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ABSTRACT
Objective When developing prediction models, 
researchers commonly employ a single model which 
uses all the available data (end- to- end approach). 
Alternatively, a similarity- based approach has been 
previously proposed, in which patients with similar 
clinical characteristics are first grouped into clusters, then 
prediction models are developed within each cluster. The 
potential advantage of the similarity- based approach 
is that it may better address heterogeneity in patient 
characteristics. However, it remains unclear whether it 
improves the overall predictive performance. We illustrate 
the similarity- based approach using data from people 
with depression and empirically compare its performance 
with the end- to- end approach.
Methods We used primary care data collected in 
general practices in the UK. Using 31 predefined baseline 
variables, we aimed to predict the severity of depressive 
symptoms, measured by Patient Health Questionnaire- 9, 
60 days after initiation of antidepressant treatment. 
Following the similarity- based approach, we used 
k- means to cluster patients based on their baseline 
characteristics. We derived the optimal number of 
clusters using the Silhouette coefficient. We used ridge 
regression to build prediction models in both approaches. 
To compare the models’ performance, we calculated 
the mean absolute error (MAE) and the coefficient of 
determination (R2) using bootstrapping.
Results We analysed data from 16 384 patients. The 
end- to- end approach resulted in an MAE of 4.64 and R2 
of 0.20. The best- performing similarity- based model was 
for four clusters, with MAE of 4.65 and R2 of 0.19.
Conclusions The end- to- end and the similarity- based 
model yielded comparable performance. Due to its 
simplicity, the end- to- end approach can be favoured 
when using demographic and clinical data to build 
prediction models on pharmacological treatments for 
depression.

INTRODUCTION
Clinical prediction models aim to predict health-
care outcomes based on a set of baseline variables 
(predictors).1 Accurate prediction models may be 
used to facilitate clinicians’ decisions on screening 
and treatment,2 and may therefore lead to opti-
mising clinical care.3 However, real- world patient 
data are often heterogeneous and noisy, which may 
reduce the ability to predict clinical outcomes and 
disease trajectories.4 This problem is especially 
significant in mental health research.5

A commonly applied approach to prediction 
modelling is the ‘end- to- end’ approach, where a 
(statistical or machine learning) model is trained 
on all available data at once to explore linear or 
non- linear relationships between predictors and 
outcomes.6 An alternative approach is to adopt a 
two- stage method. In the first stage, an unsupervised 
algorithm groups patients into homogeneous clusters 
according to similar baseline characteristics, that is, 
using only patient predictors but not outcomes.7 
In the second stage, a separate prediction model is 
developed within each cluster, to provide patient- 
level predictions of the outcome of interest.8 The 
idea behind this approach is that we try to better 
capture the heterogeneity of patient characteristics 
by bypassing the need to create a single, complex 
model, valid for all possible patient subgroups and 
types. The two- stage method has previously yielded 
improved predictive performance compared with 
the usual end- to- end approach in some applications, 
such as for predicting mortality and readmission in 
patients with acute myocardial infarction and for 
diagnosis and outcome prediction in patients with 
kidney diseases.9 10 It remains however unclear 
whether applying this method in other settings, 
such as in mental health outcomes prediction, may 
also lead to improved performance.

In this paper, we aimed to compare the perfor-
mance of end- to- end and similarity- based 
approaches in predicting depression severity using 
a large data set of patients with depression.

METHODS
Study design and patients
Data were obtained from the QResearch primary 
care research database (https://www.qresearch. 
org/), which contains anonymised electronic health-
care records of over 35 million patients registered 
with 1500 general practices in the UK. We initially 
identified an open cohort of patients with depres-
sion aged >18 years at the study entry date, drawn 
from patients registered with eligible practices since 
1 January 1998. We wanted to focus on the case 
of predicting an absolute outcome rather than the 
relative effects between treatments so we included 
patients with depression who were prescribed 
fluoxetine, as it was the first selective serotonin 
reuptake inhibitor approved by regulatory agencies 
internationally and has since been the most used, 
active comparator in antidepressant clinical trials.11 
We excluded patients who had a previous episode 
of depression in the year before or a previous 
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prescription of antidepressants in the year before. We also 
excluded patients who were prescribed two or more antidepres-
sants at the same time, a mood stabiliser or an antipsychotic (see 
online supplemental file for further information).

