
R E V I E W Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Giurgiu et al. 
International Journal of Behavioral Nutrition and Physical Activity           (2023) 20:68 
https://doi.org/10.1186/s12966-023-01473-7

International Journal 
of Behavioral Nutrition 

and Physical Activity

*Correspondence:
Marco Giurgiu
marco.giurgiu@kit.edu

Full list of author information is available at the end of the article

Abstract
Background  Wearable technology is used by consumers and researchers worldwide for continuous activity 
monitoring in daily life. Results of high-quality laboratory-based validation studies enable us to make a guided 
decision on which study to rely on and which device to use. However, reviews in adults that focus on the quality of 
existing laboratory studies are missing.

Methods  We conducted a systematic review of wearable validation studies with adults. Eligibility criteria were: (i) 
study under laboratory conditions with humans (age ≥ 18 years); (ii) validated device outcome must belong to one 
dimension of the 24-hour physical behavior construct (i.e., intensity, posture/activity type, and biological state); (iii) 
study protocol must include a criterion measure; (iv) study had to be published in a peer-reviewed English language 
journal. Studies were identified via a systematic search in five electronic databases as well as back- and forward 
citation searches. The risk of bias was assessed based on the QUADAS-2 tool with eight signaling questions.

Results  Out of 13,285 unique search results, 545 published articles between 1994 and 2022 were included. Most 
studies (73.8% (N = 420)) validated an intensity measure outcome such as energy expenditure; only 14% (N = 80) and 
12.2% (N = 70) of studies validated biological state or posture/activity type outcomes, respectively. Most protocols 
validated wearables in healthy adults between 18 and 65 years. Most wearables were only validated once. Further, we 
identified six wearables (i.e., ActiGraph GT3X+, ActiGraph GT9X, Apple Watch 2, Axivity AX3, Fitbit Charge 2, Fitbit, and 
GENEActiv) that had been used to validate outcomes from all three dimensions, but none of them were consistently 
ranked with moderate to high validity. Risk of bias assessment resulted in 4.4% (N = 24) of all studies being classified as 
“low risk”, while 16.5% (N = 90) were classified as “some concerns” and 79.1% (N = 431) as “high risk”.

Conclusion  Laboratory validation studies of wearables assessing physical behaviour in adults are characterized by 
low methodological quality, large variability in design, and a focus on intensity. Future research should more strongly 
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Introduction
Accurate and reliable assessments of 24-hour physical 
behaviour are a prerequisite for researchers interested 
in characterizing behavior patterns over time, in differ-
ent settings, and across different groups. The concept of 
24-hour physical behaviour covers all time-use move-
ment and non-movement behaviours (i.e., physical activ-
ity, sedentary behaviour, and sleep) of a person in his/
her own environment [1]. Over the decades, diaries and 
questionnaires have been the primary tool for monitoring 
physical behaviour [2]. Even though these self-reported 
methods (sometimes referred to as subjective or indirect 
measures) are still widely applied today, they are prone 
to recall and social desirability bias [3]. In recent years, 
technology has evolved as a unique driving force behind 
advances in real-time data collection. Especially wearable 
technology has emerged as a popular means of monitor-
ing behaviour-related metrics, overcoming limitations 
in self-report measures. However, we are not aware of a 
published systematic review focusing on the quality of 
laboratory validation protocols for assessing 24-hour 
physical behaviour in adults via wearables.

Wearables are defined as technology worn on or close 
to the body, assessing e.g., posture, acceleration, impact, 
biomechanical forces, heart rate, muscle oxygen satu-
ration, or sleep patterns [4]. A wide range of garments, 
trackers, watches, bands, and smart patches equipped 
with multiple sensors exist to record a multitude of 
health and performance variables. The assessment opens 
avenues for better understanding and addressing indi-
viduals’ behaviours, and thus helps design appropri-
ate interventions. Wearable-based measures of physical 
behaviour have become increasingly affordable and less 
obtrusive. Thus, apart from commercial purposes, they 
are up to date a valuable tool for promoting research in 
physical behaviour and health. In particular, there is a 
rising interest among researchers to capture the integra-
tive cycle of 24-hour physical behaviour [5] via wearables 
that can collect dense data over a long period of time, 
allowing a detailed examination of daily behaviour. Due 
to the continued growth of the wearable market and the 
increasing interest in using wearables as monitoring tools 
in research, high-quality laboratory-based validation is 
highly warranted.

