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Purpose: Arterial blood gases change frequently during anesthesia and

intensive care. Apnea can occur during diagnostic exams and airway and

surgical interventions. While the impact of blood gas levels on coronary

blood flow is established, their confounding e�ect on coronary vasoreactivity

in response to an apneic stimulus, especially in coronary artery disease, is

not known.

Methods: Six anesthetized control swine and eleven swine with coronary

artery stenosis were examined. Nine di�erent blood gas levels from a

combination of arterial partial pressure of oxygen (70, 100, and 300 mmHg)

and carbon dioxide (30, 40, and 50 mmHg) were targeted. Apnea was induced

by halting controlled positive pressure ventilation for 3–30s, while the left

descending coronary artery flow was measured and reported relative to apnea

duration, and at the adjusted mean (12s).

Results: At normoxemic-normocapnic blood gas levels, apnea increased

coronary blood flow in proportion to the duration of apnea in the control

(r = 0.533, p < 0.001) and stenosed groups (r = 0.566, p < 0.001). This

culminated in a 42% (95% CI: 27–58) increase in controls (p < 0.001)

and, to a lesser extent, 27% (15–40) in the presence of coronary artery

stenosis (p < 0.001). Vasoreactivity was augmented by mild-hypoxemic levels

[81% (65–97), and 66% (53–79) increase in flow respectively, p < 0.001 vs.

normoxemia], but markedly reduced during hyperoxia (7.5% (−8.2–23) and

0.3% (−12–13), respectively, p < 0.001 vs. normoxemia).

Conclusion: Alterations of blood oxygen and carbon dioxide a�ect coronary

vascular reactivity induced by apnea in swine, which was attenuated further in

the presence of coronary stenosis. Especially hyperoxia significantly reduces

coronary blood flow and blunts coronary vascular reactivity.
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Background

Adequate coronary blood supply is the key component

of oxygen homeostasis and failure to adequately perfuse the

myocardium can lead to myocardial ischemia. The heart has

a very high oxygen (O2) consumption. Coronary blood flow

is carefully controlled in response to factors such as oxygen

demand and perfusion pressures [1, 2]. Several metabolic

substances act as physiologic vasodilators. Increased adenosine

production, high partial pressures of carbon dioxide (PaCO2),

and low partial pressure of oxygen (PaO2) are all positively

correlated with coronary blood flow, with a particularly strong

effect on microvessels [1, 3–5]. Hypocapnia and hyperoxia

on the other hand trigger vasoconstriction with a subsequent

reduction in blood flow [6, 7]. Persistent changes in coronary

blood flow, as well as temporary adaptations, are subject to local

metabolic blood flow regulation.