We aimed to predict the severity of depressive symptoms 
measured after 60 days from the initiation of antidepressant 
treatment.12 Depressive symptom severity was measured using 
the Patient Health Questionnaire- 9 (PHQ- 9), a validated self- 
rating scale.13 If a patient did not have a depression score 
recorded after 60 days, we considered at least 21 days after the 
diagnosis and up to 90 days after as valid measurement.12 If there 
were two or more eligible depression scores, we chose the one 
closest to our target time point (ie, 60 days after the initiation of 
antidepressant treatment). If depressive symptoms were assessed 
using a different questionnaire, we transformed other depression 
scales, such as Hospital Anxiety and Depression Scale and Beck’s 
Depression Inventory II, into PHQ- 9 following a previously vali-
dated algorithm.14 Only patients with a post- treatment depres-
sion score were included in the analysis.

Based on a recent literature review,15 we selected 31 candi-
date predictors, including baseline characteristics such as demo-
graphic variables, condition- specific variables (eg, depression 
severity) and information relevant to previous treatments and 
comorbid conditions. A detailed list of these predictors can be 
found in the online supplemental file. We also provide a mock 
data set of five patients in online supplemental table S1 to help 
readers understand the structure of our data.

Multiple imputations for missing data
There was missing information for several predictors, with 
approximately 1% of the data missing for smoking status and 
Townsend deprivation score, 13% for ethnicity and body mass 
index, and 22% for the baseline PHQ- 9 score. We did not exclude 
subjects with missing predictors as this would have greatly 
reduced the sample study size, thus decreasing precision and 
power. Instead, we deployed a multiple imputation method,16 
where we used additive regressions to impute missing values. We 
generated 10 imputed data sets.17 We did not use the imputed 
PHQ- 9 outcomes for model development or evaluation.

End-to-end approach
Following the end- to- end approach, a model would use the 
whole training data set and take 31 predictors as input to predict 
the PHQ- 9 score at 60 days. Many prediction models can be 
used (eg, statistical models such as simple linear regression, or 
any type of machine learning model, such as random forest or 
multilayer perceptron). However, using the same data set, we 
previously found no evidence of increased performance when 
using advanced machine learning methods.18 Therefore, in this 
paper we used a linear regression model with L2 regularisation 
(ridge regression). To find the optimal hyperparameter, that is, 
the penalty of the ridge regression model, we used a 10- fold 
cross- validation method, as detailed in the online supplemental 
file.

We fitted the model separately on each of the 10 imputed data 
sets. To make a prediction for a new patient, we used the 31 
predictors as input in each of the 10 models and averaged their 
predictions as the final output.

Similarity-based approach
In the similarity- based approach, in the first stage, we grouped 
patients with similar clinical characteristics into several clusters. 
Specifically, we used the k- means algorithm to split the data set 

into k clusters (see below how k was determined). We chose this 
algorithm because of its simplicity and ease of interpretation, 
which contributed to it being one of the most popular clustering 
algorithms in the medical domain.19 Before fitting the k- means 
algorithm, for categorical predictors we used one- hot encoding, 
that is, we converted each categorical predictor into a series of 
binary ones.20 We standardised the predictors before passing 
them on to k- means algorithm.

Regarding the second stage, to be able to make a fair compar-
ison between the two approaches, the model architecture of the 
end- to- end approach should be identical to the one used within 
each cluster in the similarity- based approach. Thus, at the second 
stage, that is, after identifying the clusters, we applied the same 
modelling strategy as in the end- to- end approach (ie, a unique 
ridge regression model within each cluster).

Finally, we ended up with 10 sets of models (one set per 
imputed data set) where each set contained one clustering model 
and k ridge models. To predict a new individual, we used each of 
these sets of models to first identify the cluster that the patient 
belonged to according to his/her baseline characteristics and then 
used the corresponding cluster- specific model to make predic-
tions. We averaged these 10 predictions (one from each multiple 
imputed data set) to obtain the final ‘overall’ prediction.

The number of clusters (k) can have a big impact on the clus-
tering procedure of the first stage described above. In order to 
choose the optimal k, we used the Silhouette coefficient, which 
measures the goodness of fit of the k- means algorithm.21 A 
detailed explanation of the Silhouette coefficient can be found 
in the online supplemental file. The Silhouette coefficient ranges 
from −1 to 1, where 1 means that clusters are perfectly sepa-
rated and can be very clearly distinguished. Values near 0 indi-
cate overlapping clusters, with no clear distinctions between 
them. Negative values generally indicate clusters are assigned 
incorrectly, that is, a different cluster is more similar to the one 
each sample is assigned into.

Here we explored values of k in (2, 3, …, 8). Following 
previous research,22 for each k we fitted the k - means algorithm 
on 1000 bootstrap samples (100 per multiple imputed data set) 
and calculated the Silhouette coefficient. The optimal number of 
clusters was determined as the value of k  leading to the highest 
coefficient.

