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Aims Identification of high-risk patients and individualized decision support based on objective criteria for rapid discharge after trans-
catheter aortic valve implantation (TAVI) are key requirements in the context of contemporary TAVI treatment. This study aimed 
to predict 30-day mortality following TAVI based on machine learning (ML) using data from the German Aortic Valve Registry.

Methods 
and results

Mortality risk was determined using a random forest ML model that was condensed in the newly developed TAVI Risk 
Machine (TRIM) scores, designed to represent clinically meaningful risk modelling before (TRIMpre) and in particular after 
(TRIMpost) TAVI. Algorithm was trained and cross-validated on data of 22 283 patients (729 died within 30 days post-TAVI) 
and generalisation was examined on data of 5864 patients (146 died). TRIMpost demonstrated significantly better perform-
ance than traditional scores [C-statistics value, 0.79; 95% confidence interval (CI)] [0.74; 0.83] compared to Society of 
Thoracic Surgeons (STS) with C-statistics value 0.69; 95%-CI [0.65; 0.74]). An abridged (aTRIMpost) score comprising 25 
features (calculated using a web interface) exhibited significantly higher performance than traditional scores (C-statistics va-
lue, 0.74; 95%-CI [0.70; 0.78]). Validation on external data of 6693 patients (205 died within 30 days post-TAVI) of the Swiss 
TAVI Registry confirmed significantly better performance for the TRIMpost (C-statistics value 0.75, 95%-CI [0.72; 0.79]) 
compared to STS (C-statistics value 0.67, CI [0.63; 0.70]).
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Conclusion TRIM scores demonstrate good performance for risk estimation before and after TAVI. Together with clinical judgement, 
they may support standardised and objective decision-making before and after TAVI.
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Key Question
Given that current decision support tools for transcatheter aortic valve implantation (TAVI) are limited to relatively simple models and that
guidelines still recommend scores that were not developed speci!cally for TAVI, the question arises whether machine learning (ML) can be
used to create improved and interpretable risk models.

Key Finding
In this diagnostic study of the nationwide cohort of patients undergoing TAVI in Germany, we observed that risk assessment both before and
especially after TAVI can be signi!cantly improved using ML-based risk models. The prognostic value of our TRIM scores was con!rmed in the
Swiss TAVI Registry cohort and outperformed established risk scores. TRIM scores can be interrogated for the in"uential factors as well as the
pro!le of this in"uence.

Take Home Message
Our results argue for the use of TRIM scores in routine clinical care, while improving the interpretability of risk assessment through an app
that visually explains the variables that in"uence an individual’s risk assessment.
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Introduction
Aortic valve stenosis can be treated with either surgical aortic valve re-
placement (SAVR) or transcatheter aortic valve implantation (TAVI). 
Statistical models for predicting the procedural risk based on preproce-
dural data have been widely recommended.1 Scores are usually helpful 
when the number of variables and their complex interplay place high 
demands on clinical judgment skills and an objective appreciation of 
the variables is desired. Given the recent option for TAVI treatment 
across the entire spectrum of surgical risk,2,3 general surgical risk scores 
remain important to objectively support the identification of patients 
not suited for SAVR. However, while there are TAVI specific 
scores,4–10 none of the common scores were specifically developed 
for a TAVI/SAVR procedure or population. In addition, post-TAVI 
risk models are lacking, although diverse variables (some of which are 
intraprocedural) need to be integrated for postinterventional care 
decision-making. Thus, a post-TAVI risk model could support decisions 
between post-TAVI treatment approaches, such as fast but safe dis-
charge or closer surveillance. Machine learning (ML) as an approach 
to build predictive models is especially capable of modelling non-linear 
and complex interdependencies between a possibly large set of predic-
tors and has, thus, the potential to build particularly strong models in 
feature rich settings. Prediction of patient risk has been attempted using 
ML methods for TAVI4–10 and other cardiac treatments,11–15 but sev-
eral challenges have precluded the translation of trained models from 
bench to bedside.16 These challenges include the lack of prospective 
evaluations or even randomized controlled trials for ML models, a large 
body of models published only as preprints without peer-review, the 
failure to follow reporting standards such as transparent reporting of 
a multivariable prediction model for individual prognosis or diagnosis 
(TRIPOD), failure to capture or assess dataset shift due to model fitting 
on historic data, difficulties to generalise to new populations, and hard 
to interpret black-box models. While this manuscript presents a retro-
spective analysis, we try to address many of the other mentioned 
challenges.

