
1.  Introduction
Terrestrial vegetation production is a critical component of the global carbon cycle and plays an important role 
in regulating terrestrial carbon sinks (Beer et al., 2010; Jung et al., 2017). In particular, interannual variability 
(IAV) in vegetation production substantially regulates terrestrial carbon sinks (Desai et al., 2010), atmospheric 
CO2 concentration (Yuan et  al.,  2019), and the climate system (Poulter et  al.,  2014). For example, previous 
studies indicated that the IAV in global gross vegetation production strongly correlates with IAV in atmos-
pheric CO2 concentration (Reichstein et al., 2013). With the rising frequency of extreme climate events, vege-
tation production shows an increasing interannual fluctuation (Reichstein et al., 2013; Zscheischler, Mahecha, 
et al., 2014; Zscheischler, Michalak, et al., 2014), which also indicates a decreasing stability of ecosystem carbon 
sinks (Messori et al., 2019; Zscheischler, Mahecha, et al., 2014; Zscheischler, Michalak, et al., 2014). With more 
frequent climate extremes under climate change (Seneviratne et al., 2012), the impact of IAV in gross primary 
production (GPP) is likely to increase (Reichstein et al., 2013). Thus, a better understanding of the performance 
of modeled IAV in GPP will help inferring how carbon sinks and sources will change across regions in the future 
(Z. Li et al., 2020; Poulter et al., 2014).

Terrestrial ecosystem models (TEMs) are an irreplaceable tool for estimating and predicting the terrestrial carbon 
sink and its IAV (Friedlingstein et al., 2020). However, there are substantial differences in the simulated IAV in 
gross vegetation production from various ecosystem models (Cai et al., 2014; M. Chen et al., 2017). For exam-
ple, a recent study showed large differences of IAV (characterized by the standard deviation in annual GPP, 
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ranging from 1.38 to 5.89 Pg C yr −1) in simulated GPP over 11 TEMs (Zheng et al., 2020). Similarly, O’Sullivan 
et al. (2020) found that the global average variance of IAV in GPP simulated by TEMs is almost 1.21 Pg C yr −1, 
which is larger than the one obtained from satellite-based models (1.01 Pg C yr −1) and machine-learning models 
(0.34 Pg C yr −1). In addition, when tested against site-based observations in terms of IAV in GPP, TEMs typically 
perform very poorly (Keenan et al., 2012; Verma et al., 2015). For example, Keenan et al. (2012) tested 16 TEMs 
and three remote sensing products against the measurements at 11 long-term eddy covariance sites and found that 
none of the models reproduced the observed IAV in GPP. Therefore, Earth System Models, which have integrated 
the TEMs, may induce large uncertainties for reproducing IAV of gross vegetation production as well as the 
terrestrial carbon cycle in the future (Bonan & Doney, 2018; Winkler et al., 2019).

Simulated IAV in GPP remains highly uncertain and is related to the poor representation of model formulation 
(Dietze et al., 2011). In general, the simulated IAV in GPP derived from TEMs highly depends on two sources, 
including (a) changes in physiological processes such as growing season length, and photosynthesis rates (X. 
Luo et al., 2019; MacBean et al., 2018; Xia et al., 2015; Zscheischler et al., 2016) and (b) changes in vegeta-
tion structural variable, that is, leaf area index (J. M. Chen et al., 2019; S. Chen et al., 2019; Hu et al., 2018). 
Although most of the key carbon cycle processes have been integrated into models, there are large challenges in 
reproducing IAV in GPP because of the complicated processes and responses to environmental variables (Verma 
et al., 2015; Zheng et al., 2020). The physiological responses of vegetation to environmental changes are instan-
taneous (Liu et al., 2021; X. Luo et al., 2019; Zscheischler et al., 2016), but the structural responses are lagged 
(Bastos et al., 2020; Bertrand et al., 2011; A. Zhao et al., 2020; Q. Zhao et al., 2020). For example, although the 
canopy structure of Amazon forests shows slight changes over the years, the photosynthetic rate largely differs 
across years (Saleska et al., 2016; Wu et al., 2017). Magney et al. (2019) showed similar results in temperate 
forests. The understanding of the differential changes in physiology and structure in anomalous climate condi-
tions have not yet been applied to improve model predictive skills (Hu et al., 2018), which may be the main cause 
for the low predictive skills for reproducing IAV in GPP.

This study aims to evaluate the performance of TEMs for reproducing IAV in GPP against observations at eddy 
covariance towers globally and to investigate the relationships of IAV in GPP with meteorological variables and 
leaf area index to understand its environmental and physiological controls. Specific objectives are to (a) evaluate 
the modeling capabilities of TEMs for simulating IAV in GPP based on global observations, (b) examine the 
performance of TEMs for reproducing vegetation structural changes, and (c) quantify the impacts of vegetation 
physiological and structural changes on IAV in GPP.

