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S H O R T  C O M M U N I C A T I O N

A frameshift- deletion mutation in Reelin causes cerebellar 
hypoplasia in White Swiss Shepherd dogs

Abstract
Cerebellar hypoplasia is a heterogeneous neurological 
condition in which the cerebellum is smaller than 
usual or not completely developed. The condition 
can have genetic origins, with Mendelian- effect 
mutations described in several mammalian species. 
Here, we describe a genetic investigation of cerebellar 
hypoplasia in White Swiss Shepherd dogs, where two 
affected puppies were identified from a litter with 
a recent common ancestor on both sides of their 
pedigree. Whole genome sequencing was conducted 
for 10 dogs in this family, and filtering of these 
data based on a recessive transmission hypothesis 
highlighted five protein- altering candidate variants –  
including a frameshift- deletion of the Reelin (RELN) 
gene (p.Val947*). Given the status of RELN as a gene 
responsible for cerebellar hypoplasia in humans, 
sheep and mice, these data strongly suggest the loss- 
of- function variant as underlying these effects. This 
variant has not been found in other dog breeds nor 
in a cohort of European White Swiss Shepherds, 
suggesting a recent mutation event. This finding will 
support the genotyping of a more diverse sample 
of dogs, and should aid future management of the 
harmful allele through optimised mating schemes.

Cerebellar hypoplasia (CH) is a feature of several neu-
rological conditions wherein the cerebellum fails to fully 
develop. Genetic causes of CH have been demonstrated 
in a variety of mammalian species including humans 
(Ross et al.,  2001), sheep (Suaŕez- Vega et al.,  2013) and 
dogs (Gerber et al.,  2015). We investigated two recent 
cases of CH found at autopsy in White Swiss Shepherd 
littermates. These puppies were born clinically normal 
and were part of a litter of nine (five males, four females) 
which included a stillborn animal. Both CH- affected 
puppies failed to gain weight and developed progressive 
ataxia from around 2 weeks of age. The puppies had dif-
ficulty standing, could not walk in a straight line, had 
a good suckle reflex but had difficulty latching on to 
the teat. The puppies had no spontaneous or positional 

nystagmus, had a normal pupillary light reflex, lacked 
a menace reflex (normal for age) and segmental spinal 
reflexes were intact. A congenital brain defect, possibly 
cerebellar or vestibular, was considered likely, and the 
puppies were euthanised at 4 weeks of age on humanitar-
ian grounds.

Autopsy revealed anatomical abnormalities in the 
brains of both affected puppies, with both animals 
showing severe CH with lissencephaly (Figure  1a) and 
moderate internal hydrocephalus with distended lat-
eral and fourth ventricles. The cerebellum measured 
25 mm in width × 10 mm in length × 5 mm in height in 
one puppy, and 25 × 8 × 5 mm in the other. In both pup-
pies the cerebellum lacked cerebellar folia. Brain sam-
ples were processed for histology, embedded in paraffin 
wax, sectioned at 3– 4 μm and stained with haematoxylin 
and eosin. Microscopically, the normal layered struc-
ture (example in Figure  1b) of the cerebellum was dis-
organised (Figure 1c,d) and the molecular and granular 
layers were thin, with the granular layer of irregular 
thickness (Figure 1c,d) and often forming islands of cells 
(Figure 1d). Purkinje cells were scattered throughout all 
layers (neuronal heterotopia; Figure 1d). Vascular struc-
tures were prominent. The cerebrum lacked sulci and 
gyri (agyria) and the white matter was thinned. The cere-
bral cortex was disorganised with increased thickness of 
the cortical laminae and neuronal cell bodies that were 
not vertically aligned.