In this diagnostic study, we provide a ML-based risk scoring for 
post-TAVI risk (TRIMpost) to support objective decision-making be-
tween treatment approaches. Furthermore, a pre-TAVI (TRIMpre) 
scoring model that outperformed classical models is provided. Both 
models highlight the individuals risk context with the variables that in-
fluence it, leaving the physician not only with a score, but with the vari-
ables that impacted on the score (explainable ML). As ML performance 
relies on a large dataset, our modelling used the German Aortic Valve 
Registry (GARY), one of the world’s largest aortic valve replacement 
registries combining data from over 90 centers.17 The performance 
of the ML models was evaluated on a separated test set from GARY 
and validated on external data from the Swiss TAVI Registry 
(SwissTAVI).18 The ML models were interrogated for interpretation. 
An interactive easy-to-use web app that calculates the score and pro-
vides insight for decision-making is also described. We suggest TRIM 
scores as the basis for advanced decision support in the course of 
TAVI treatment.

Methods
This study is reported in adherence to the TRIPOD guidelines19 (see 
Supplementary material online, Figure S1). Full details on the methods are 
provided in the Supplement.

Study population
The analysed cohort comprised all completed TAVI interventions through 
transfemoral access with annotated survival status at 30 days post-TAVI re-
corded in GARY between 2011 and 2017.17 GARY (NCT01165827) was 
approved by local ethics committees of all participating centres and patients 

gave informed consent to the analysis of the data. External validation was 
performed by using patient data from the SwissTAVI between 2014 and 
2018.18 The SwissTAVI (NCT01368250) is a national prospective cohort 
study, which is mandated by the Swiss Federal Office of Public Health to in-
clude all consecutive patients undergoing TAVI at approved sites in 
Switzerland since 2011.

Outcomes
To support clinical decision-making towards early discharge, mortality 30 
days post-TAVI was used as study endpoint.

Existing scores evaluated in this study
Several established scores served as a baseline for comparison in this study: 
the logistic EuroSCORE,20 EuroSCORE II,21 German aortic valve score 
(GAVS),22 and Society of Thoracic Surgeons (STS) Valve score.23

However, none of these scores is TAVI specific. The logistic EuroSCORE 
and EuroSCORE II are surgical risk scores; the GAVS and STS Valve score 
are specific for valve procedures. We also evaluated the TAVI-specific TVT 
in both versions (with NYHA (TVT(NYHA))24 and with health status and 
gait speed (TVT(GaitSpeed)),25) but many variables used in these scores 
were missing, so that we refrained from a formal comparison.

Potential predictors
Only those (k = 97) variables in the GARY registry that are assessed before 
or immediately after TAVI (k = 58) were considered.

Training and validation
The training and validation pipeline is visualised in Supplementary material 
online, Figure S2.

To avoid information leakage, great care was taken to conduct all training 
and tuning of the ML method using only the training set. The test set was 
used only to estimate the generalization performance in the last step after 
the model tuning. Due to effects of data shift between historic and future 
cohorts and progress in medical care in general and TAVI treatment in par-
ticular, we expect differences in TAVI cohorts as well as in our outcome 
(30-day mortality) over time. To assess the robustness of our model to-
wards the evolution of TAVI, the training test split was done time-based: 
the training was done on cases from 2011 to 2016 (n = 22 283) the valid-
ation on cases from 2017 (n = 5864 for (a)TRIMpost and 5926 for (a) 
TRIMpre).

ML-technique: random forest
Among several ML methods (model based recursive partitioning, deep 
learning, and random forest), the random forest yielded the best perform-
ing models. Parameters of the random forest (RF)26 were tuned on the 
training data via grid search using 5-fold cross validation.

Improving class balance in the training data is beneficial to the perform-
ance of RF.27 Therefore, patients with events within 30 days were selected 
with increased probability during the training.

When using the trained model to predict new data, this new data might 
have missing values where the training data did not. In order to allow the 
trained model to be applicable to new data with such missing values, the 
training data was extended by duplicating for each variable of interest ran-
domly (stratified by the variable of interest) chosen 10% of the data while 
setting the variable of interest to a new missing category (categorical vari-
able) or missing (numerical variable) as suggested in Chollet and Allaire.28

The character of missing values was examined by testing missing value in-
dicators for independence from the outcome and by Jamshidian and Jalal’s 
non-parametric missing completely at random (MCAR) test29 on the nu-
meric variables with missing values. Missing values in categorical variables 
were set to a new ‘missing’ category, missing values in the numeric variables 
were imputed by median. As a sensitivity analysis multiple imputation by 
chained equations was performed to check for influence on classification 
performance or variable importance.