Therapeutic strategies in fields such as anesthesia and

intensive care focus on maintaining adequate oxygenation

and perfusion pressure to secure the oxygenation of vital

organs. Physiological responses in the patient along with

external influences such as medical interventions can modulate

PaO2 and PaCO2 in the blood, resulting in a combination

of hypoxemic to hyperoxic and hypocapnic to hypercapnic

environments [8–10]. Due to the aforementioned impact of

metabolites on coronary vasculature, prolonged exposure to

these blood gas states has the potential to shift coronary blood

flow to a new equilibrium or steady state [5, 6, 11]. Published

evidence for the vasoconstricting effects of hyperoxia has been

under-appreciated, and only during recent years, a stronger

awareness of the potentially detrimental effects of hyperoxia

has emerged, especially for emergency medicine, intensive,

and perioperative care. These negative effects include the

development of cardiovascular dysfunction, myocardial injury,

higher rates of cardiovascular adverse events, and mortality

[12–17]. In addition to sustained changes in coronary blood

flow, transient and fast-acting vasodilatory stimuli are vital

feedback responses that increase blood flow and oxygen supply

to the tissues in a short timeframe to avoid ischemia. Apnea

is an example of a short-acting stimulus, it occurs frequently

during anesthesia and induces vasodilation as a feedback

mechanism in the coronary and cerebrovascular systems [18–

20]. Apnea as short as even 10s is known to lead to a detectable

hyperemic response in cerebral and myocardial tissue [21–

24]. While the gradual and transient responses to vasoactive

stimuli present in anesthesia and intensive care environments

have been individually investigated, data are scarce on potential

interactions from a combination of these mechanisms. This can

be of concern if certain combinations attenuate or even block

hyperemic responses, thereby predisposing myocardial tissue to

inducible ischemia. In particular, data are not yet available on

how clinically relevant deflections in PaO2 and PaCO2 may alter

the coronary vascular response to apneic stimuli.

In an experimental model, we assessed the impact of baseline

blood gas levels on the coronary reactivity to a vasodilatory

stimulus induced by a short apnea in swine with and without

significant coronary stenosis.

Materials and methods

This study was conducted in accordance with the Guide to

the Care and Use of Experimental Animals by the Canadian

Council on Animal Care and approved by the local Animal Care

and Use Board.

Surgical preparation

Seventeen, juvenile, healthy swine (32 ± 2 kg, 4–6 months,

Yorkshire-Landrace) were included in the study [11, 19]. Swine

were premedicated with 4ml Telazol IM (200mg tiletamine,

200mg zolazepam), and intubated after 2–4 mg/kg propofol

IV. Anesthesia was maintained with propofol (4–36 mg/kg/h

IV) and remifentanil (0–3.5 µg/kg/min IV) as required.

Percutaneous cannulation of the femoral artery and vein was

performed for drug and fluid administration and the collection

of blood gas and invasive blood pressure measurements. For

analysis of coronary blood flow, an ultrasound flow probe was

surgically implanted on the proximal left anterior descending

(LAD) coronary artery of all swine (Transonic Systems,

Ithaca, NY, USA), requiring a left-sided thoracotomy (Figure 1)

[25]. Six swine served as controls, while in eleven swine, a

hemodynamically relevant coronary artery stenosis was induced

using a perivascular hydraulic occluder (In Vivo Metric, CA,

USA). The severity of the stenosis was guided by fractional

flow reserve (FFR, St. Jude Medical, MN, USA) to target a

trans-stenotic FFR of < 0.75 as described before [19].

Experimental protocol

Approximately 60min after completion of the surgical

procedure, arterial blood gas levels were targeted to nine levels

of different combinations in arterial PaO2 and PaCO2 that

can realistically be encountered in clinical scenarios: PaO2 of

70, 100, or >300 mmHg (mild hypoxemia, normoxemia, and

hyperoxia) and a PaCO2 of 30, 40, or 50 mmHg (hypocapnia,

normocapnia, and hypercapnia). The normal gas level of

normoxemic normocapnia (PaO2 = 100, PaCO2 = 40 mmHg)

was applied twice, first at the beginning and then in a random

order together with the other levels to assess if baseline vascular

tone changed during the protocol and as a quality control to

exclude fluctuations or drift of blood flow as a function of time

or other unknown confounders. These nine levels were classified

as steady-state levels, indicating hemodynamics and blood gases
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FIGURE 1

Surgical placement of the occluder and flow probe. Situs after surgical placement of the perivascular occluder (A) and the blood flow probe (B)

on the left anterior descending coronary artery (LAD). Left panel, Explanted heart; right panel, fluoroscopy in the same swine in-vivo; LAD, left

anterior descending.