2.  Materials and Methods
2.1.  Terrestrial Ecosystem Models

This study included nine TEM data sets from the TRENDY v10 ensemble since 2000 (Friedlingstein et al., 2022): 
Community Atmosphere Biosphere Land Exchange (CABLE-POP, Haverd et  al.,  2017, hereafter CABLEP), 
Community Land Model (CLM, Lawrence et  al.,  2019), Dynamic Land Ecosystem Model (DLEM, Tian 
et al., 2015), Interactions between Surface, Biosphere, and Atmosphere (IBSA, Delire et al., 2020), Integrated 
BIosphere Simulator (IBIS, Yuan et al., 2014), Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS, 
Smith et  al.,  2014, hereafter LPJG), Land surface Processes and eXchanges (LPX, Lienert & Joos,  2018), 
Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEEv3, Vuichard et  al.,  2019, hereafter 
ORCHIDEE), and Vegetation Integrated Simulator for Trace gases (VISIT, Kato et  al.,  2013). We used the 
simulations in model experiments with varying CO2 concentrations and climate (i.e., S2 experiment), which are 
close to the scenarios in the real world. The simulation in S2 experiment considers variability in CO2 and climate, 
with the assumption that land cover type is stable compared to S3 experiment (Friedlingstein et al., 2022). All 
TEMs from the TRENDY v10 were driven by CRUJRA data set with a coarse spatial resolution of 0.5° × 0.5° 
(see Section 2.2). In addition, we run four TEMs (i.e., IBIS, LPJG, LPX, and ORCHIDEE) driven by site-based 
meteorological measurements to investigate whether the coarse spatial resolution of climate forcing impacted the 
model performance when reproducing IAV in GPP.

The annual GPP and LAI were averaged from monthly simulations during the growing season. This study defined 
the growing season at those months with a mean temperature was above 0°C based on the Climatic Research 
Unit Japanese Reanalysis (CRU-JRA, http://catalogue.ceda.ac.uk/uuid/863a47a6d8414b6982e1396c69a9efe8) 
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data set. Since the spatial resolution of GPP and LAI varies among models, 
we resampled all the TEM simulated GPP and LAI into a 0.5° × 0.5° spatial 
resolution.

2.2.  Climate and Satellite Data

The meteorological forcing data in TRENDY v10 ensemble is CRUJRA data 
set, which is a gridded land surface blend of the CRU and the JRA data sets 
with a spatial resolution of 0.5° × 0.5°. We chose air temperature (TEMP), 
shortwave radiation (SW), precipitation (PRE), and vapor pressure deficit 
(VPD) to examine the responses of GPP to climate change. VPD was calcu-
lated based on air temperature and actual vapor pressure derived from this 
data set (Yuan et  al.,  2019). All the annual meteorological variables were 
calculated as the average from only the growing season data.

To compare modeled LAI with observation-based LAI data, we utilized the 
satellite-based 500-m spatial resolution LAI product Global Land Surface 
Satellite (GLASS, Liang et al., 2021) based on Moderate-resolution Imaging 
Spectroradiometer (MODIS) observations. This product is generated with 
physical inversion techniques using the general regression neural networks 
(GRNNs) method. The GRNNs are trained with fused reflectance values for 

each MODIS biome and CYCLOPES LAI products. Research has shown that the GLASS-LAI product is in 
good agreement with ground measured LAI (Fang et al., 2013; Xiao et al., 2014, 2017; B. Xu et al., 2018). The 
upscale ground measured LAI also showed that the GLASS-LAI product is more accurate than the other existing 
LAI product in most biomes, so it can be used as a proxy for annual LAI observations (B. Xu et al., 2018). We 
aggregated the annual LAI observation as the mean LAI values from GLASS-LAI product during the growing 
season (defined as months with mean air temperature higher than 0°C).