The RF models were trained twice: using all available features (TRIM 
scores) and using selected features (abridged TRIM scores).
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For feature selection, an initial random forest classifier was fit to the 
training data, variable importance was calculated for all features, and the 
most important features were selected.

Model interpretation
Variable importance30 in the RF models was measured as the total decrease 
in node impurities from splitting on the variable, averaged over all trees, 
where the node impurity was measured by the Gini index.

Breakdown plots31 were generated to interpret risk scores for individual 
patient predictions, highlighting the shift in expected prediction induced by a 
specific value of a variable if conditioned on values of earlier variables. The 
order of the variables was chosen considering potential interaction 
(iBreakdown-Plots) as implemented in the R package iBreakDown.32

Partial dependency plots33 are aggregations of Ceteris Paribus profiles 
which are generated for each sample by varying the value of only one fea-
ture, while keeping the remaining features fixed. The partial dependecy 
plots were generated using the R package DALEX.34

Statistical analysis
Performance of risk scores on the test set was evaluated using receiver op-
erating characteristic curves, and area under the curve (AUC, also called 
C-statistic) with 95% confidence intervals (CIs). AUC comparisons were 
conducted using bootstrap tests.

Independent predictive information in TRIM scores was tested via multi- 
variable logistic regression models fit to the test data using the TRIM score, 
STS, and age as predictors. To test for incremental information model, im-
provement due to the inclusion of the TRIM scores was tested via 
likelihood-ratio tests and the net reclassification improvement was 
assessed.

Calibration curves were generated comparing the estimated and the ob-
served proportion of events in the deciles of the risk scores. The logits of 
the predicted scores were regressed onto the observed events via logistic 
regression and intercept and slope were calculated with corresponding 95% 
confidence intervals.

A newly implemented interactive app (see Supplementary material 
online, Figure S3) allows the input of the variables necessary for the 
aTRIMpost risk score.

The significance level was set to 5% for all statistical tests. All analyses 
were performed using R (version 3.6.1).

Results
Study population
The analysed cohort comprised 28 147 completed TAVI interventions 
with annotated 30-day mortality recorded in GARY between 2011 and 
2017. Of these cases, 875 (3.11%) patients died within 30 days 
post-TAVI. Further, 6693 interventions (205 (3.06%) with event for 
30-day mortality) recorded in SwissTAVI were used for external valid-
ation (Figure 1).

The mean age of patients was 81 ± 6.1 years, and 13 185 (46.8%) 
were men. The mean STS score was 5.9 ± 4.6. (Additional baseline 
population characteristics: Supplementary material online, Tables S1– 
S3).

Missing values
Of the 155 variables used in TRIMpost 104 do not have a missing entry. 
Further 34 have less than 5% missing values, further 6 have less than 
20% missing values, and only 9 have more than 30% missing values. 
The character of the missing values cannot be assumed to be MCAR. 
When testing for independence between the missing indicator and 
the outcome, 13 of the 51 variables with missing values show significant 
dependencies. This is also supported by the Jamshidian and Jalal’s non- 
parametric MCAR test on the 25 numeric variables with missing values 
(Anderson–Darling test, P < 0.001). Therefore, a more involved imput-
ation by multiple imputation by chained equations was employed and 

the model predictions averaged. Neither the classification performance 
nor the variable importance was affected much, so that we went with 
the simpler imputation for the remainder of the manuscript (see 
Supplementary material online, Figure S4).

Feature selection, performance, and 
comparison to previous models
We established RF models that condensed several patient features that 
are available prior to (TRIMpre) or (in addition) immediately after TAVI 
(TRIMpost) into risk scores. While risk prediction prior to TAVI (as in 
TRIMpre) is useful to guide treatment decision between TAVI and open 
surgery, risk prediction immediately after TAVI (as in TRIMpost) is use-
ful to guide postprocedural decisions on intensification or de-escalation 
of monitoring, therapy, discharge, and follow-up frequency.