The plethora of wearables may seem like a blessing for 
behavioural researchers and epidemiologists, offering 
numerous devices for their daily work. However, it can 
also be a curse for both consumers and researchers to 
select the appropriate wearable or study design to obtain 

meaningful and transparent results. Several methodolog-
ical issues regarding wearables, especially in research, 
should be addressed (e.g., data processing, monitoring 
protocols, or quality criteria such as validity [6]). Only a 
small proportion of wearables have been proven effective 
through rigorous, independent validation. In many cases, 
claims of these devices outweigh the evidence to support 
them [7]. For example, Peake et al. (2018) reported that 
only 5% of the 61 consumer wearables they reviewed in 
2018 matched the marketing claims based on accepted 
reference standards [8].

Even though the body of research validating different 
wearables in both controlled laboratory and free-living 
environments is consistently growing, the published vali-
dation protocols are heterogeneous. In order to increase 
the comparability of validity measurements between 
different devices, standardized validation procedures 
and protocols are highly warranted [9–11]. Sperlich and 
Holmberg (2017) propose that wearables developed for 
health and fitness purposes should be controlled and 
monitored by independent scientific validation proce-
dures [9, 10]. Recently, Keadle et al. (2019) introduced 
a five-step validation framework for wearables assess-
ing physical behaviour [10]. The framework starts with 
the device manufacture and ends with its application 
in health studies. After initial mechanical (Phase 0) and 
calibration testing (Phase I), validation studies are recom-
mended with structured and semi-structured assessment 
in the laboratory (Phase II) and real-world conditions 
(Phase III), where participants can perform their natural 
daily behaviours [10]. According to the authors, starting 
the development and validity assessment under labora-
tory conditions is essential, as external influences can be 
more easily controlled and manipulated than in studies in 
a free-living environment. Furthermore, comparisons to 
gold-standard measurements such as indirect calorime-
try (intensity), video recordings (posture or activity type), 
or polysomnography (biological state) are easier to apply 
and can therefore serve as criteria.

Embedding standardized validation protocols into a 
framework [10, 11] is helpful for both consumers and 
researchers to select the appropriate wearable or study 
design and obtain meaningful and transparent results 
[12, 13]. Frameworks, in turn, can encourage innova-
tion by manufacturers to achieve improved validity and 
transparency and inform practitioners before integrating 
wearables into daily clinical practice [11].

aim at all components of the 24-hour physical behaviour construct, and strive for standardized protocols embedded 
in a validation framework.

Keywords  Validation, Physical activity, Sleep, Sedentary behavior, Adults, Wearables
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Research purpose
This review focuses on the following three purposes: 
First, as our main purpose, we would like to raise 
researchers’ and consumers´ attention to the quality of 
published validation protocols while aiming to identify 
and compare specific consistencies/inconsistencies. Sec-
ond, we would like to provide a comprehensive and his-
torical overview of which wearable has been validated for 
which purpose, and third, whether they show promise or 
not for being used in further studies.

Methods
This study followed the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) 
reporting guidelines [14] and was registered in the 
PROSPERO international prospective register of system-
atic reviews, with registration number CRD42021252128 
(see Additional file 1).

Search strategy and study selection
To identify relevant publications, we used a search string 
that included terms for (a) validity, (b) type of wearable, 
and (c) outcomes of the 24-hour physical behaviour con-
struct. An a priori pilot search was conducted to opti-
mize the final term (see Additional file 2). Publications 
were searched from 1970 to December 2020 using the 
following databases: EBSCOHost, IEEE Xplore, PubMed, 
Scopus, and Web of Science. In June 2022, we ran search 
updates in all databases. Further, we reviewed the refer-
ence lists of included studies for publications that may 
have been missed in the database searches.

All articles were imported to a Reference Manager, 
Citavi library (Citavi 6.8, Swiss Academic Software 
GmbH, Swiss). After removing all duplicates first elec-
tronical and afterwards manually, the study selection 
process included three screening phases for eligibility. 
In the first phase, two reviewers (MG & RN) indepen-
dently screened the titles of the publications. Articles 
were only excluded if both reviewers categorized an 
article as not eligible for review purposes. In the second 
phase, two reviewers independently screened the pub-
lications’ abstracts (MG & RN) to determine whether a 
full-text review was warranted. Disagreements among 
reviewers were resolved by consulting a third reviewer 
(AKD). In the third phase, the full texts of the remain-
ing articles were assessed for eligibility by six members 
of the author’s team (MG, CK, RN, AKD, IT, and MT). 
Each article was screened independently by at least two 
reviewers. Discrepancies in screening were resolved by 
discussion until a consensus was reached. Reviewers 
were not blinded to author or journal information.