FIGURE 2

Response of coronary blood flow to breath-holds. The coronary flow read-out of the LAD shows that in a healthy test swine at normocapnic

normoxemia (green, PaO2 = 100 mmHg), end-expiratory breath-holds of 8 to 12s (block markers) nearly doubled the coronary blood flow

before returning to baseline. In the same subject, during mild normocapnic hypoxemia (red, PaO2 = 70 mmHg) resting blood flow was higher,

and apnea of the same duration induced a greater temporary blood flow, while normocapnic hyperoxia (blue, PaO2 > 300 mmHg) reduced

steady state blood flow and the response to apnea was minimal.
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remained stable and were not fluctuating at the time of data

acquisition. After arterial blood gas levels were stabilized for at

least 5min, up to six episodes of apnea were induced after a

steady state of each blood gas level was reached using an end-

expiratory pause in ventilation. Apnea duration ranged from 3

to 30s. Flow results were expressed as absolute blood flow values

(ml/min) and as the percent apnea-induced change (%) from

the steady-state conditions to measure coronary vasoreactivity.

The blood flow at each steady state was compared between

the gas levels and the normoxemic-normocapnic 100/40 mmHg

(PaO2/PaCO2) level within each group. The temporary blood

flow response was assessed for its correlation with the duration

of apnea, for differences between gas levels, and the impact of

coronary artery stenosis. Finally, 200mg propofol and 40 mmol

KCl (i.v.) were administered for euthanasia.

Statistical analysis

A univariate analysis was performed to investigate the

change in coronary flow, in response to the duration of apnea.

A within-subject correlation analysis was performed to compare

the absolute and percent-change response (%) of the blood flow

to apnea, accounting for both repeated measurements within

each individual, and different individual intercepts. To examine

the differences between groups and blood gas levels, a two-

way mixed effect model was performed with an unstructured

covariance and restricted maximum likelihood estimation. The

model used the duration of apnea as the covariate and allowed

for random intercepts of each individual. The absolute blood

flow and magnitude of the flow responses were assessed at

each blood gas level between the control and stenosed groups.

Within each group, this flow response at each blood gas level

was compared to baseline (100/40 mmHg), using the Bonferroni

method accounting for multiple comparisons. The response in

coronary blood flow was assessed for both the flow response in

relation to the duration of apnea and calculated for an adjusted

mean apnea time. Angiography and hemodynamic measures

are presented as mean ± SD, while the remainder of data

produced from mixed effect models are reported as estimated

marginal means (upper and lower bounds of 95% confidence

intervals). The tests were performed with GraphPad Prism

version 9.0 for Mac OS (GraphPad Software, California USA),

and R Software (version 3.4.4, “rmcorr” package) [26]. The

results were considered statistically significant with a two-tailed

P-value of <0.05.

Results

In the six control swine, 279 breath-holds were recorded.

In one swine with coronary artery stenosis, fatal ventricular

fibrillation occurred during the coronary intervention, resulting

TABLE 1 Coronary blood flow relative response (%) to apnea.

Healthy Stenosed

paO2/paCO2(mmHg) % p % p

Mild hypoxemia

70/30 69 (65–97) <0.001* 64 (52–76) <0.001*

70/40 81 (65–97) <0.001* 66 (53–79) <0.001*

70/50 50 (34–66) <0.001* 45 (33–58) <0.001*

Normoxemia

100/30 56 (40–72) <0.001* 51 (38–63) <0.001*

100/40 42 (27–58) <0.001* 27 (15–40) <0.001*

100/50 32 (16–48) 0.01* 22 (10–34) 0.01*

Hyperoxia

300/30 11 (−6.7–28) 0.110 6.5 (−5.9–19) 0.29

300/40 7.5 (−8.2–23) 0.37 0.3 (−12–13) 0.96

300/50 6.7 (−9.2–23) 0.42 2.4 (−10–15) 0.69

Estimated mean flow responses (%) are reported with the upper and lower bounds of the

95% confidence intervals. The percent change is reported between the coronary blood

flow measurement at the steady state (taken prior to the apnea) in comparison to the

blood flow measurement obtained at apnea (statistically defined adjusted mean apnea

duration at 12 s).

*p < 0.05 represents a significant change in blood flow (flow measurements in ml/min

are provided in Figure 3 and Supplementary Table 2).

Bold text represents the baseline level.

in ten swine with coronary artery stenosis and 432 breath-holds.