2.3.  Data Set at the Eddy Covariance Sites

The IAV in GPP from eddy covariance (EC) sites observation in FLUXNET 2015 (Pastorello et al., 2020), Inte-
grated Carbon Observation System (ICOS, https://www.icos-cp.eu/data-products/2G60-ZHAK), AmeriFlux 
(https://ameriflux.lbl.gov/sites/site-search/), OzFlux (https://data.ozflux.org.au/portal/home.jspx), and AsiaFlux 
(https://db.cger.nies.go.jp/asiafluxdb/), was treated as the observation of IAV in GPP in this study. The annual 
GPP was aggregated from the daytime partition method (GPP_DT_VUT_REF) derived from month GPP data 
during the growing season. The effective annual GPP, aggregated with more than 10 months of GPP data with its 
quality control tag >0.8. We excluded the sites with less than 4 years of effective annual GPP, so a total of 211 
EC sites including 1686 site-years data were selected (Table 1 and Table S1 in Supporting Information S1). Eight 
types of major biomes including evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous 
broadleaf forest (DBF), mixed forest (MF), savanna (SAV), grassland (GRA), shrub (SHR), and cropland (CRO) 
were selected to evaluate the IAV in GPP at the sites. All TEMs simulated GPP for each ecosystem type indi-
vidually within a given 0.5 × 0.5° grid, and we compared the simulations of the corresponding ecosystem types 
against the GPP derived from EC site measurements.

Since the TEMs in TRENDY v10 ensemble are driven by the coarse spatial resolution climate data, the meteor-
ological conditions may differ from those at the flux sites and lead to uncertainties in the evaluation of IAV in 
GPP of the models. Therefore, we compared IAV in the site-measured meteorology data (i.e., SW, VPD, PRE and 
TEMP) with the CRU-JRA data at the selected sites.

2.4.  Calculating Interannual Variability

Because the magnitudes of simulated LAI and GPP vary across TEMs (Zhang & Ye, 2021; A. Zhao et al., 2020; 
Q. Zhao et al., 2020) and have an annual trend, quantitative methods (i.e., anomalies and standard deviations) of 
IAV used in previous research (M. Chen et al., 2017; O’Sullivan et al., 2020; Yuan et al., 2009) are not applicable 
to this study. We evaluated the IAV of each variable for each site or grid by calculating the coefficient of variation 

Table 1 
Investigated Sites in This Study (Detailed Site Information Could Be Found 
in Table S1 in Supporting Information S1)

Sites Site-years
Mean annual 

temperature (°C)
Mean annual 

precipitation (mm)

ENF 53 457 −3.2–14.2 523–1,316

EBF 15 103 10.7–26.1 650–4,000

DBF 27 228 0.3–15.1 563–2,275

MF 12 70 1.3–15.8 408–2,100

SAV 16 141 15.8–21.9 240–1,449

GRA 49 374 −9.7–8.7 93–1,100

SHR 15 106 −14.3–27.2 220–588

CRO 24 207 7.6–18.0 470–1150

Note. We chose eight types of major biomes including evergreen needleleaf 
forest (ENF), evergreen broadleaf forest (EBF), deciduous broadleaf forest 
(DBF), mixed forest (MF), savanna (SAV), grassland (GRA), shrub (SHR), 
and cropland (CRO).
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(CV) with annual detrended data, which has been found to be an effective measure of IAV (Cao et al., 2003). We 
used a linear annual detrending method to remove the annual trend from the data:

𝑋𝑋detrend,year = 𝑋𝑋year −𝑋𝑋trend,year +𝑋𝑋mean� (1)

𝑋𝑋trend,year = 𝑘𝑘 × year + 𝑏𝑏� (2)

where Xyear is the original annual variable with annual trend; Xtrend,year represents the trend of each year, whose the 
coefficients (k, b) in Equation 2 are fitted by a linear function with year as input and Xyear as output. We used Xmean, 
which is averaged from Xyear, to denote the magnitude of the variable. The detrended variable in each year is repre-
sented by Xdetrend,year. The IAV, indicated by CV, in each variable (CVx) was calculated from the detrended data:

CV𝑥𝑥 =

√

∑

(𝑋𝑋detrend,year−𝑋𝑋mean)
2

𝑁𝑁

𝑋𝑋mean

� (3)

where N is the total number of investigated years in each site or grid. In different vegetation types and TEMs, 
the magnitudes of GPP can be quite different (Zhang & Ye, 2021), so using a ratio (i.e., CV) between standard 
deviation of GPP and average GPP can better quantify the fluctuation of GPP over many years across regions 
and models (Dong et al., 2022).

2.5.  Evaluating the Relationship Between Structural Changes and GPP

To evaluate how the structural changes (i.e., LAI) affect GPP, we used 211 FLUXNET sites locations to extract 
the annual LAI and GPP from both observed and simulated data. To estimate the influence of annual structural 
change to GPP, we derived the correlation (indicated by Pearson's correlation coefficient, r) between annual 
detrended LAI and annual aggregated GPP at each EC site. To assess the spatial pattern of IAV of LAI to GPP, 
we used a linear fitting method to compare CV in LAI versus CV in GPP at the EC sites. We derived CV in 
GLASS-LAI as observation and CV in TEMs' LAI as simulation to compare the discrepancy in the IAV in LAI 
at a global scale.