TRIMpre takes advantage of 97 features (see Supplementary material 
online, Table S4), achieving an AUC of 0.74 (95%-CI [0.70; 0.78]) on the 
GARY test set which was significantly superior to any of the examined 
traditional scores (P = 0.019 in comparison to STS score calculated on 
the same data, see Supplementary material online, Figure S5). Using the 
cutoff corresponding to the Youden index sensitivity and specificity are 
0.587 and 0.781 compared to 0.514 and 0.792 for STS (Table 1). An 
abridged version of TRIMpre (aTRIMpre), which is easily manageable 
manually, exhibited not only overlapping features, but also equal per-
formance to that of established scores, suggesting that the superior 
performance of TRIMpre depends on several informative features. 
Likewise, for TRIMpost, RF performance continued to improve with 
more features and reached its maximum with the entire 155 feature-set 
(see Supplementary material online, Figure S6 and Tables S4 and S5). A 
steep increase in prediction performance was observed until 25 fea-
tures. Therefore, the setting with 25 features was chosen for the 
aTRIMpost score. Both TRIMpost (AUC = 0.78; 95%-CI [0.74; 0.82]) 
and aTRIMpost (AUC = 0.74; 95%-CI [0.70; 0.78]) performed signifi-
cantly better than STS (P < 0.001 and P = 0.034, respectively) and any 
of the established scores on the GARY test set (Figure 2A–D). 
Sensitivity and Specificity at the cutoff corresponding to the Youden in-
dex amount to 0.726 and 0.725 (TRIMpost) and 0.562 and 0.788 
(aTRIMpost, Table 1). Despite some variations, those scores performed 
comparably on our data (AUCs between 0.678 and 0.698). Since only 
28 out of 40 features (TVT(NYHA)) and 27 out of 42 
(TVT(GaitSpeed)) are part of GARY, lower performance values for 
TVT(NYHA) (AUC = 0.623; 95%; CI [0.569–0.676]) and 
TVT(GaitSpeed) (AUC = 0.595; 95%-CI [0.542–0.647]) were ob-
served. True tables for the TRIM scores and STS binarised at the 
Youden index can be found in Supplementary material online, Table S6.

SwissTAVI also differs markedly from GARY: We were able to ex-
tract or infer 78 (49.7%) of the 157 variables used by TRIMpost in 
SwissTAVI. Similarly, for aTRIMpost, TRIMpre, and aTRIMpre, only 
63.0%, 49.5%, and 66.7% of the variables could be inferred in 
SwissTAVI (see Supplementary material online, Tables S4 and S5). 
Despite the many missing variables aTRIMpre (AUC = 0.66; 95%-CI 
[0.62; 0.70]) and aTRIMpost (AUC = 0.67; 95%-CI [0.63; 0.71]) per-
formed comparably to STS (AUC = 0.67; 95%-CI [0.63; 0.70]), 
TRIMpre (AUC = 0.69; 95%-CI [0.65; 0.72]) performed numerically 
better than STS and TRIMpost (AUC = 0.75; 95%-CI [0.72; 0.79]) sig-
nificantly outperformed STS (P < 0.001; Figure 2E and see 
Supplementary material online, Figure S7).

We observed overestimation of the event risks (Figure 2F–G, see 
Supplementary material online, Figure S8) in the TRIM and, to a lower 
extent, STS score. The selection of patients with events with increased 
probability during training, which we implemented to address the class 
imbalance, leads to an overestimation of the prevalence of events. 
When we omitted the up-weighting of the minority and counteracted 
the expected time-effect by disregarding the first 100 TAVI 
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interventions per hospital, a more favourable calibration was achieved 
(see Supplementary material online, Figure S9) at the cost of numerically 
lower classification performance (AUC = 0.78; 95%-CI [0.74; 0.82]). 
Thus, we stay with the proposed TRIM scores.

When factored into multi-variable logistic regression models includ-
ing age and STS, the TRIM scores proved to be independent predictors 
of 30-day mortality on the GARY test set (TRIMpre: OR = 1.13; 
95%-CI = [1.10; 1.16]; P < 0.001; TRIMpost: OR = 1.17; 95%-CI = [1.14; 
1.20]; P < 0.001) and provided incremental prognostic significance 
(TRIMpre: change in model χ² = 67; P < 0.001; net reclassification improve-
ment (NRI) = 0.54; P < 0.001; TRIMpost: change in model χ² = 138; P <  
0.001; NRI = 0.70; P < 0.001), which showed that the ML algorithm did 
not simply relearn the STS score (Figure 2H and I).