The mean FFR was 0.63 ± 0.05, (range 0.54–0.74), with a mean

diameter stenosis of 63 ± 11%, (range:52–86%). Blood pressure

and arterial oxygen saturation (SaO2) for each level are provided

in Supplementary Table 1.

Steady-state coronary blood flow

There was no difference in the coronary flow recordings

between the two sets of measurements obtained at different

times during the procedure at the normal gas level (p = 0.614).

Targeting the different blood gas level combinations impacted

the coronary blood flow creating a new steady state different

from the 100/40 mmHg baseline (Supplementary Table 2). In

both the control and stenosis groups, the combination of mild

hypoxemia and hypercapnia significantly increased flow from

the baseline of 100/40 mmHg, whereas some hyperoxic levels

decreased flow.

Mean coronary vascular response to an
apneic stimulus

As seen in Figure 2, at the normoxemic-normocapnic

baseline (100/40 mmHg), short breath-holds were able to

significantly and transiently recruit coronary blood flow. In

controls, a 42% increase (p < 0.001) was observed by 12s of
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apnea reaching an adjusted mean blood flow of 36 (25–50)

ml/min from a steady-state blood flow of 26 (19–34) ml/min

(Table 1, Supplementary Table 2). A significant 27% (p < 0.001)

increase was also observed in the swine with stenosis from a

baseline flow of 21 (17–26) ml/min, yet the flow response was

significantly lower in the stenosis group (p= 0.01, Figure 3).

Mean coronary vascular response to
apnea with deviated steady-state blood
gases

Mild-hypoxemia (PaO2 = 70 mmHg) and hyperoxic

(PaO2 = 300 mmHg) steady states significantly impacted

the blood flow response to apnea in comparison to the

response observed at physiological blood gases (100/40 mmHg,

Supplementary Figure 1). At a PaO2 = 70 mmHg, the blood

flow response was significantly augmented for all PaCO2 levels

(p < 0.001). An increase of at least 50% (34–66) was induced

by apnea in controls and by 45% (33–58) in stenosed subjects

(Table 1). However, in all hyperoxic levels for both groups,

there were no significant flow changes from baseline values

(Figure 3, Supplementary Table 2). Once breathing restarted,

blood flow returned to the steady state of each arterial blood gas

level’s baseline.

Coronary vascular response in relation to
apnea duration

Analysis was then performed to assess if there was a linear

relationship between the flow response and the duration of

apnea (Figure 4) and if this differed between groups. In both

the control (r = 0.533, p = 0.01) and stenotic groups (r=0.566,

p < 0.001), the flow response was positively correlated to a

longer apnea duration. Similar to the normal blood gas level,

all other normoxemic levels with different PaCO2 responded

linearly to the stimuli as well (Figure 4). Apart from hyperoxic-

hypocapnia (300/30 mmHg) in controls, no linear relationship

was observed for any other hyperoxic level in any group with the

duration of apnea, as flow did not increase despite longer apneic

stimuli. Moreover, only at normoxemic normocapnia, was this

apnea duration-dependent coronary flow response significantly

lower in the stenotic group in comparison to the control group.

At all other arterial blood gas levels, the presence of coronary

artery stenosis could not be distinguished based on the coronary

blood flow response.

Discussion

Our experimental results demonstrate that in an

anesthetized model, shifts in arterial blood gases impact

the steady-state coronary blood flow, while short apnea stimuli

under 30s result in a significant transient increase in coronary

blood flow proportionate to the duration of apnea. This

regulatory response to apnea however is confounded by varying

PaO2. Mild hypoxemia augmented both steady-state coronary

flow and the flow response to apnea, even in the presence of

significant coronary stenosis, while arterial hyperoxia resulted

in a reduction of steady-state coronary flow and blunts the

coronary vascular response to apnea, independent of the

presence or absence of severe coronary artery stenosis.