2.6.  Separating Contributions of Structural and Physiological Changes on IAV in GPP

A machine learning model based on random forest (RF) was used to quantify the contributions of vegetation 
physiological and structural changes on IAV in GPP. First, we developed an RF model to reproduce IAV in GPP 
derived from TEMs and observed GPP at EC sites, which included the impacts of physiological and structural 
changes in vegetation. This study defined the structural change of vegetation as the LAI changes, and thus the 
contribution of structural changes to IAV in GPP is the contribution of LAI changes with other environmental 
variables remaining constant. The contribution of physiological changes to IAV in GPP was quantified as the 
impacts of meteorological variables (Peng et al., 2021; Wu et al., 2017; Zscheischler et al., 2016). We included 
four meteorological variables (annual mean air temperature, vapor pressure deficit, shortwave radiation and 
annual total precipitation) to quantify the contributions of physiological changes. To avoid the impacts of long-
term changes on IAV, we used detrended meteorological variables, LAI and GPP, to develop the RF model using 
the “randomForest” package in R modified by Liaw and Wiener (2002). We constructed the RF model at each 
EC site and each pixel and randomly chose 70% of the data for training and the remaining 30% of the data for 
validation, and repeated this process 200 times. The simulated GPP by the RF model (GPPALL) were the mean 
values of all validated data in each year.

Next, to quantify the contributions of physiological and structural changes to IAV in GPP, we conducted two 
model experiments by holding meteorological variables and LAI constant to simulate GPP, indicated as GPPMET0 
and GPPLAI0, respectively. The contributions of physiological and structural changes to IAV in GPP were calcu-
lated as follows:

ConP =
(MSELAI0 − MSEALL)

MSEALL

× 100%� (4)

MSEALL =

∑

(GPPALL − GPPORI)
2

𝑁𝑁
� (5)
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MSELAI0 =

∑

(GPPLAI0 − GPPORI)
2

𝑁𝑁
� (6)

where GPPALL is the simulated GPP by the RF model driven by changing meteorological variables and LAI with 
time; GPPORI is the observed GPP at EC sites or simulated GPP by nine TEMs; ConP indicates the contribution 
of physiological changes to IAV in GPP. The contribution of structural changes (ConS) can be calculated by 
replacing GPPLAI0 to GPPMET0 in Equations 4 and 6. According to the above methods, we calculated the ConP 
and ConS at the site level and global scale based on nine terrestrial models from 2000 to 2020. Both ConP and 
ConS are affected by the magnitude of the input variables and GPP models; therefore, we calculated the relative 
contribution ratio from ConP divided by ConS to characterize the principal driver (i.e., physiological or structural 
change) of IAV in GPP from observations and simulations.

3.  Results
3.1.  IAV in GPP From TEMs

The TEMs underestimated the IAV (indicated by the coefficient of variation, 
CV) in GPP against the observations at eddy covariance (EC) sites. The mean 
CV values of simulated annual GPP by nine TEMs from TRENDY data set 
ranged from 0.04 to 0.15, all of which were significantly lower than the mean 
CV in the observed GPP (i.e., 0.18) (Figure 1). The GPP simulations by four 
TEMs (i.e., IBIS, LPJG, LPX, and ORCHIDEE), driven by site-based mete-
orology measurements, also showed a significant underestimation compared 
with the IAV in GPP observed from EC sites. In addition, both observations 
and simulations showed that the CV in GPP steadily decreased logarithmi-
cally with mean annual precipitation, suggesting that the IAV in GPP was 
larger in drier ecosystems (p < 0.05, Figure 2).

Further, we examine the model performance for simulating IAV in GPP for 
various ecosystem types and geographical regions. At nearly all ecosystem 
types, almost all TEMs underestimated the IAV in GPP compared with 
the IAV in observed GPP (Figure  3). The CV differences, defined as CV 
in simulated GPP minus CV in observed GPP, indicated significantly lower 
CV values of simulated GPP than those of observed GPP across almost all 
ecosystem types (Figure 3). The results showed the larger underestimates of 
CV in GPP by TEMs at nonforest ecosystem types (i.e., SAV, GRA, SHR, 
CRO) than four forest types (Figure S1 in Supporting Information S1). In 

Figure 1.  Comparison of the coefficient of variation of observed and simulated gross primary production (GPP) averaged 
from 211 eddy covariance sites. The asterisks (*) indicate statistically significant differences (p < 0.05) between observations 
(OBS) and simulations. The error bars represent the standard deviation in each model. The series of IBIS-F, LPJG-F, LPX-F, 
and ORCHIDEE-F indicated the interannual variability (IAV) in GPP driven by site-based meteorology data. The p-value 
in red color represented the paired t-test between IAV in GPP from TRENDY v10 ensemble and IAV in GPP driven by 
site-based meteorology data.

