is the arrangement of CD8+ across all the clusters on
AD compared to all the clusters on SCC (See Supplementary
Table 5(C)).

DenTIL: Developing prognostic models using features based
on density of TILs
19 features relating to the density of TILs (denTIL)21 were
extracted from each patch. These features include descriptors
such as ratio between the number of TILs and the tissue area, ratio
between the number of TILs and the total number of nuclei, and
ratio between the total area covered by TILs to the total area of
the tissue. The final feature vector for each patient was obtained
by computing the mean, median, skewness and kurtosis for each
feature across all its constituent tiles (i.e., four features per patient).
Finally, two different survival Cox proportional hazard regression
models were trained for lung AD (denTILAD) and SCC (denTILSCC)
from (DAD

1 and DAD
2) and (DSCC1 and DSCC

2), respectively, and are
validated on D3 to D7.

SpaTIL: Developing prognostic models using features based
on TIL architecture
350 features were used to quantify the spatial arrangement of TILs
and spatial interaction between TILs and non-TILs (spaTIL)21 as
extracted from each patch. These features include the area of TIL
clusters and the intermixing of the TIL and non-TIL clusters,
among others. The final feature vector for each patient was
obtained by computing the mean, median, skewness and kurtosis
for each feature across all its constituent tiles (i.e., four features per
patient). Finally, two different survival Cox proportional hazard
regression models were trained for lung AD (spaTILAD) and SCC
(spaTILSCC) from (DAD

1 and DAD
2) and (DSCC

1 and DSCC
2),

respectively, and are validated on D3 to D7.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Since the cases from the involved institutions are protected through institutional
compliance, the clinical repository of cases can only be shared per specific
institutional review board (IRB) requirements. Upon reasonable request, a data
sharing agreement can be initiated between the interested parties and the clinical
institution following institution-specific guidelines. This is applicable for Cohort D1,
D2, D3, D4, D6, D7, and D8. D1, D2, D3 were provided by the Department of
Pathology at Yale University (D2 were collected at Sotiria General Hospital and Patras
University General Hospital at Greece but were made available from Yale Pathology).
Clinical information was provided. D4 was obtained from the Cleveland Clinic (CCF).
Clinical information was provided. D5 was generated by TCGA Research Network
(http://cancergenome.nih.gov/), and they have made them publicly available. The
diagnostic slide (H&E slides) as well as the RNA sequencing data (https://
portal.gdc.cancer.gov/projects/TCGA-LUAD and https://portal.gdc.cancer.gov/
projects/TCGA-LUSC). Clinical information can be found at their portal. D6 was
provided by the University of Pennsylvania Hospital (UPenn). Clinical information was
provided. D7 was provided by the University of Bern in Switzerland (UBern). Clinical
information was provided. D8 was provided by Bristol-Myers Squibb (BMS), from the
clinical trial CA209-057 (ClinicalTrials.gov identifier: NCT01673867). No clinical
information was provided.
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CODE AVAILABILITY
All the codes and guidance for MATLAB and Python scripts can be found on GitHub:
https://github.com/maberyick/PhenoTIL_V1.
Nuclei Segmentation https://github.com/maberyick/nucleiSegmentationHEDL.
Lymphocyte detection https://github.com/maberyick/LympDetect_HE_ML_V2.
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