Inclusion and exclusion criteria
Following the PICO principle [15], we included peer-
reviewed, English-language publications that met the fol-
lowing criteria:

1.	 Population: Participants were adults ≥ 18 years 
regardless of health conditions.

2.	 Intervention: Any wearable validation study in which 
at least one part of the study was conducted under 
laboratory conditions with either standardized or 
semi-standardized protocols.

3.	 Control/comparison: Studies were only included if 
they described a criterion measure.

4.	 Outcomes: Studies were included in which the 
wearable outcome(s) could be classified into at least 
one dimension of the 24-hour physical behaviour 
construct (i.e., biological state, posture/activity type, 
or intensity [16], see Additional file 3).

Data extraction
Two authors independently extracted data (MG, CK, RN, 
AKD, IT, VG or MT). Discrepancies were discussed until 
a consensus was reached. The following study details 
were extracted: author, year, location, population infor-
mation (sample size, mean age of participants, percent-
age of females, ethnicity), measurement period, validated 
wearable (wearing position, software, epoch-length, 
algorithm/cut-point), dimension of the 24-hour physical 
behaviour construct, validated outcome, criterion mea-
sure, statistical analyses for validation purposes, study 
conclusion, and funding conflict of interest information.

Data synthesis
Given the wide range of different study protocols in 
terms of varying conditions (e.g., wear location, measure-
ment duration, sample size, statistical analyses, or crite-
rion measure), we conducted a narrative synthesis based 
on the reported results/conclusions. In particular, we 
classified the studies as ↑ (i.e., moderate to strong valid-
ity), ↔ (i.e., mixed results), and ↓ (i.e., poor or weak valid-
ity). Each article was classified independently by at least 
two reviewers.

Quality assessment
The risk of bias for each article was evaluated using the 
Quality Assessment of Diagnostic Accuracy Studies 
(QUADAS-2) tool [17]. The tool comprises four domains 
(i.e., patient selection, index measure, criterion measure, 
and flow/timing). Following the QUADAS-2 guidelines, 
we selected a set of signaling questions for each domain 
and added questions modified from the QUADAS-2 
background document based on core principles, recom-
mendations, and expert statements for validation studies 
[10, 11, 17, 18] (see Table 1). The risk of bias assessment 
was conducted independently by at least two authors. 
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Discrepancies were discussed until a consensus was 
reached. The study quality was evaluated at the domain 
level, i.e., if all signaling questions for a domain were 
answered “yes”, then the risk of bias was deemed to be 
“low”. If any signaling question was answered “no”, then 
the risk of bias was deemed to be “high”. The “unclear” 
category was only used when insufficient data were 
reported for evaluation. Based on the domain-level rat-
ings, we created a decision tree to evaluate the overall 
study quality as “low risk”, “some concerns” or “high risk” 
(see Additional file 4).

Results
Out of 13,285 records screened, 545 publications (see 
Fig.  1) were eligible for the current systematic review. 
Most studies investigated intensity (73.68%, N = 420), fol-
lowed by biological state (14.04%, N = 80), and posture/
activity type (12.28%, N = 70). The majority of the stud-
ies (95.41%, N = 520) validated only an outcome from one 
dimension, whereas 4.59% (N = 25) studies validated out-
comes from the dimension’s intensity and posture/activ-
ity type.

Participant and study characteristics
Of the studies included, 93.4% (N = 509) were con-
ducted in high-income countries from North America, 
Europe, or Australia/Oceania, and most of them were 
published within the last decade (≥ 2011; 78.2%, N = 426; 
see Table 2). The sample size varied between 4 and 228 
participants, with most studies (63.9%, N = 386) recruit-
ing between 20 and 50 participants. In 86.2% (N = 470) of 

the studies, participants were between 18 and 65 years 
old. Ethnic background was reported in 7.5% (N = 41) of 
included studies. The majority of the studies reviewed 
included healthy participants (73.8%, N = 402), while 
29.7% (N = 162) studies recruited samples with physi-
cal health disorders, such as stroke (N = 18), chronic 
obstructive pulmonary disease (N = 10), limb amputa-
tion (N = 10), or wheelchair users (N = 9). Besides the 
sleep protocols (14.9%, N = 81), most study protocols 
included either standardized tasks such as running/walk-
ing on a treadmill (42.2%, N = 230) or exercise tasks (3.5%, 
N = 19) or semi-standardized protocols, including activi-
ties of daily life (27.7%, N = 151) or walking/running tasks 
(33.2%, N = 181). The measurement duration for valida-
tion purposes varied between two minutes and 24 h. The 
majority of studies (90.5%, N = 493) conducted statistical 
analyses at the person/study level (e.g., t-tests, correla-
tions, repeated measures ANOVA), 88 studies (16.1%) 
conducted both person/study-level analyses as well as 
epoch-by-epoch comparisons (e.g., accuracy, sensitivity, 
specificity). In 9.5% (N = 52) of all studies, the manufac-
turer was involved in study funding, loaned the devices 
or one of the authors declared a relation to the company 
of the validated wearable. In 56.5% (N = 308) of all stud-
ies, funding was independent of the manufacturer as 
well as authors declared no conflict of interest. In 15.8% 
(N = 86) of all studies, neither information about fund-
ing nor any information about conflict of interests were 
reported, whereas in the remaining 99 studies, at least 
funding information or conflict of interest statement was 
reported and without any relation to the manufacturer. 