Figure 2.  Spatial patterns of interannual variations in gross primary 
production (GPP) over 211 eddy covariance sites along the mean annual 
precipitation gradient. The solid line indicates the regression line of observed 
GPP (OBS) based on the eddy covariance measurements, and the other dashed 
lines indicate the regression lines of simulations by nine terrestrial ecosystem 
models. All the regression correlation is significant with p < 0.05.
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addition, the results also found that the TEMs underestimated the IAV in GPP at various geographical regions 
including Asia, Oceania, Europe, North America, South America, Northern Hemisphere, and Southern Hemi-
sphere (Figure S3 in Supporting Information S1).

3.2.  IAV in GPP Depends on IAV in LAI in TEMs

To investigate the reason for the underestimations of IAV by TEMs, we first examined the how variance of vege-
tation structure affects annual GPP. Our results showed that the models overestimated the dependence of GPP 
on LAI. On average, over all investigated sites, the correlation coefficient (r) between simulated annual LAI and 
annual GPP ranges from 0.60 to 0.95 for seven models (Figure 4a) except for LPJG and LPX. On the contrary, the 
averaged r between satellite-based LAI and observed GPP was only 0.13. In general, larger IAV in LAI simula-
tions led to higher IAV in GPP (Figure 4b). However, the observed IAV in GPP had a weak correlation (r = 0.2) 
with IAV in LAI over all investigated sites (Figure 4b). The simulated IAV in GPP derived from most models are 
significantly and positively correlated with LAI at more than 50% of the EC sites (Figure 4c) except for LPJG and 
LPX. In comparison, the CV of the observed GPP showed weak correlations with LAI. Only at 13% of the sites, 
the satellite-based LAI showed a significant correlation to IAV in the observed GPP (Figure 4c). In addition, the 
strong correlations between simulated GPP and LAI by nine TEMs were also found at the global scale (Figure 5).

To distinguish which biome's IAV in GPP is more dependent on IAV in LAI, we compared the annual LAI and 
GPP at each site across eight major biomes (Figure 6). The site observation data showed that the correlation (r) 
between annual LAI and annual GPP was weak (∼0.2) at most biomes. However, most TEMs showed high corre-
lation (r > 0.5) between annual LAI and annual GPP at all biomes, expect for IBIS, LPJG, and LPX.

The TEMs show the strong dependence of IAV in GPP on LAI (i.e., structural variation), but they underestimate 
the IAV in LAI compared to satellite-based LAI derived from the GLASS-LAI data set (Figure 7), which may 

Figure 3.  Difference of coefficient of variation (CV) in gross primary production between simulations and observations at eight vegetation types. The red dashed line 
in the middle represents the CV difference equals to zero. The asterisks (*) indicate statistically significant differences (p < 0.05) between simulated CV and observed 
CV. The abbreviations of each subplot: ENF, evergreen needleleaf forest; EBF, evergreen broadleaf forest; DBF, deciduous broadleaf forest; MF, mixed forest; SAV, 
savanna; GRA, grassland; SHR, shrubland; and CRO, cropland.
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be one of the most important reasons for underestimating IAV in GPP by TEMs. The global mean satellite-based 
CV of LAI was 0.23, which was much higher than the CV of simulated LAI by nine TEMs (Figure 7). GLASS-
LAI reached its maximal global area proportion when its CV in LAI equals to 0.14. On contrary, the peaks of 
CV in the simulated LAI by TEMs were much lower; only the ISBA and LPJG showed their largest global area 
proportion at a CV in LAI around 0.06, while other models did not show the available peak of CV in the simulated 
LAI (Figure 7).

3.3.  Contribution of Physiological Changes to IAV in GPP

This study further compared the relative contribution of physiological changes (ConP) and structural changes 
(ConS) to IAV in GPP. Both Conp and Cons depended on the magnitude of GPP; therefore, the absolute values 
of Conp and Cons were not comparable due to different magnitudes of observed and simulated GPP. Thus, the 
contribution ratio between Conp and Cons was calculated to indicate the relative contribution of physiological 
and structural changes. The contribution ratio derived from observations at 211 EC sites was 5.3, suggesting that 