Clinical situations of altered arterial
blood gases

The blood gas levels targeted in this study are considered

mildly abnormal but are frequently encountered in clinical

scenarios, including in spontaneously breathing patients, during

anesthesia procedures, and during mechanical ventilation. For

example, while PaCO2 values of 38 to 40 mmHg would be

considered normal in awake humans [27], a recent study found

that 34% of patients with acute heart failure were hypercapnic

(PaCO2 > 45 mmHg) at the time of admission, while 33%

(PaCO2 < 35 mmHg) were hypocapnic [9]. Additionally, a

temporary change in breathing patterns alters PaCO2 and

thus coronary vascular reactivity as well, e.g., the change

caused by hyperventilation in patients with anxiety. This

also applies to hypoventilation in patients with sleep apnea.

It has been reported that sleep apnea results in a higher

cerebrovascular reactivity, counter-intuitive to the assumption

that an adaptation to repetitive hypercapnic and hypoxemic

events during the night attenuates this response [28–30]. In

general, anesthesia fluctuations of PaCO2 occur frequently.

Certain surgical procedures such as capnoperitoneum during

laparoscopic surgery shift steady-state blood flow, while other

procedures may require a forced apnea such as imaging

exams, or require low tidal volumes or even jet-ventilation

that makes the elimination of end-tidal CO2 more difficult.

Newer practices even advocate for extended apnea periods for

some interventions using high-flow nasal oxygen therapy to

secure oxygenation with and without apnea [31, 32]. Profound

increases in PaCO2 up to 89 mmHg triggered by apnea have

been reported in these cases and the effects on coronary function

have yet to be assessed [33]. The administration of opioids

reduces respiratory drive and may potentially lead to an increase

in PaCO2. Whereas, preoxygenation can lead to a reduction

in PaCO2 when the patient is asked to take deep breaths.

This can be aggravated by excessive manual bag ventilation.

During endotracheal intubation or insertion of a supraglottic

airway device when ventilation is arrested, PaCO2 will likely rise

again, which can be more pronounced when a rapid sequence

induction is performed. In this study, the normo- or hypercapnic
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FIGURE 3

Absolute blood flow during steady state and apnea. Top: The absolute blood flow for each individual apneic stimulus is shown for control (left)

and stenosed swine (right) with lines connecting the start of the measurements (t = 0s), and the blood flow at the end of each apnea based on

the individual duration of each apnea. In control swine, hypoxemic levels start with a higher baseline blood flow and result in the highest blood

flow at the end of apnea. On the other hand, with the hyperoxic levels in the control subjects, the lines are horizontal indicating blood flow did

not show a relevant change. This finding is similar to the majority of responses at normoxemia and hyperoxia in the stenosed group where many

data points have a lower slope. Bottom: The estimated mean and 95% confidence intervals for absolute blood flow at steady state and at the

statistically defined adjusted mean (12s) are shown. *: p < 0.05 for a significant apnea-induced flow recruitment (baseline vs. the adjusted

mean). †: p < 0.05, indicating that the magnitude of vasoreactivity was di�erent than observed at 100/40 for each group.

and hyperoxic baseline followed by 30 s of apnea likely best

reflect this clinical situation.

The fraction of inspired oxygen (FiO2) during the

maintenance of anesthesia varies between 30 and 80% in

literature as there is no universal consensus about target PaO2

levels in adults [34–36]. In our model, we targeted normoxemic

(PaO2 of 100 mmHg) and hyperoxic (PaO2 of 300 mmH) states,

which are frequently encountered during general anesthesia.