Cerebellar hypoplasia in dogs may be caused by genetic 
factors or a teratogenic cause due to in utero or neonatal 
parvovirus infection. We considered the former expla-
nation most likely, as parvovirus involvement in canine 
CH is rare (Wünschmann et al., 2020) and the dam was 
fully vaccinated against parvovirus (Vanguard 5; Zoetis 
NZ Ltd) and was healthy during the pregnancy. We also 
noted that parents of the affected litter shared the same 
paternal grandsire/maternal great grandsire. This obser-
vation suggested a possible recessive mode of inheritance 
and we therefore conducted whole genome sequencing of 
10 animals from the pedigree to attempt to identify the 
causative variant (Figure S1). Blood or cheek cell sam-
ples were used to extract DNA using Qiagen MagAttract 
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HMW DNA kits, and sequencing libraries were pre-
pared using an Illumina DNA Prep Tagmentation kit. 
Paired- end sequencing (2 × 150 bp reads) was performed 
on the Illumina Novaseq 6000 instrument (GeneMark), 
and sequence read data were processed using trimmo-
matic v0.39 (Bolger et al.,  2014). These data were then 
mapped to the German Shepherd- based CanFam4 ge-
nome assembly UU_Cfam_GSD_1.0 (Wang et al., 2021) 
using bwa- mem2 v2.2.1 (Md et al.,  2019), resulting in 
a 18.9– 131.1× mapped read depth per sample. Variants 
were called from sequence alignments using gatk hap-
lotypecaller v4.2.4.1 (Poplin et al., 2018), resulting in a 
total of 7 351 661 variants following generic quality filter-
ing based on GATK guidelines (Caetano- Anolles, 2023).

We first inspected read alignments for the presence of the 
Very Low Density Lipoprotein Receptor gene (VLDLR) 
frameshift- deletion variant (chr1:91944760AC>A; 
CanFam4) that has been previously shown to cause 
CH in Eurasier dogs (Gerber et al., 2015). None of the 
sequenced individuals were found to carry that vari-
ant, so we next aimed to filter genome- wide variants 
based on an autosomal recessive hypothesis assuming 
the common ancestor as the origin of the mutant allele. 
Filters were applied to exclude variants below the nom-
inal minor allele frequency afforded by this hypothesis 
(MAF < 0.35; seven alleles in 20), and with the following 
zygosity expectations: that variants should be homozy-
gous non- reference in the two affected animals, hetero-
zygous in the sire, dam and dam's sire, and heterozygous 
or homozygous reference for the five remaining animals 
(Figure S1). Variants were also filtered to remove mod-
erately frequent variants (MAF > 0.1) catalogued from a 
publicly available multi- breed sequence dataset (Plassais 
et al., 2019), after these data were first ‘lifted over’ from 
the CanFam3 to CanFam4 assembly using liftovervcf 

v4.2.4.0 (Picard; Broad Institute,  2022). Application of 
these filters yielded a total of 3813 segregating variants 
as candidates for the CH disorder. Functional prediction 
was then performed on these variants using snpeff v5.1 
(Cingolani et al., 2012) in conjunction with RefSeq anno-
tation release 106 to identify 12 protein- altering candi-
dates genome- wide (i.e. those with a ‘moderate’ to ‘high’ 
SNPEff effect).

Visualisation of sequence alignments to manually cu-
rate the 12 candidates of primary interest showed that 
eight were various misrepresentations of a single struc-
tural variant overlapping the LOC106560122 gene (the 
manually corrected allele is represented in Table  1). 
The other four candidates included a stop- lost variant 
in an olfactory receptor (Olfactory Receptor Family 10 
Subfamily H Member 1; OR10H1), frameshift- deletions 
in the Phospholipid Phosphatase Related 2 (PLPPR2) 
and Reelin (RELN) genes, and a missense variant in 
RAD50 Interactor 1 (RINT1; Table 1). Of the five refined 
candidates, the most biologically plausible (if not obvi-
ous) causative variant was the 1 bp frameshift- deletion 
of RELN (chr18:16909942TG>T; XM_038562771.1). 
Null mutations in this gene have previously been 
shown to cause CH with lissencephaly in humans 
(Hong et al., 2000), sheep (Suaŕez- Vega et al., 2013) and 
mice (D'Arcangelo et al.,  1995), with the White Swiss 
Shepherd variant predicted to cause premature termina-
tion at the codon immediately following the 1 bp deletion 
(p.Val947*; predicted loss of 73% of the 3474aa wild- type 
protein XP_038418699.1). These observations, and the 
role of the Reelin protein in neuronal migration and de-
velopment (Jossin, 2020), strongly support the p.Val947* 
variant as responsible for the CH observed in these 
dogs. It is further noteworthy that Reelin may influence 
neuronal development through direct interaction with 