Figure 4.  Comparison of correlations of interannual variability in gross primary production (GPP) and leaf area index (LAI) 
at 211 eddy covariance sites. (a) Boxplot of correlation coefficient (r) between annual GPP and annual LAI. OBS indicates 
the correlations of observed GPP and satellite-based LAI. The correlations of nine models were calculated between GPP and 
LAI simulations by model. (b) Correlations of coefficient of variation (CV) in GPP and CV in LAI derived from observations 
and simulations. The numbers between parentheses show the correlation coefficients r; asterisks represent the statistical 
significance of p < 0.05. Each dot represents the CV in LAI and CV in GPP at a FLUXNET site location. (c) The proportion 
of sites with significant (p < 0.05) correlations between annual LAI and annual GPP within the 211 EC sites.
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the contribution of physiological changes to IAV in GPP was five times that of structural changes (Figure 8a). 
However, the contribution ratios derived from simulations from TEMs ranged from 2.7 to 4.9, which were signifi-
cantly lower than the observations (i.e., 5.3) expect for LPJG and LPX. Among these models, only LPJG and LPX 
predicted large contribution ratios (i.e., 5.1 and 5.4), which were close to the ratio derived from observations. 
Similarly, at the global scale, all models showed a similar contribution ratio to those at the EC sites (Figure 8b).

4.  Discussions
4.1.  Underestimation of GPP Interannual Variability by TEMs and Its Causes

We found that most TEMs underestimated the IAV in GPP.  Other lines of evidence support our conclusion 
(Stocker et al., 2019; Zhang et al., 2019). For example, Zhang et al. (2019) demonstrated the low sensitivity of 
TEMs to climate change, resulting in underestimates of the effect of El Niño/Southern Oscillation on global 
GPP. Considering that IAV in GPP explained a significant proportion of IAV in the magnitude of net ecosystem 
production (NEP) (Yuan et al., 2009), the underestimation of IAV in GPP may result in overestimating the stabil-
ity of the terrestrial carbon sink. More importantly, the terrestrial carbon sink substantially controls the interan-
nual variations in atmospheric CO2 growth rates (He et al., 2021). Therefore, underestimating IAV in GPP may 
also potentially result in underestimating the IAV in atmospheric CO2.

Our results suggest that the overestimated coupling between LAI and GPP, in combination with underestimated 
IAV in LAI, caused the underestimation of GPP variability by the models (Figures 4–7). Simulated high coupling 

Figure 5.  Density plots of correlations between coefficient of variation (CV) in leaf area index and CV in gross primary 
production over global vegetated pixels in terrestrial ecosystem models. Correlation coefficient (r) with an asterisk represents 
p < 0.05.
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between LAI and GPP by models has been reported in previous research ((J. M. Chen et  al.,  2019; S. Chen 
et al., 2019; Higuchi et al., 2005; Wang et al., 2011). However, our finding is consistent with observations show-
ing that vegetation structure (i.e., LAI) has limited impacts compared to physiological changes (Hu et al., 2018; 
Liu et al., 2021; Walther et al., 2016). Studies suggested that intra-seasonal changes in meteorological conditions 

can significantly affect plant leaf photosynthesis but not LAI, which, conse-
quenctly affects the annual amount of GPP (Zscheischler et al., 2016). For 
example, Doughty et al. (2019) found that a physiological change indicator, 
solar induced fluorescence, detected a decrease in GPP during drought years 
and seasons; however, LAI and vegetation index have a limited response to 
such conditions (X. Li & Xiao, 2020). In addition, meteorological conditions 
often exhibit time-lag effects on canopy structure, which might be another 
reason for the decoupling between GPP and LAI (Bertrand et  al.,  2011; 
Mulder et al., 2017; Sherry et al., 2008). However, few models can reproduce 
the time-lag effects observed in terrestrial ecosystems (Wen et al., 2019).

The models predicted lower contributions of canopy physiology on IAV 
in GPP than observations (Figure  8). Many studies based on observations 
highlighted the large contributions of physiological changes to IAV in GPP 
(Messori et al., 2019; Migliavacca et al., 2017; Musavi et al., 2016). Changes 
in annual GPP because of variations in canopy physiology have been widely 
reported (Desai, 2010; Zscheischler et al., 2016). A recent study showed a 
worldwide impact of atmospheric water demand on IAV in GPP by affecting 
plant stomatal conductance (He et al., 2021). In addition, biotic factors such as 
plant composition and stand age can also influence IAV in GPP via plant phys-
iology (Polley et al., 2013). For example, Musavi et al. (2017) reported that an 
increase in stand age and species richness could increase the complementary 

Figure 6.  The relationship between annual leaf area index and annual gross primary production at site level among biomes 
derived from flux site observations (OBS) and simulations (TRENDY v10 ensemble). The asterisks represent the statistical 
significance of p < 0.05 between model simulations and observations. The abbreviations of each subplot: ENF, evergreen 
needleleaf forest; EBF, evergreen broadleaf forest; DBF, deciduous broadleaf forest; MF, mixed forest; SAV, savanna; GRA, 
grassland; SHR, shrubland; and CRO, cropland.