Variable importance and partial 
dependency profiles
In TRIMpost, the duration of the intervention and fluoroscopy emerged 
as the most influential variables followed by serum creatinine level 
(Figure 3A). Among the 20 most important variables were also basic 
characteristics including weight, height, and age and expected echo 
parameters (peak AV gradient [Pmax], mean AV gradient [Pmean], 
LVEF, and pulmonary artery pressure [PAP]). Other contributing para-
meters were TAVI related, including aortic annular diameter, minimal 
iliac artery diameter, and heights of the right and left coronary arteries. 
Variable importance for the TRIMpre is provided in the Supplementary 
material online, Figure S10.

N = 135,414
interventions in GARY

all interventions in 2011-2017

N = 51,863
TAVI interventions

N = 43,055
transvascular interventions

N = 39,783
completed TAVI interventions

N = 28,147
known status at 30 days

N = 22,283
training set

interventions in 2011-2016

N = 5,864
test set

interventions in 2011-2016

N = 6,693
external validation data

SwissTAVI

removed:
N = 83,441 surgical valve replacement
N = 110 without valve replacement

removed:
N = 8,808 transapical access

removed for post TAVI prediction only:
N = 3,104 conversion to surgery
N = 168 exitus in tabula

N = 7,636 without outcome annotation
N = 4,000 with explicitely missing outcome

Figure 1 Description of the patient cohort for training, test, and external validation. Starting with all interventions in GARY from 2011 to 2017, the 
dataset was split into training (2011–2016) and test sets (2017). The TRIM scores were developed on the training set, the performance was assessed on 
the test set. Data from SwissTAVI was available for external validation.
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Breakdown plots can be displayed for any individual and are part of 
the online tool for the aTRIMpost score for enhanced interpretability 
and transparency. For example, we display the contributions of indi-
vidual variables to the outcome of the most extreme test set patient 
(the individual with the highest predicted TRIM score) in Figure 3C. 

Even in this very obvious high-risk case, no single variable was clearly 
dominant.

Although variables integrating intraprocedural complications and 
possibly operator skills (e.g. fluoroscopy duration and contrast use) ex-
pectedly reflected increased risk, most profiles of established variables 

A B E

F

C D

G

H I

Figure 2 Performance and characteristics of TRIM scores. The ability to correctly predict 30-day mortality directly post-TAVI was assessed via ROC 
analyses. (B) Compares TRIMpost and several established scores. The dashed line on the diagonal shows the performance of an uninformative predic-
tion. (A) Shows the area under the ROC curves as a measure of predictive performance with 95%-CI and pairwise comparisons against the performance 
of existing scores. (D) and (C ) depict analogous results for aTRIMpost. (E) depicts analogous results for the external validation data (SwissTAVI). (F )-(G) 
Calibration Plots: The proportion of events as observed (bars) with 95%-CI and predicted (lines) for STS (F ) and TRIMpost score (G) when evaluated 
for the test data (n = 5889). The derived TRIM Scores offer predictive information exceeding the STS alone, as they are strongly predictive for short 
term survival independent of the STS: Panels H (TRIMpre) and I (TRIMpost) show model coefficients (as odds-ratios) with 95%-CIs and associated P 
values against the null hypothesis of no association from multi-variable logistic regression models for 30-day mortality on the GARY test cohort (n =  
5889). CI, confidence interval; OR, odds ratio.
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were non-linear and with complex patterns of influence which are not 
easily graspable by a clinician or detected or modelled conventionally, 
thus supporting computational decision-support (Figure 4).

Potential application: early discharge 
recommendation
When accepting a risk of 1% for mortality within 30 days using a 
TRIMpost score cut-off <10.5, 72.2% of the cases in our test cohort 
would be candidates for early discharge. According to STS score, only 
1812 (31%) were candidates for early discharge at the same risk level 
(Table 1). As the retrospective data does not tell how many of the 

surviving patients did survive only due to life-saving in-hospital treatment, 
we analysed the fractions of patients with complications as a proxy. 
Mediastinitis, any cerebral event, rupture of a vessel, dissection, bleeding, 
hematoma, and ischemia were regarded as serious complication. In the 
GARY test data, 506 (8.6%) of the 5864 patients suffered a serious com-
plication. We found that among the 4236 patients predicted as discharge-
able by TRIMpost at the 1% risk level were 309 (7.3%) with a serious 
complication. This fraction is significantly lower than in the patients not 
predicted as dischargeable (Fisher’s exact test, P < 0.001). Among the 
1812 patients marked as dischargeable by STS at the same 1% risk level 
there were 141 (7.8%) with a serious complication which is not significant-
ly lower than in the patients not marked as dischargeable (Fisher’s exact 
test, P = 0.13).