To assess the sensitivity of the results to the choice of the 
optimal number of clusters, we varied k from 2 to 8 and measured 
the mean absolute error (MAE) and the coefficient of determina-
tion (R2) using the same bootstrap method detailed above.

Evaluation of model performance via internal validation
We used R2 to evaluate model performance on the PHQ- 9 score 
prediction. R2 is scale- free and measures the proportion of the 
total variation of the PHQ- 9 score explained by a model. It is 
one of the most common measures of model performance for 
continuous outcomes, such as the one analysed in our paper. 
Furthermore, following recommendations, for example by 
Poldrack et al,23 we additionally used MAE. MAE measures the 
average magnitude of errors in pairs of observed and predicted 
outcomes. A lower MAE indicates better model performance.

We calculated the performance metrics using bootstrapping to 
correct for optimism. For each imputed data set, we first resa-
mpled data with a random seed and created a bootstrap sample 
as the training set. We then developed the end- to- end and 
similarity- based models in the bootstrap sample. We used out- 
of- sample patients, that is, patients who were not included in 
the bootstrap sample, to make predictions using the developed 
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models. By construction, each bootstrap sample had the same 
size as the original data set and contained approximately 70% 
of the patients in the original data set (some patients were dupli-
cated), leaving approximately 30% of the patients for testing. 
Next, we calculated the MAE and R2 for both approaches. We 
then changed the random seed and performed bootstrapping 
100 times per imputed data set (1000 times in total). In the 
end, we averaged the 1000 values of each metric and used the 
2.5th–97.5th percentile to obtain their CIs.

Implementation details
The analyses were conducted on a computer with an Intel Xeon 
Gold 6246 12- Core central processing unit. Data preparation 
and cleaning were conducted in Stata V.16.1.24 Multiple impu-
tation was carried out using Hmisc in R.25 Clustering, model 
fitting and evaluation were conducted in Python V.3.8.26 We 
provide online demo code for deploying both approaches 
using self- programmed routines available at https://github.com/ 
oceanlq/Sample_code_for_publication/blob/main/end-to-end vs 
patient similarity-based predictive approach.ipynb.

RESULTS
We identified a total of 16 384 patients meeting our inclusion 
criteria. A description of the clinical and demographic character-
istics of these patients is shown in table 1.

Performance of the end-to-end and similarity-based 
approaches
Overall, we found modest to low predictive performance for 
both approaches. Predictions were similar between the two 
approaches (see figure 1 and online supplemental figure S1 for 
a comparison of predicted PHQ- 9 scores and table 2 for full 
details).

The apparent predictive performance of the end- to- end 
approach was 4.56 for MAE and 0.23 for R2. The performance 
after internal validation was only slightly worse (MAE=4.64, 
R2=0.20), indicating only minimal overfitting. We provide the 
histogram of predicted PHQ- 9 scores from the end- to- end model 
in figure 1A. The average coefficients of the ridge end- to- end 
models developed on 10 imputed data sets can be found in online 
supplemental table S2. The similarity- based approach achieved 
comparable performances with the end- to- end approach both 
in apparent performance metrics (MAE=4.55, R2=0.23) and in 
the internally validated ones (MAE=4.65, R2=0.19).

In the first stage of the similarity- based model, we found 
that k=4 had the highest average Silhouette coefficient across 
all imputed data sets (online supplemental table S3, calculated 
based on 1000 bootstrap samples). The average Silhouette coef-
ficient was 0.15, suggesting extensive overlap between the clus-
ters. In online supplemental table S4, we reported the patients’ 
characteristics of the clusters identified with the similarity- based 
approach using the optimal number of clusters (k=4) for one 
randomly selected imputed data set. To facilitate the presen-
tation of results, we named clusters from 1 to 4 following 
the average baseline PHQ- 9 scores of each cluster (ie, highest 
average baseline score in cluster 1 and lowest in cluster 4). The 
observed PHQ- 9 scores are shown in figure 2. In addition to 
baseline PHQ- 9 score, the clusters also showed a directionality 
(ie, increasing or decreasing from cluster 1 to 4) for other patient 
characteristics. For example, patients in cluster 1 were predom-
inantly smokers, younger, white, had higher Townsend depri-
vation scores (higher level of material deprivation), and had a 
lower level of comorbidity with coronary heart disease, stroke/

Table 1 Descriptive statistics of the study cohort for analysis of 
severity of depression symptoms (N=16 384)

Characteristics
Sample
n (%)/mean (SD)

Missing
n (%)