Hyperoxia can be achieved quite easily and just 7min of

breathing oxygen through a facemask with a reservoir bag could

increase PaO2 > 400 mmHg in healthy participants and patients

with coronary artery disease (CAD) [10]. This can be further

aggravated with positive pressure ventilation and/or the addition

of positive end-expiratory pressure in spontaneously breathing

patients. Moreover, oxygen is often the first intervention in

emergency medicine. Especially in out-of-hospital settings,

including ambulance and other first responder services, there

may be a desire to err on the side of caution and avoid hypoxemia

by over-oxygenating. A retrospective analysis demonstrated that

in trauma patients receiving pre-hospital emergency anesthesia,

hyperoxic blood gases levels were common; 61% were severely

hyperoxic (PaO2 >26.6kPa, 200 mmHg) upon arrival at the

hospital, and only < 1% were hypoxemic (PaO2 < 8kPa,

60 mmHg) [8]. Consequently, many recommendations now

suggest guiding oxygen supply based on arterial or peripheral

oxygen saturation levels (SaO2/SpO2) [37, 38]. Arterial blood

gas analysis may not always be available, and saturation-based

measures are limited in that they are unable to quantify the

degree of hyperoxia. New non-invasive devices such as the

oxygen reserve index can indicate PaO2 measurements in the

hyperoxic range and could potentially improve FiO2 titration as

well [39].

We also targetedmild-hypoxemic levels of 70mmHg. Under

physiologic conditions in elderly patients, similar PaO2 levels

can be found due to a reduced alveolar-arteriolar diffusion

coefficient [40]. A PaO2 of 70 mmHg may not even be

considered hypoxemic by some as this oxygen tension often

results in an arterial saturation > 90%. In fact, for relatively

healthy persons over the age of 70 without any pulmonary

or respiratory diseases, the mean PaO2 for men was reported

to be 77 mmHg and 73 mmHg for women, and PaO2 of 60

mmHg could be considered normal [27]. For younger healthy

individuals, the PaO2 is expected to be > 80 mmHg. Thus, we

labeled this level mildly hypoxemic.
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FIGURE 4

Coronary blood flow response to apnea duration. The coronary artery blood flow response (%-Flow) was calculated as a percent change in

blood flow between the start and end of apnea. The %-flow (y-axis) is shown in relation to each individual apnea duration (x-axis) at each arterial

blood gas level. The correlation coe�cient investigating the flow response (%) in relation to the apnea duration for each level is provided for

both the control (green, Cr) and stenosed (blue, Sr) swine. The results reported on the graph (p-value, black) from a mixed model showed that

only at PaO2 = 100 mmHg/PaCO2 = 40 mmHg was a significant di�erence in the flow response (p = 0.020) observed between the groups when

accounting for the duration. Hyperoxia resulted in a blunted or absent vascular response to apnea independent of the PaCO2.
†Indicates the

comparison of the flow response between the health and stenosed groups.

Impact of blood gas changes on
steady-state blood flow

Across the nine levels targeted in this study, blood flow

was augmented when targeting the level 70/50, composed

of two vasodilating stimuli, mild hypoxemia (PaO2 = 70

mmHg) and mild hypercapnia (PaCO2 = 50 mmHg) for both

controls and stenosed groups. Each on its own is known to

augment blood flow, and their combination has synergistic

effects [1]. Additionally, an animal study showed that in swine

who were mildly hypoxemic at rest, myocardial oxygenation

was still maintained during a 60-s period of apnea, despite a

significantly greater blood desaturation than observed during

apnea conducted at normoxemia [41]. Other studies have looked

at the protective effect of hypercapnia or mild hypoxemia on the

skeletal microvascular function [42] and the brain. For example,

in a rat model assessing cerebral ischemia, hypercapnia was

found to be therapeutic under mild-to-moderate hypoxemia,

although detrimental when combined with severe hypoxemia

(PaO2 < 50 mmHg) [43]. Consequently, under certain
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circumstances, vasodilating blood gas combinations may be

cardioprotective in a balanced perfusion system that globally

distributes blood flow. However, this may not be observed in

compromised coronary systems, as vessels downstream to a

fixed significant coronary stenosis, or hearts with significant

microvascular disease may already be in compensatory dilation

and unable to dilate further in response to increased oxygen

demand [44]. Furthermore, coronary arteries with obstructive

stenosis or a downstream microvascular disease can also be

prone to the coronary steal effect, where induced vasodilation

directs blood flow away from post-stenotic territories [45, 46].