A B C

D E F

Figure 3 Variable importance. (A) Shows the 20 most important variables in TRIMpost score to predict 30-day mortality post-TAVI ordered by their 
contribution (importance) in discriminating the survivors from non-survivors. These values quantify how prominently the variables are used in the 
trained TRIMpost model. (B) and (C ) exemplify interrogation of the trained model for the variable contribution in the prediction for two (most ex-
treme) specific patients from the test set: Data of the patient with the highest (B) and the lowest (C ) predicted survival probability are shown. 
These plots are meant to be interpreted from top to bottom: each row shows the change in the predicted TRIMpost score induced by the indicated 
variable. The variables are ordered by the size of this induced change in prediction and the top 10 influential variables are shown. Note that these con-
tribution values are specific to the cases shown and since they are ordered by size these will induce an order that is typically different from the order of 
the variable importance values in (A). (E), (F ), and (G) depict analogous results for aTRIMpost, i.e. where the most important 25 features are used in the 
training of the ML risk score. These plots are displayed individually for each patient in the score calculator app (see Supplementary material online, 
Figure S3).
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Discussion
TRIM scores improve prediction of 
short-term mortality
Outdated risk models and a lack of clearly superior alternatives raise a 
need for updated and clinically meaningful risk scores in TAVI.35 Using 
ML we, thus, developed and validated a risk score from one of the world’s 
largest TAVI registries based on the prediction of 30-day mortality. Our 
ML-based TRIMpre score outperformed widely established risk scores 
and showed better performance on our test data than recently published 
ML models trained on less data reported from their respective test data 
sets5,8 and TRIMpost is an entirely new tool for objective postinterven-
tional risk estimation after TAVI. The superior accuracy of the TRIMpost 
models argues for post-procedural adjustment of preoperative risk as-
sessment to better accommodate risk after TAVI has been performed.

Integration of ML-based decision-making has been anticipated to oc-
cur across all phases of patient care and yield valuable predictors for 
post-procedural care.11 In contrast to the popularity of models asses-
sing risk before TAVI including guideline recommendations, objective 
awareness of postoperative risk is much less developed; although im-
portant postprocedural decisions (on intensification or de-escalation 
of monitoring, therapy, discharge, and follow-up frequency) require 

consideration of the short-term mortality risk. Indeed, our data suggest 
that the preoperative risk does not simply propagate, but depends con-
siderably on several intraprocedural events, justifying the use of a spe-
cific post-TAVI score. Moreover, TRIMpost can be useful for research 
applications such as covariate adjustment in randomised controlled 
trials considering post-TAVI care. Finally, examining the difference be-
tween TRIMpre and TRIMpost risk is suitable for measuring or bench-
marking the quality of the interventional procedure, and the difference 
between TRIMpost and observed mortality is suitable for examining the 
quality of post-interventional care.

Potential clinical implications: earlier 
discharge
The patients and health care system would benefit from a TAVI-based 
risk score (together with clinical judgement) if patients can be safely dis-
charged early after the intervention. While we do not suggest to solely 
rely on a score for obvious limitations, there are also limitations of clin-
ical judgement in clinical practice that can be meaningfully addressed 
with a score. For example, a same day discharge decision based on clin-
ical judgement alone might be re-evaluated in light of a high TRIMpost, 
or a low TRIM score might provide objective re-assurance. In this con-
text, accepting a risk of 1% for mortality within 30 days TRIMpost 

Figure 4 Profiles of influence. For each of the variables in Figure 3 (A) the partial dependency profile is displayed. Each shows the influence of the 
variable on the predicted TRIMpost as an average across the full dataset. In individual patients, the value of variable of interest is changed across the 
range of the observed values while all other variables are kept fixed. The plots show the resulting prediction profiles as mean with 95%-CI across pa-
tients. CI, confidence interval.
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would identify more than twice as many candidates for early discharge 
than the STS. We compared the task-specific ‘post’ score (TRIMpost) 
to the STS score mainly to highlight the added value of a formalised 
post-interventional adjustment of pre-interventional risk estimation. 
Reducing the accepted mortality risk even lower to nearly 0%, 
TRIMpost selects 5 times as many patients as the STS score (Table 2).