Table 1  The risk of bias assessment and the percentage of studies meeting these criteria
Criteria items N studies meeting criterion

Total (N = 570) Biological 
State (N = 80)

Posture/
Activity Type 
(N = 70)

Intensity 
(N = 420)

Domain 1: Patient selection/study design

1. Did the study include a range of activities concerning the 24-hr physical 
behaviour construct? (i.e., activities from both areas: physical activity (e.g., 
walking/exercise) and sedentary activities (e.g., sitting, lying activities))1

210 (43%) NA2 67 (96%) 143 (34%)

2. Did the study protocol include at least one part/activity with natural transi-
tions (i.e., activities performed without fixed order of instructions)?1

340 (69%) NA2 67 (96%) 273 (65%)

3. Did the study provide any information about the inclusion/exclusion of the 
recruiting process?

423 (74%) 62 (78%) 51 (73%) 310 (74%)

4. Did the study include at least a sample of 20 participants? 440 (77%) 64 (80%) 43 (61%) 333 (79%)

Domain 2: Index measure

5. Was the algorithm of the validated outcome reported (i.e., formula), or was at 
least further information cited?

146 (26%) 35 (44%) 26 (37%) 85 (20%)

Domain 3: Criterion measure

6. Is the selected reference the gold standard? 432 (76%) 80 (100%) 41 (59%) 311 (74%)

Domain 4: Flow and timing

7. Did the authors provide any information about data synchronization? 223 (39%) 52 (65%) 34 (49%) 137 (33%)

8. Were all participants included in the analyses or were any exclusion reasons 
provided?

474 (83%) 69 (86%) 59 (84%) 346 (82%)

1 Only relevant for N = 490 studies; 2 NA = Not applicable
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Detailed information about the data extracted is reported 
in the supplement (see Additional file 5).

Wearables
Of the 300 different wearables, 213 were classified as 
commercial-grade devices, 81 as research-grade devices, 
and six were not classified. We identified 129 different 
manufacturers with a range of one to 21 related models/
series per manufacturer. For example, we identified 21 
different models/series of Omron Healthcare Inc. and 18 
different models/series of Garmin Ltd. Detailed technical 
information for each wearable is provided in a supple-
ment (see Additional file 6). The most frequently vali-
dated devices in the studies included were the ActiGraph 
GT3X/GT3X+ (N = 95), the SenseWear Pro (N = 37), the 

ActivPAL (N = 32), and the Yamax Digiwalker SW-200 
(N = 30). However, more than half of the 300 different 
devices were only validated once (55.4%; N = 166). Studies 
included one to seventeen different brands of wearables 
[19]. Most studies (52.3%, N = 285) included one wearable 
brand. Several studies (47.5%, N = 259) included multiple 
sensors or wearing positions (17.1%, N = 93) to enable 
comparison between different devices or wearing loca-
tions [20]. The hip/waist and wrist positions were most 
often used for validation purposes. Overall, ten different 
outcomes were validated (see Table 3). Any information 
about the software application used for data prepro-
cessing was reported in 42.4% (N = 231) of all studies. 
Across all studies, the selected epoch length varied from 
1 s to 2 min [21]. In 25.1% (N = 137) of all studies, some 

Fig. 1  PRISMA flow chart illustrating literature search and screening process
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information about the used algorithm, equation, or cut-
points was reported.