The vasoconstriction associated with hyperoxia is especially

concerning. Oxygen is one of the most used substances in

clinical care, especially perioperatively. Our results showed that

in both groups, some hyperoxic levels led to a significant

decrease in steady-state coronary blood flow. This persistent

reduction in blood supply could pose a problem to patients

already at risk of ischemia. More recent publications hint at

adverse cardiocirculatory effects. A recent publication has shown

an association of hyperoxia during general anesthesia with

myocardial injury after non-cardiac surgery in patients with

known CAD or suspicion thereof [47]. Oxygen administration

extends beyond anesthesia and is still a standard in emergency

care despite its known vasoconstrictive properties. While there

are mixed reports about clinical outcomes as a result of

hyperoxia, overall there is a shift toward recognition of the

potential detrimental properties in both cardiac and non-

cardiac emergencies [17, 48]. Although the long-term impact

of hyperoxia remains controversial, our data show there is

an immediate consequence of supplemental oxygen on the

vasculature. Interestingly, when normoxemic blood gas levels

were reinstated, coronary steady-state blood flow and reactivity

both returned, suggesting these detrimental effects can be

reversed upon correction of arterial blood gases. We have

also demonstrated that in swine and patients with chronic

coronary syndromes, hyperoxia led to an immediate myocardial

oxygenation deficit in the presence of a stenosis, with a matching

functional deficit [11, 49]. However, the effect of hyperoxia

on oxygen delivery can also differ between patient groups,

with heart failure patients more likely to be susceptible to

reduced cardiac output and systemic vascular resistance than

other patient groups such as septic patients [50], and hyperoxia

in a clinical setting remains an interesting and open topic

for investigation.

Impact of apnea on the coronary
vasomotor response

During anesthesia and other medical procedures, the

heart is exposed to many vasoactive stimuli, and the apnea-

induced transient augmentation of coronary blood flow is a

compensatory mechanism to improve coronary perfusion. In

the presence of coronary artery stenosis, the recruitment of

blood flow was not as effective as in healthy vessels. This is

likely due to the compensatory dilation of the microvessels distal

to severe stenosis, with subsequent attenuation of the coronary

reserve in these territories. We previously demonstrated that

apnea following hyperventilation leads to a transient excess

of myocardial oxygenation in healthy humans, but to an

oxygenation deficit in patients with stable CAD [45]. By applying

apnea of different durations in this study, we were able to

identify that the magnitude of the vascular response is also

dependent on its duration. Therefore, during extended apnea,

e.g., difficult intubation or intentional procedure-related apnea,

the added hypoxemia may improve myocardial blood flow to

compensate for the decreasing hemoglobin oxygenation but

have detrimental effects on tissue with associated coronary

artery stenosis. The vasodilatory effects of apnea are not

fully understood but are believed to be mediated by multiple

mechanisms, which focus on a combined function of the

respiratory, cardiac parasympathetic and vasomotor centers

[51–53]. While longer breath-holds have the potential to alter

the PaO2 and PaCO2 in the blood, the shorter apneas applied

in our study are unlikely to significantly alter blood gas

composition [54]. Accordingly, we still observed that apnea even

shorter than 10s can increase coronary blood flow by more than

30%.More research is needed to elicit the underlying physiologic

mechanisms of the observed rapid effects.

We observed that hyperoxia inhibits the vascular response

to apnea. Additionally, because hyperoxia itself already reduces

coronary blood flow [7, 11, 55], blocking the vasodilatory

ability can further compromise tissue oxygenation in the

presence of higher oxygen demand. Importantly, if hyperoxia

attenuates the protective effect of compensatory recruitment of

blood flow by apnea, this may leave the heart susceptible to

perioperative ischemia.