Predictors: demographic     

Sex   0

  Female 10 226 (62.41)   

  Male 6158 (37.59)   

Age 41.99 (14.20) 0

Body mass index 27.34 (6.41) 2184 (13.33)

Smoking   236 (1.44)

  Yes 4944 (30.18)   

  No 11 204 (68.38)   

Ethnic group   2438 (14.88)

  White 12 834 (78.33)   

  African/Caribbean 223 (1.36)   

  Asian 544 (3.32)   

  Other 345 (2.11)   

Townsend deprivation score   38 (0.23)

  1 (least deprived) 3816 (23.29)   

  2 3923 (23.94)   

  3 3538 (21.59)   

  4 2935 (17.91)   

  5 (most deprived) 2134 (13.02)   

Predictors: depression- specific     

Baseline PHQ- 9 score 17.45 (4.74) 3630 (22.16)

First episode   0

  Yes 11 018 (67.25)   

  No 5366 (32.75)   

Previous antidepressant use   0

  Any antidepressant 6290 (38.39)   

  Any SSRI 5196 (31.71)   

  Fluoxetine 3781 (23.08)   

Previous psychotherapy 151 (0.92) 0

Previous referral to secondary care 56 (0.34) 0

Childhood maltreatment 24 (0.15) 0

Predictors: comorbid conditions at baseline     

Coronary heart disease 423 (2.58) 0

Stroke 253 (1.54) 0

Diabetes 827 (5.05) 0

Epilepsy 186 (1.14) 0

Hypothyroidism 627 (3.83) 0

Arthritis 1188 (7.25) 0

Anxiety 2623 (16.01) 0

Migraine 1529 (9.33) 0

Predictors: use of other drugs at baseline     

Antihypertensive 1426 (8.70) 0

Aspirin 593 (3.62) 0

Statins 1327 (8.10) 0

Anticoagulants 106 (0.65) 0

Non- steroidal anti- inflammatory drugs 632 (3.86) 0

Anticonvulsants 219 (1.34) 0

Hypnotics 1214 (7.41) 0

Bisphosphonates 44 (0.27) 0

Contraceptives 1026 (6.26) 0

Outcome     

PHQ- 9 score at 2 months 11.70 (6.34) 0

n, number; PHQ- 9, Patient Health Questionnaire- 9; SSRI, selective serotonin 
reuptake inhibitor.
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transient ischaemic attacks and chronic inflammatory diseases as 
compared with other clusters. Cluster 1 was also associated with 
lower use of antihypertensive drugs, aspirin, statins and antico-
agulants compared with the other clusters. On the contrary, the 
use of non- steroidal anti- inflammatory drugs and hypnotics was 
more frequent in cluster 1. We repeated the clustering proce-
dure multiple times and found that the choice of the multiple 
imputed data sets did not materially change our findings and the 
clustering results.

We then extracted the coefficients (averaged across 10 
imputed data sets) of the most important predictor, PHQ- 9 
baseline score,18 from the regression models developed on the 

four clusters and all patients, respectively. We found evidence of 
an overall linear relationship between the outcome and PHQ- 9 
baseline score of each individual model (figure 3), which also 
explains the similar performance of the end- to- end and the 
similarity- based approaches.

The results of the sensitivity analysis, that is, varying the 
optimal value of k from 4 to other values from 2 to 8 and 
measuring MAE and R2 using bootstrapping, are presented in 
table 2. We found the optimal value of k clusters based on the 
Silhouette coefficient to be consistent with the performances 
based on the MAE and R2 parameters of the similarity- based 
model. For values of k other than 4, the MAE increased and the 
R2 values dropped.

DISCUSSION
In this paper, we compared the conventional end- to- end approach 
with a two- stage similarity- based predictive modelling approach 
with respect to their ability to predict PHQ- 9 depression scores 
using a UK real- world observational data set including 16 384 
primary care patients taking fluoxetine. We found that the end- 
to- end and similarity- based approaches showed comparably low 
predictive performance for any number of clusters k ranging 
from 2 to 8. This finding is in contrast with previous studies,8–10 
where the similarity- based approach led to performance benefits. 

Figure 1 Histograms of predicted Patient Health Questionnaire 
(PHQ- 9) scores of (A) the end- to- end approach and (B) the similarity- 
based approach (k=4), and (C) the scatter plot of predictions of both 
approaches.