Study quality
To evaluate the risk of bias in the validation studies, we 
used eight signaling questions (see Table 1). On average, 
4.7 of 8 questions were answered with “yes” (i.e., meet-
ing the criteria). Of studies validating a biological state, 
intensity, or posture/activity type as an outcome, on aver-
age, 4.5, 4.6, and 5.5 of 8 questions were answered yes. 
The percentage of meeting the criteria ranged from 20.0% 
(reported algorithm for intensity validation) to 100% 
(selecting gold reference standard in studies validating 

biological state) across activity dimensions. The major-
ity of studies (76%, N = 432) reported a reference mea-
sure that was equivalent to the criterion measure [10]. 
The most frequently selected criterion measures were 
indirect calorimetry, observation (video or direct), and 
polysomnography (see Table 2). Overall, 4.4% (N = 24) of 
studies were classified as “low risk”, while 16.5% (N = 90) 
were classified as “some concerns” and 79.1% (N = 431) 
as “high risk”. The classification tree underlying the clas-
sification decisions can be found in the supplement (see 
Additional files 4 and 7).

Table 2  Summary of data extraction: Participant and study characteristics
Category Total (N = 545) Biological 

State (N = 80)
Posture/Activ-
ity Type (N = 70)

Inten-
sity 
(N = 420)

Publication year ≤ 1999 15 4 2 9

2000–2010 104 17 8 82

≥ 2011 426 59 60 329

Study locationa Africa 1 1

Asia 31 6 1 24

Europe 191 17 45 145

North America 268 43 18 214

Australia/Oceania 50 14 6 32

South America 4 4

Number of participants [N]b ≤ 19 119 15 27 85

20–50 348 46 35 282

≥ 51 78 19 8 53

Age [years, mean age]c 18–64 470 74 56 361

≥ 65 72 6 13 57

Sex [female %]d 0–25 57 11 11 37

26–74 386 57 47 299

75–100 69 9 10 55

Protocol type Activities of daily life 151 56 114

Exercise 19 19

Others 100 18 88

Sleep 81 80 1

Treadmill 230 18 222

Walking and running 181 17 170

Criterion measure 3-Dimensional Gait analysis 1 1

Compendium 3 3

Diary 2 1 1

Direct calorimetry 1 1

Indirect calorimetry 215 7 213

Observation (direct) 131 22 112

Observation (video) 138 41 111

Polysomnography 79 79

Video-electroencephalography 1 1

Wearable 43 3 39

Statistical analyses Epoch-by-epoch 105 54 31 28

Person/study level 493 76 54 385
a Three studies were not included in the summary statistics due to the lack of study location information; b One study was not included in the summary statistics due 
to the lack of sample size information; c Five studies were not included in the summary statistics due to the lack of age information; d Twenty-seven studies were not 
included in the summary statistics due to the lack of sex information
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Validity
Across all studies (N = 545), we classified 1.269 valida-
tion results of 314 different wearables. In particular, we 
ranked 24% (N = 305) results/conclusions as “↑” (i.e., 
moderate to strong validity), 56% (N = 709) as “↔” (i.e., 
mixed validity), and 20% (N = 255) as “↓” (i.e., poor or 
weak validity). Additional file 8 provides an overview 
of each wearable, separated by different age groups. Of 
those 300 different wearables, 55.4% (N = 166) were vali-
dated once, 16.7% (N = 50) were validated in two differ-
ent studies, 4.3% (N = 13) were validated in three different 
studies, and 23.7% (N = 71) were validated in more than 
three different studies.

Most wearables (N = 253) were used for the validation 
of only one dimension of the 24-hour physical behav-
iour construct. In particular, 216 wearables were used 
only for the validation of intensity outcomes, whereas 
29 wearables for the validation of biological state out-
comes, and eight wearables for the validation of posture/
activity type. In contrast, we identified 23 wearables that 

validated both intensity and biological state outcomes, 
17 wearables that validated both intensity and posture/
activity type outcomes, and one wearable (i.e., USB accel-
erometer X16 mini) that validated biological state and 
posture/activity type outcomes. Moreover, six wearables 
(i.e., ActiGraph GT3X+, ActiGraph GT9X, Apple Watch 
2, Axivity AX3, Fitbit Charge 2, and GENEActiv) had 
been validated for all three dimensions. None of those six 
wearables were ranked consistently as moderate to strong 
validity for measuring two or all three dimensions. We 
identified the ActiGraph GT3X+ (N = 95), SenseWear Pro 
(N = 37), ActivPAL (N = 32), Yamax Digiwalker SW-200 
(N = 30), and two Fitbit models (Flex and One; each 
N = 28) as the most validated devices. Across all 95 stud-
ies, the ActiGraph GT3X and version GT3X + predomi-
nantly validated intensity outcomes (N = 90). Posture/
activity type outcomes were validated in 17 studies, and 
biological states outcomes were validated in two studies. 
In two studies, the SenseWear Pro was validated for bio-
logical state outcomes, whereas in all other studies, the 