In a prospective setting, the number of candidates for early discharge 
will likely be lower, as 7.3% of the candidates suffered from a serious 
complication and might have been survivors mainly due to life-saving in- 
hospital treatment. But interestingly, TRIMpost seems to pick up on 
serious complications, too, as there were significantly less patients 
with serious complications among the candidates for early discharge 
than among the remaining patients (P < 0.001). This was not the case 
for STS-derived candidates for early discharge (P = 0.13).

Of course, TRIMpost should only be applied in combination with 
additional parameters to decide on the safety of early discharge, war-
ranting future updates and prospective validation.

Digitalization will enable the use of highly 
complex scores
Although physicians are capable of risk estimation, ML-based methods 
are less subjective, model non-linear relationships and complex inter-
dependencies and significantly benefit from feature rich data. With 

developments in digital hospital information infrastructure, automated 
rather than manual data entry into scoring models will become routine, 
removing any limit on the number of features entered, and certainly the 
full TRIMpost score (considering 155 variables) requires automated 
data entry from a hospital information system. Hence, we anticipate 
that feature-rich models will soon be automatically calculated routinely 
to update physicians about risks along the entire stay of the patient. 
ML-based methods are especially strong in such feature rich situations 
where they can pick up on complex interdependencies between vari-
ables. In situations with limited numbers of variables (such as the 
aTRIM scores) this advantage is lost to some extent.

In case manual data entry or a more transparent calculation is de-
sired, we have however provided abridged versions (aTRIM). The 
aTRIMpost score was trained on 25 data driven selected features and 
implemented in an interactive web app that is easily usable in clinical 
practice (for example, the STS-AVR requires 34 features to be entered, 
which we consider to be the upper limit for a manually operated scor-
ing system). Interpretability is a crucial component in the translation of 
an ML method to clinical practice.36 For each individual, our web app 
graphically displays the risk context and interpretation support rather 
than only the calculated score (see Supplementary material online, 
Figure S3).

Meaningful performance evaluation
As with classical statistical risk scoring, careful data pre-processing, se-
lection of potential predictors, and handling of missing values are crucial 
components of successful ML training. We deliberately excluded pa-
tients with a conversion from TAVI to SAVR from the post-TAVI pre-
diction models as predicting high risks for such patients is trivial and 
does hardly require decision support tools. Additionally, we limited 
the variables to those that are known directly post-TAVI for decision 
support that is applicable in truly fast discharge settings. In contrast, 
Hernandez-Suarez et al. included severe in-hospital complications in 
their risk score, which adds several patients to the dataset that are easily 
classified as high-risk even without ML.4 The addition of such cases tre-
mendously improves overall classification performance, but without in-
creasing accuracy in a modern scenario, where the possibility of 
discharge is most often decided on the day of the procedure or the first 
post-procedural day. Moreover, we validated TRIM not against a subset 
of all data, but only against the most recent year available, whereas 
training was performed across a set of earlier years. Again, this reduced 
the apparent overall classification performance, but addresses more 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Performance measures on binary predictions. 
Predictions on the GARY test data were binarized 
according to the Youden index into ‘highrisk’ and 
‘lowrisk’ predictions

Model Sensitivity Specificity PPV NPV

STS 0.514 0.792 0.059 0.985

TRIMpost 0.726 0.725 0.063 0.990

aTRIMpost 0.562 0.788 0.063 0.986
TRIMpre 0.587 0.781 0.074 0.984

aTRIMpre 0.593 0.733 0.062 0.984

For each of the TRIM scores as well as for STS this table shows the sensitivity, specificity, 
positive predictive value (PPV) and negative predictive value (NPV) of the resulting 
classification

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Number and percentage of candidates for early discharge in the test data depending on chosen risk model. Of 
all patients with a calculated risk score below the given threshold an estimated 1% (top part) or 0% (bottom part) died 
within 30 days. FN, number of false negatives

accepted mortality risk [%] Risk score N Number of candidates for  
early discharge