Figure 7.  Comparison between the coefficient of variation (CV) of 
satellite-based leaf area index (LAI) (Global Land Surface Satellite [GLASS]) 
and simulated LAI by nine terrestrial ecosystem models. Y-axis shows area 
percentage of the corresponding CV in LAI. The inset shows the mean CV of 
LAI derived from satellite data set and nine ecosystem models. The asterisks 
(*) indicate the statistically significant differences (p < 0.05) between CV in 
GLASS-LAI and CV in simulated LAI over global vegetated area.
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use of nutrients and water, leading to lower IAV in GPP. In summary, our results highlight the importance of repro-
ducing physiological contributions to IAV in GPP (Baldocchi et al., 2018; Keenan et al., 2012).

This study used the coefficient of variance (CV) to indicate IAV in GPP. Standard deviation (SD) and mean value 
(mean) jointly determine the CV value. This study suggests that the current TEMs underestimate IAV (i.e., lower 
CV in GPP simulations) (Figure 1), and the lower SD or higher mean of GPP simulations may result in lower CV. 
Therefore, it is necessary to analyze the dominant cause for underestimating CV. We analyzed the mean magni-
tude of GPP and LAI for each ecosystem type. Basically, GPP simulations of all TEMs are comparable with the 
GPP observations (Figure S4 in Supporting Information S1), and over most ecosystem types, the mean values of 
GPP simulations are lower than observations. This result indicates that a lower SD in the simulation is the main 
cause for underestimating the CV of GPP, and not the overestimated mean values of GPP.

4.2.  Implications of Underestimated GPP Interannual Variability by TEMs

This study highlighted the underestimation of IAV in GPP by the state-of-the-art TEMs, which may result in 
underestimated IAV in NEP (Yuan et al., 2009). However, recent research showed that the TEMs have good 
performance of reproducing IAV in NEP at continental scale (Ciais et  al.,  2019; Piao et  al.,  2020). NEP is 
differences between GPP and ecosystem respiration (ER). Therefore, model parameterization is mostly going to 
improve the model performance for NEP but not GPP or ER, and which is the most important variable because it 
directly indicates the ecosystem carbon budget. Previous studies have shown that the NEP simulations of various 
TEMs are quite close, but there are large differences for GPP or ER (Jian et al., 2022; Lu et al., 2021), which 
implies that the uncertainties in GPP and ER simulations may result in a good performance of NEP. Our study 
found an underestimation of IAV in GPP by most investigated TEMs, implying that these ecosystem models may 
have large uncertainty in reproducing IAV in ER. Therefore, it is urgently necessary to investigate the model 
performance of the IAV in GPP, ER, and NEP.

Our results also showed the larger underestimations of IAV in GPP at nonforest ecosystem types than forest types, 
especially in arid and semiarid grassland and shrubland (Figures 2 and 3, Figure S1 in Supporting Information S1). 
A previous study reported that IAV in global carbon sink was driven by gross vegetation production of semiarid 
lands in the Southern Hemisphere (Poulter et al., 2014). For example, about 80% of the global gross vegetation 
production anomaly in 2011, an exceptional year with a large land carbon sink, can be explained by only three 

Figure 8.  The contribution ratio of physiological and structural changes to interannual variability (IAV) in gross primary 
production (GPP) averaged at 211 eddy covariance sites (a) and global scale (b). OBS indicates the ratio derived from 
observations at 211 EC sites. The asterisks (*) indicate statistically significant differences (p < 0.05) between model 
simulation and observation. A higher ratio indicates larger contribution of physiological change to the IAV of GPP. Since 
there is no globally spatial continuously benchmark of IAV in GPP, the ratio in global observation is absent.
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main semiarid regions: Australia, temperate South America and southern Africa (Poulter et al., 2014). For arid 
ecosystems, the water stress is the most important factor for determining the IAV of vegetation growth (Hu 
et al., 2022). For example, H. J. Xu et al. (2019) reported that summer precipitation primarily controlled the IAV 
in desert GPP. Therefore, it is important to improve the model performance for reproducing the impacts of water 
stress on gross vegetation production. On the one hand, the current models need to accurately incorporate the 
impacts of water stress on vegetation growth processes (Franks et al., 2018). It is also another challenge to repre-
sent the diverse responses of vegetation growth to water stress (Grossiord et al., 2020).