Table 3  Summary of data extraction: Wearables
Category Total (N = 545) Biological State 

(N = 80)
Posture/Activity 
Type (N = 70)

Inten-
sity 
(N = 420)

Outcome Sleep time 70 70

Sleep-wake metrics 11 11

Different postures/types 70 70

Time in SB 8 8

Time in light physical activity 8 8

Time in moderate-to-vigorous 
physical activity

13 13

Time in walking/active 1 1

Energy Expenditure 211 211

Steps 235 235

Counts 30 30

Wear positiona, b Ankle 64 3 63

Chest 50 4 11 38

Ears 1 1

Finger 2 2 0

Foot 12 4 10

Hip/waist 455 4 23 440

Knee 1 1

Leg 7 3 5

Lower back 19 5 17

Neck 7 7

Pockets 34 4 32

Shank 4 4

Shoe 3 3

Thigh 101 49 66

Trunk 3 2 1

Upper arm 94 5 3 88

Wrist 477 99 26 361
a Two studies did not report any information about the sensor wearing position
b If studies included multiple devices or different wearing positions, we counted each wearing position
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validated outcome belongs to the intensity dimension 
(N = 37). Studies validating the ActivPAL focused either 
on posture/activity type (N = 15) or intensity outcomes 
(N = 29). The Yamax Digiwalker SW-200 was solely vali-
dated for intensity outcomes and the Fitbit series One 
and Flex were tested for two of three dimensions (Inten-
sity: N = 53; Biological state: N = 3).

Discussion
Summary of results
The main aim of this systematic review was to evaluate 
the characteristics, validity, and quality of laboratory vali-
dation studies among adults in which at least one dimen-
sion of the 24-hour physical behaviour construct [5, 16] 
was assessed via wearables and validated against a cri-
terion measure. We identified the following four main 
results: First, the validation of biological state and pos-
ture/activity type outcomes was rare compared to inten-
sity outcomes such as energy expenditure. Second, 253 of 
300 different research and commercial-grade wearables 
were validated for only one aspect of the 24-hour physical 
behaviour construct. In particular, this review revealed 
that only six wearables (i.e., ActiGraph GT3X+, Acti-
Graph GT9X, Apple Watch 2, Axivity AX3, Fitbit Charge 
2, and GENEActiv) were validated for all three dimen-
sions. Third, none of those six wearables were ranked 
consistently as moderate to strong validity for measuring 
all three dimensions. However, single devices were exten-
sively validated for one or two dimensions. For example, 
the Actiwatch series for the assessment of biological 
state, the ActivPAL for the assessment of posture/activ-
ity type, and the ActiGraph GT3X and GT3X + model for 
the assessment of intensity outcomes. Forth, only a few 
studies were ranked overall with “low risk” of bias or with 
“some concerns” based on selected criteria that align with 
published core principles, recommendations, and expert 
statements [10, 11, 17].

Therefore, one issue that emerges from the included 
studies is that no wearable provides valid results for all 
three dimensions in adults. However, the interpreta-
tion of validation study results strongly depends on the 
used protocols, which might vary as a function of differ-
ent quality factors (e.g., criterion measures, sample size, 
measurement duration, statistical analyses, wearing posi-
tion). Before critically evaluating our research approach 
in the limitation section, we want to summarize the con-
sistencies/inconsistencies of the included studies as well 
as design features that have been proposed to enhance 
study quality.

Criterion measure
When validating a device, the validity of the criterion 
measure to which the index device is being compared is 
of paramount importance [11]. If the criterion measure 

is invalid, then criterion standard bias may accrue [22]. 
Keadle et al. [10] recommend that physiological out-
comes such as energy expenditure should be validated 
against indirect calorimetry. Step count or posture as 
behavioural criterion measures should be validated 
against video recordings with multiple observers (> 2) 
[11]. If the differentiation between sleep and wake pat-
terns is the goal, polysomnography is the recommended 
criterion measure [23, 24].

In the included studies, a total of ten different crite-
rion methods were identified. Fortunately, 76% (N = 432) 
of the studies used the respective gold standard. In the 
biological state dimension, all of the studies utilized the 
respective gold standard as a criterion measure. Although 
the majority of studies did use the recommended crite-
rion measure (i.e., N = 215 indirect calorimetry, N = 138 
video recording, and N = 79 polysomnography), 131 stud-
ies applied direct observation instead of video record-
ing, which is prone to observation bias. Furthermore, 
43 studies used wearables as a criterion measure. Since 
even research-grade wearable devices are susceptible to 
atypical gait [25, 26] and sensor wear position [25], using 
wearables may describe convergent validity rather than 
criterion validity.