[%] FN Threshold

1 GAVS I 5732 1301 22.7 13 2.78

Euro I 5800 1669 28.8 16 9.77

Euro II 5745 69 1.2 0 1.12
STS 5849 1812 31 18 3.39

TRIMpost 5864 4236 72.2 42 0.10

0 GAVS I 5732 21 0.4 0 0.58
Euro I 5800 66 1.1 0 3.65

Euro II 5745 69 1.2 0 1.12

STS 5849 26 0.4 0 1.15
TRIMpost 5864 130 2.2 0 0.04
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adequately that TAVI is a moving field. Despite this stringent (and more 
meaningful) approach, we found C-statistics for TRIMpost and 
aTRIMpost of 0.78 and 0.74, respectively. This level of performance 
matches many guideline recommended clinical scores (including the 
Heart Failure Survival Score,37 the Seattle Heart Failure Model,38 the 
EuroSCORE II,21 and the MIDA mortality risk score.39)

Interpretable ML allows valuable insights
In addition to predictive analytics, our analysis yielded valuable insights 
into the determinants of postprocedural risk. Most variables are either 
known as strong predictors or intuitively plausible. High aorto- 
ventricular pressure gradients correlate inversely with the risk and 
may recapitulate LV function and the potential procedural gain in car-
diac output and left ventricular unloading. In contrast to previously es-
tablished scores, some variables were less expectedly informative in 
aTRIMpost: LCA and RCA heights may reflect the risk of prosthesis re-
lated coronary occlusion, but (due to non-linear relation and a rare 
event rate) could also reflect additional more occult aspects of aortic 
root anatomy. The informative variable ‘month of TAVI’, peaking 
from January to March, could simply indicate that influenza and 
pneumococcus vaccination deserve more attention to reduce mortality 
in this elderly cohort.

External validation and robustness of the 
TRIM scores
We could validate the TRIM scores externally on data of the SwissTAVI. 
The differences in the recorded data were remarkably large between 
SwissTAVI and GARY. Despite our best efforts to extract or recon-
struct the variables used in the TRIM scores, we were able to match 
50–66% (depending on the TRIM score) of the variables only. The large 
fraction of missing values exists although the variables collected in 
GARY can be considered quite standard and routinely collected vari-
ables and is due to different foci given in the two national registries. 
Given that up to 50% of the training variables were missing from the 
SwissTAVI validation data, the TRIM scores proved highly robust: all 
TRIM scores performed comparably to the STS while TRIMpost still sig-
nificantly outperformed the STS also in this external validation.

Limitations
This study has some limitations. Despite consideration of a wide range 
of features, to date all models rely on patient record data and are there-
fore incomplete. However, TRIM may advance objectivity in the 
process of risk estimation and provide valuable guidance: According 
to a comment in a recent systematic review, ‘even models with poor 
C-statistics (e.g. C∼0.6) may be useful (when used in conjunction with 
clinical judgement) in a situation that does not have one outcome or 
choice that is clearly better or more likely than another’.35 The same 
authors attribute models with C-statistics levels >0.8 (which is very 
close to that of TRIMpost) with ‘strong support to guide medical 
decision-making and can reliably indicate whether a patient will experi-
ence an event’.

We had to exclude cases due to missing endpoint annotations. We 
did not observe an obvious bias in the excluded cohort. Patients in the 
lower NYHA classes exhibited the endpoint slightly more often, but 
interestingly the distribution of the risk groups did not differ much 
between patients with and without endpoint annotation (see 
Supplementary material online, Table S7).

There is a time gap between the analyzed cohort and future cases to 
be predicted. This is similar to other risk scores developed on registry 
data, e.g. the MIDA score published in 2018 was adopted by the 2021 
ESC guidelines for valvular heart disease1 and was derived on patient 
data from 1980 to 2005.39 However, the TRIM score is more up to 

date than the more established scores and we anticipate a uniform 
overestimation—as visible in the calibration—of patient risk as the 
main consequence. This can be mitigated by simple rescaling of the re-
sulting risk scores, and we suggest updating TRIM every 5 years to take 
advantage of the continuously growing GARY cohort similar to updates 
in other scores, e.g. FRANCE-2 and ACC-TAVI.40 Although TAVI has 
become a very standardised procedure, ideally, additional data from dif-
ferent countries or regions of the world and imaging data should be in-
cluded in the future to further improve individualized decision support.

Conclusions
In conclusion, the mortality risk before and after TAVI was calculated and 
condensed in newly developed TRIM scores based on the large GARY 
patient cohort and ML. TRIM scores advance preprocedural and post-
procedural risk assessment, integrating relevant information from the 
course of TAVI treatment with strong predictive performance.

Supplementary material
Supplementary material is available at European Heart Journal – Digital 
Health.
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