4.3.  Improvement of TEMs for Simulating Interannual Variability of GPP

There are plenty of methods that may help reproducing IAV in GPP. The most important way is to improve the 
algorithms for representing environmental regulations of GPP, especially for these environmental variables which 
highly dominate vegetation growth over large and global scales. Several recent studies highlighted that atmos-
pheric water demand is an important environmental variable for determining global gross vegetation production 
(He et  al.,  2021; Lu et  al.,  2022). For example, from 1982 to 2015, about 70% of the global vegetated area 
showed a negative correlation of IAV between vegetation growth and atmospheric vapor pressure deficit (VPD) 
(He et al., 2021). Our study includes nine state-of-the-art TEMs, most of which use physiological-based model 
to simulate photosynthesis (Farquhar et al., 1980; Haverd et al., 2017; Ito, 2003; Raczka et al., 2021), and two 
of them (i.e., IBIS, ISBA) use a semi-empirical model (De Pue et al., 2022; Yuan et al., 2014). Although these 
two types of models incorporate the impacts of VPD on photosynthesis, a recent study showed that these TEMs 
failed to reproduce the impacts of VPD on gross vegetation production (Yuan et al., 2019). Numerous studies 
suggested that stomatal conductance declines under high VPD until a given VPD threshold, leading to a cascade 
of subsequent impacts including photosynthesis reduction, higher risks of carbon starvation and hydraulic failure 
(Bunce, 2006; Franks et al., 1997). However, there is no consensus on which robust mechanisms drives stomatal 
closure in response to rising VPD as these mechanisms are varying among environmental gradients and plant 
functional types (Grossiord et  al.,  2020). Therefore, the TEMs should better quantify the impact of VPD on 
stomatal conductance (Franks et al., 2018).

In addition, model-data comparison can play an important role in improving model performance, which may 
transfer our understandings of the differential changes in photosynthesis response to climate change to improv-
ing model predictive skills (Y. Q. Luo et  al.,  2012). Specifically, to improve models' ability to simulate IAV 
in GPP, it is urgent to understand the process mechanisms by means of substantial field or laboratory control 
experiments, underlying the responses of IAV in GPP to environmental changes and comparing the model algo-
rithms with these process-based understandings to improve them accordingly (S. Li et al., 2019; Lu et al., 2021). 
In addition, there is a need to conduct a data assimilation to further minimize model errors and model-data 
mismatches. In general, the integration of models, observations, experiments, and process understandings should 
help improve models' reproduction of IAV in GPP at various scales.

5.  Conclusion
In this study, we compared IAV in GPP from the flux tower observations to that from TEM simulations. We found 
that all the TEMs substantially underestimate the IAV in simulated GPP in comparison to observations, especially 
in nonforest sites such as grassland and shrubland. There are two main reasons for the underestimation of IAV in 
GPP from TEMs. On one hand, IAV in canopy structure (i.e., LAI) strongly drives the IAV in GPP from TEMs. 
However, IAV in model-simulated LAI are much less than them from observations. On the other hand, the TEMs 
underestimate the changes of canopy physiology response to climate change, resulting in an underestimation of 
IAV in GPP. Our results suggest that the future versions of TEM to precisely characterize the contribution of 
canopy physiological changes on the IAV in GPP and clarify the reason for the underestimated variability in LAI. 
With these efforts, it may be possible to accurately predict the IAV in GPP and the stability of the global carbon 
sink in the context of global climate change.

Data Availability Statement
The TRENDY v10 ensemble can be accessed with requests from the data hub of the Global Carbon Budget 
(https://globalcarbonbudgetdata.org/index.html). The GPP data from flux sites are available with requests from 
FLUXNET2015 data set (https://fluxnet.org/data/fluxnet2015-dataset/), Integrated Carbon Observation System 
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(ICOS, https://www.icos-cp.eu/data-products/2G60-ZHAK), AmeriFlux (https://ameriflux.lbl.gov/sites/site-
search/), OzFlux (https://data.ozflux.org.au/portal/home.jspx), AsiaFlux (https://db.cger.nies.go.jp/asiafluxdb/), 
and ChinaFLUX (http://www.nesdc.org.cn/theme/index?projectId=612458897e28172cbed3d77a). Some of 
the data links can be found at the Table S1 in Supporting Information S1. The meteorology data are availa-
ble at the Climatic Research Unit Japanese Reanalysis (CRU-JRA, http://catalogue.ceda.ac.uk/uuid/863a47a6d-
8414b6982e1396c69a9efe8). The GLASS-LAI product is available from the website of GLASS product 
(http://www.glass.umd.edu/Download.html).
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