Although using the gold standard, such as video 
recording, is undeniably challenging (e.g., low memory 
capacity), it is essential to apply gold standard com-
parisons. According to Johnston et al. (2021) alterna-
tive approaches should only be considered equivalent 
to the gold standard if they have been demonstrated to 
possess less than 5% measurement error specific to the 
population of interest [11]. In line with the selection of 
the appropriate criterion measure, researchers should 
take into account that no synchronization between index 
and criterion measures may introduce errors and bias the 
results. Timestamped or pragmatic solutions are recom-
mended, such as participants performing three vertical 
jumps at the measurement’s beginning and end [10]. A 
critical aspect from the perspective of transparency is the 
presentation of algorithms.

Wearing position
To assess all dimensions of the physical behaviour spec-
trum, the choice of an appropriate wear position of the 
device according to the research question is crucial [6]. 
Further, the wear position impacts the ability to detect 
transitions between specific activities and predict a spec-
trum of activities over a prolonged time (i.e., 1–2 days) 
[10]. In this review, 88% of the included studies analyzed 
wrist placement and 84% hip or waist placements. The 
recommended wear position depends on the dimension. 
In most of the included studies, a wrist placement was 
used to validate biological state outcomes. This is in line 
with published recommendations [24, 27, 28] indicating 
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that wrist-worn devices enhance the detection of small 
movements occurring at the distal extremities in a supine 
position. Moreover, wrist-worn devices are likely to 
deliver higher compliance rates compared to hip place-
ment in adults [29] and represent the most-used wear-
ing position [11]. Most included studies analyzed a hip/
waist position to validate intensity outcomes. The hip/
waist position enables the device to be closer to the cen-
ter of mass and thus captures gross muscle movements 
such as walking or running [30] and detects acceleration 
and deacceleration of the body [27]. Further, compared to 
waist placement, hip-worn accelerometers show a higher 
accuracy in predicting energy expenditure [31, 32]. How-
ever, the hip/waist wearing position increases the risk of 
misclassification of sitting/lying and standing postures, 
which is highly relevant to differentiate between physical 
activity and sedentary behaviour [33]. According to Ste-
vens et al. [16], thigh-worn placements might be the most 
promising position to assess intensity and posture/activ-
ity types accurately. However, the number of validation 
studies using a thigh-worn device is underrepresented 
in our review, with no study validating thigh placement 
and biological state outcomes. To increase comparabil-
ity between different accelerometer placements, brands, 
and types, future validation studies in adults are needed. 
Moreover, future signal analytical research purposes 
might be valuable in extracting and validating different 
outcomes from a single wearing position [34]. In general, 
we expect the fast-technological development of wear-
ables to affect the future of physical behaviour data evalu-
ation and processing. In particular, supervised learning 
approaches, such as machine learning or deep learning 
algorithms, are gaining popularity [35–37]. The inclu-
sion of supervised learning approaches in health behav-
iour research has been slow, but this may change in the 
upcoming years [38].

Study protocol
When performing a validation of a wearable monitor, a 
wide range of physical activities ranging from rest to 
vigorous exercise should be used during the validation 
procedures. Especially activities like lying, sitting, and 
standing, which most people spend the majority of the 
24-hour day, should be included [18]. In this review, only 
43% (N = 210) of the studies included a range of activities 
from the 24-hour physical behaviour continuum. Fur-
thermore, 69% of the study protocols include at least one 
activity with natural transitions. Most study protocols 
applied either standardized tasks such as running/walk-
ing on a treadmill, exercise tasks, or semi-standardized 
protocols, including activities of daily life or walking/run-
ning tasks. The measurement duration varied between 
two minutes and 24 h.

For future research, we recommend extending labora-
tory validation protocols wherever possible to include 
different activities from the 24-hour physical behaviour 
cycle. Furthermore, activities with natural transitions 
should be included to better reflect typical behaviour 
patterns.

Sample size, statistical analyses, and algorithms
Since we did not identify published recommendations 
about sufficient sample size for validation purposes, we 
chose 20 participants, a sample size that was achieved in 
most validation studies. However, an optimal solution for 
future research endeavors might be to conduct a priori 
sample size calculations and therefore ensure adequate 
power for validation purposes [11, 39]. For this purpose, 
researchers would need an effect size measure based on 
previous analyses. Ideally, recommendations on statisti-
cal procedures would gain consensus within the scientific 
community [40].