Implications for diagnostic settings

On the diagnostic side, cardiovascular imaging and function

exams exploit the coronary flow reserve for diagnostic purposes

for testing the maximal functional capacity of the coronary

vessels rather than measuring absolute blood flow. However,

many of these tests assume that their stimuli produce a

maximal hyperemic response, with no attenuating factors other

than vascular dysfunction. As seen in Figure 3, all mildly

hypoxemic and hyperoxic levels caused a different blood

flow response than those seen at normal blood gases in

our experimental model, and only at normoxemia could a

difference between healthy and stenosed vessels be observed.

The attenuation of the vascular response to stimuli during

hyperoxia could also have implications for coronary stress

testing if supplemental oxygen is administered. Diagnostic tests
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typically use pharmacological vasodilators such as adenosine

as a hyperemic stimulus and this may affect the coronary

flow response differently than the apnea stimulus used in this

and other studies, but similar findings have been reported

with other stimuli. A Doppler assessment of coronary flow in

five patients with CAD showed that hyperoxia (PaO2 > 250

mmHg) did not affect the coronary response to adenosine,

yet the dilator response of acetylcholine was blunted [7].

Opposite to the effects of hyperoxia, we observed that a strong

response to coronary stimuli occurs when arterial blood gases

are at a mild stage of hypoxemia (PaO2 = 70 mmHg). In

a high-altitude-simulation nuclear imaging study, hypoxemia

increased the myocardial blood response to exercise-induced

stimulation by 38%. In patients with CAD, however, hypoxemia

increased baseline coronary flow yet was still associated with

a reduced blood supply during exercise, whereas no impact

was seen with adenosine [56]. Others have reported that

hypoxemia augmented the adenosine response when compared

to normoxemia [57]. Under these conditions, a stenotic vessel

could give a flow response that would be quantitatively

considered healthy under normal situations, possibly masking

coronary vascular dysfunction. It should also be noted that

the current study focused on mild arterial hypoxemia (SaO2

> 93%), and not severe hypoxemia or overt tissue hypoxia,

which may have a different impact on the coronary flow

response. It would appear advisable to conduct coronary

function testing at normal PaO2 for the individual, represented

by a physiological SaO2.

Limitations and future directions

This is a study with a limited sample size and thus

sensitive to outliers or any other non-systematic source of

bias. Our experimental model is limited in that we assess

an essentially healthy coronary artery with a single, acute

stenosis, not accounting for the many pathophysiologic and

compensatory mechanisms occurring with the development of

CAD, including complex multi-vessel or microvascular disease

and dysfunctions of the endothelial and smooth muscle cells.

Additionally, the blood flow measurement is only obtained

from the LAD, and thus our assessment cannot account for

the complexity of coronary steal or different baseline flow

rates of different vascular territories. The probe only reported

mean blood flow, and the impact of the stimuli on pulsatile

features could not be assessed. As we only assessed stimuli

induced by apnea, results may differ from other stimuli. This

could provide a future study goal. In addition, our model

does not account for the complicating effects of microvascular

dysfunction in CAD.

Conclusion

Using an experimental swine model with invasive coronary

blood flow measurements, we provide one of the first reports

investigating the confounding effects of mild deflections in

PaO2 and PaCO2 on apnea-induced hyperemia. Even though

deflections in blood gases are common in perioperative

and medical-care environments, the interactions of these

deflections on fast-acting vasodilating stimuli are not well

understood. Short periods of apnea at physiologic blood gas

conditions induced an observable coronary flow recruitment

during normocapnic normoxemia, which was attenuated in

the presence of a coronary artery stenosis. However, this

response was confounded by mild deflections of blood gas

levels. While baseline mild hypoxemia augmented the apnea-

induced increase in blood flow, hyperoxia almost completely

blunted this response. Thus, these findings could have important

implications on myocardial oxygenation in situations where

blood gas fluctuations are prevalent and patients are at higher

risk for myocardial ischemia.
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