Table 2 Evaluation of post- treatment Patient Health Questionnaire 
(PHQ- 9) predictions made by the end- to- end and similarity- based 
approaches

Number of 
clusters, k MAE (95% CI) R2 (95% CI)

End- to- end (apparent) NA 4.56 0.23

End- to- end (internal 
validation)

NA 4.64 (4.57, 4.71) 0.20 (0.18, 0.21)

Similarity- based 
(apparent)

4 4.55 0.23

Similarity- based 
(internal validation)

Optimal k for 
each bootstrap 
sample

4.65 (4.58, 4.72) 0.19 (0.18, 0.21)

Similarity- based 
(sensitivity analysis)

2 4.67 (4.60, 4.74) 0.19 (0.17, 0.20)

3 4.66 (4.59, 4.73) 0.19 (0.17, 0.21)

5 4.68 (4.61, 4.75) 0.18 (0.17, 0.20)

6 4.68 (4.61, 4.75) 0.18 (0.16, 0.20)

7 4.69 (4.62, 4.76) 0.18 (0.16, 0.20)

8 4.70 (4.63, 4.77) 0.17 (0.15, 0.19)

CI is calculated as the 2.5th–97.5th percentile of bootstrap estimates.
MAE, mean absolute error; NA, not applicable; R2, coefficient of determination.

Figure 2 Histograms of Patient Health Questionnaire (PHQ- 9) 
scores in the four identified clusters of patients. 'Values in the legends 
are the mean PHQ- 9 scores. (A) Observed PHQ- 9 scores at baseline, 
(B) observed PHQ- 9 scores at 2 months and (C–F) observed PHQ- 9 
scores at 2 months for each cluster.
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One possible explanation is that the available clinical and demo-
graphic variables were not strong predictors of changes in PHQ- 9 
scores in our data set. The slopes of the regression models were 
almost identical across the four clusters in the similarity- based 
approach and similar to the regression model fitted in the entire 
data set in the end- to- end approach (see figure 3, using the 
strongest predictor, PHQ- 9 baseline score, as an example). This 
linearity was also seen in a previous publication, where using the 
same data we found that the linear regression model performed 
almost identically to more complex non- linear models (ie, other 
machine learning and deep neural network models).18 As the 
post- treatment PHQ- 9 scores were mostly linearly dependent on 
the predictors, the end- to- end ridge regression model used the 
full potential of the data set and the similarity- based approach 
did not lead to any increase in performance. Moreover, forcing 
the whole data set into smaller clusters resulted in a decrease in 
sample size for each cluster- specific model and therefore a loss in 
statistical power for the similarity- based approach.27

In theory, an advantage of the similarity- based approach is 
that clustering results may potentially reveal clinically mean-
ingful patterns among patients.8 In our example, the algorithm 
identified four clusters using seven patient characteristics. These 
characteristics had consistently increased or decreased the mean 
values or percentages across the identified clusters. Overall, 
cluster 1 seemed to group patients with poorer psychosocial 
functioning compared with other clusters: patients of that group 
tended to have more severe depressive symptoms at baseline 
(higher mean PHQ- 9 score, at 15.4), tended to be younger (mean 
age at 42.2), were more likely to be smokers (38.0%), were less 
likely to be white (90.6%) and were at a higher level of socio-
economic deprivation compared with patients in other clusters 
(Townsend deprivation score of 1 at 28.3%). These clustering 

results suggest important correlations between predictors, such 
as a link between deprivation and psychiatric disorders.

This paper has some potential limitations. First, among 
several possible prediction models, we opted for one specific 
model (ie, ridge regression), and in theory using different 
models could lead to different results. However, we deemed 
this highly unlikely as we previously compared neural networks 
with ridge regression for the same data set and found almost 
identical predictive performance.18 Second, our analysis focused 
only on pharmacological treatments for depression rather than 
other non- pharmacological treatments such as psychotherapy, 
which may limit the generalisability of findings as the predic-
tion of non- pharmacological treatment outcomes might require 
a completely different set of predictors and thus some strong 
predictors might be found.28 Finally, we did not consider neuro-
imaging and genomic multimodal data in our analyses, which 
could potentially introduce non- linearities, enlarge the separa-
tion between clusters and benefit the predictive performance of 
the similarity- based approach.29 30 The performance of complex 
models such as deep neural networks should be further assessed 
in future studies using variables from different international data 
sets and across other mental health disorders and treatments.

In conclusion, the end- to- end method and two- stage 
similarity- based modelling approach yielded comparable results 
when predicting the individual depression symptom severity at 2 
months after initiating antidepressant treatment. When limited 
to demographic and clinical variables as predictors of depres-
sion severity, the end- to- end approach can be applied by default 
because it is easier to perform and we found no evidence of supe-
rior performance compared with the similarity- based approach.
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