Within the reviewed studies, we identified a wide het-
erogeneity of conducted statistical analyses, ranging 
from traditional statistical tests on person/study level 
such as t-tests or ANOVA´s to epoch-by-epoch compari-
sons such as sensitivity, specificity, or accuracy. While 
traditional analyses may determine if differences exist 
between devices and the criterion measure, this does not 
necessarily imply that the two measures are statistically 
equivalent [40]. O´Brien [40] suggested that equivalence 
testing with standardized equivalence criteria could be a 
standard procedure for upcoming validation studies.

Only a low number of studies reported the formula or 
cited at least further information about the algorithm of 
the validated outcome. At this point, researchers often 
do not have access to the raw data of wearables and their 
“black-boxed” algorithms. More critically, several differ-
ent approaches to transferring raw acceleration data into 
different units and metrics exist. Clevenger et al. (2022) 
summarized in a repository an extending overview of 
different analytic approaches [41]. Further, Clevenger et 
al. (2022) provided a first consensus method as a simple 
way to improve inter-study comparability [42]. Moreover, 
companies can update wearable’s firmware or algorithms 
anytime, hindering comparability [43, 44]. In addition, 
the pace at which technology is evolving for optimizing 
algorithms far exceeds the pace of published validation 
research [12]. We recommend that the upcoming series 
of wearables need an independent validation process or 
at least a replication of previous protocols. Furthermore, 
open-source methods that are more flexible to use algo-
rithms for different devices are needed [10, 11].

Limitations
Some limitations merit further discussion. First, the 
evaluation of the study quality was based on self-selected 
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criteria. In particular, we selected the QUADAS-2 tool 
[17] and added further signaling questions in line with 
core principles, recommendations, and expert statements 
[10, 11, 18]. However, since we are not aware of any fur-
ther quality tools and signaling questions that have been 
published for wearable validation purposes, our selected 
criteria can serve as a starting point for future reviews 
focusing on the study quality of wearable technology 
under laboratory conditions. Second, our review focused 
on the quality of study protocols. However, we did not 
account for further important considerations when 
using wearables such as wear/non-wear time algorithms, 
monitor cost, cut-points, reliability, or data processing 
time [10, 11, 45, 46]. Third, our included validation stud-
ies were published from 1994 to 2022. Given the rapid 
development of wearable technologies and the increas-
ing availability of different research and commercial-
grade devices, quality standards may have evolved. Thus, 
while interpreting the study protocols, the timing of the 
study realization should also be considered. Fourth, our 
findings are limited to our search strategy. Therefore, we 
may have missed some validation studies. However, we 
applied back- and forwards citation searches through ref-
erence lists of the included studies to screen articles that 
may not have appeared in our search. Fifth, this review 
was limited to articles published in English and may 
thus have excluded studies published in other languages. 
Sixth, we classified wearables as commercial or research-
grade devices based on a self-selected approach (e.g., 
information on the manufacturer’s homepage).

Future directions and conclusion
In line with our previous reviews [47–49] about the qual-
ity of validation studies, we identified a large number of 
different research and commercial-grade wearables that 
were validated under laboratory conditions. The quality 
of a validation study is a highly critical criterion to enable 
both researchers and consumers to make a guided deci-
sion about which studies to rely on and which device to 
use. To this end, our review unraveled that most valida-
tion studies did not meet recommended quality prin-
ciples [11, 45]. There is a lack of validation studies that 
focused on biological state and posture/activity type 
outcomes. Moreover, most devices were validated only 
once. In contrast, a couple of devices were already exten-
sively validated for at least two of three dimensions such 
as the ActiGraph GT3X and GT3X + or the ActivPAL. 
We anticipate that both existing and new devices will 
broaden their capabilities to capture the complete range 
of 24-hour physical behavior, possibly by incorporating 
algorithms for sleep detection. Thus, the next genera-
tion of validation studies might consider the validity of 
more than one aspect of the 24-hour physical behaviour 
construct during a study protocol or conduct a series of 

studies. We expect wearables to evolve as a global surveil-
lance methodology for the 24-hour physical behaviour 
assessment [38, 50]. For this trend, scientific collabora-
tions [51] are fundamentally necessary to bundle knowl-
edge and harmonize the field of wearable devices, which 
is currently highly inconsistent [42, 52]. We finally con-
clude that standardized protocols for laboratory valida-
tion embedded in a framework [10] are urgently needed 
to inform and guide stakeholders (e.g., manufacturers, 
researchers, and consumers) in (i) selecting wearables for 
self-tracking purposes (ii) applying wearables in health 
studies and (iii) fostering innovation to achieve improved 
validity.
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