F I G U R E  1  Pathological findings in 
4- week- old White Swiss Shepherd puppies 
with cerebellar hypoplasia (CH). (a) 
Caudocranial view of the brain showing 
lissencephaly and cerebellar hypoplasia. 
(b) Cerebellum of a 4- week- old control 
dog (Huntaway crossbreed unrelated to 
study, euthanised owing to carpal joint 
contracture). Haematoxylin and eosin 
(HE). Bar 500 μm. (c) Cerebellum (arrow) 
and a dilated fourth ventricle (*). HE. 
Bar 500 μm. (d) Cerebellum showing 
disorganisation of the cerebellar layers and 
absence of folia. Arrows point to areas of 
disorganised cerebellum. HE. Bar 500 μm.
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VLDLR (Hiesberger et al., 1999), the same gene that has 
been suggested to underlie CH in Eurasier dogs (Gerber 
et al., 2015).

The cerebellar and cerebral lesions in the White Swiss 
Shepherd dogs appear similar to those described in 
Churra sheep with a 31 bp frameshifting RELN mutation 
(Pérez et al., 2013; Suaŕez- Vega et al., 2013). However, the 
cerebellar lesions in the dogs appear to be more severe, 
with a complete absence of folia and less readily iden-
tifiable cerebellar layers. Interestingly, affected sheep 
showed clinical signs of cerebellar dysfunction from 
birth, whereas the CH- affected puppies in this study did 
not show clinical signs until 2 weeks of age. Two to four 
weeks is a common age for dogs with congenital cerebel-
lar lesions to develop clinical signs, as this is when they 
begin to walk (Thomas, 1999). The difference in age of 
presentation may be due to the differences in develop-
ment and movement between precocial species such as 
sheep and altricial species such as dogs, where the former 
have more developed brains at birth (Kalusa et al., 2021; 
Muir, 2000).

Notably, none of the 722 animals in the publicly avail-
able sequence dataset used for population filtering car-
ried the RELN frameshift deletion, although no White 
Swiss Shepherds were present in that dataset. The vari-
ant is also missing from the Dog Biomedical Variant 
Database Consortium variant catalogue (Jagannathan 
et al.,  2019), and a large collection of genomes from 
the Dog10K project (unpublished data; Ostrander 
et al.,  2019). To determine if the RELN variant was 
present in a sample more representative of the breed, 88 
White Swiss Shepherds of European origin, stored in the 
VetGen Biobank at the University of Bern, were geno-
typed by PCR and Sanger sequencing on the ABI3730xl 
instrument (primers: forward, 5′- TGTCT TTC AGT TTC 
ACA GGAGA- 3′; reverse, 5′- CTCTT GGA CCA GGT 
GCCA- 3′; 203 bp amplicon). None of the Swiss dogs were 
found to carry the RELN mutation, suggesting that it is 
unlikely to be ubiquitous in the White Swiss Shepherd 
breed. However, it should be noted that carriers in the 
pedigree included artificial insemination stud dogs with 
links to kennels in South Africa, Australia and New 
Zealand. These results may therefore be highly relevant 

to breeding of animals from those regions, allowing fu-
ture mating decisions to avoid crossing carriers. These 
data will also support testing efforts to determine the 
prevalence of the variant in the global White Swiss 
Shepherd population and in other breeds, ultimately 
helping to manage the undesired allele.
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TA B L E  1  List of five co- segregating protein- altering candidate variants identified through whole- genome sequencing.

Chromosome Position Reference Alt Gene Consequence Accession ID

chr18 15 154 326 T C RINT1 p.Asn185Ser XM_038562736.1

chr18 16 909 942 TG T RELN p.Val947fs XM_038562771.1

chr20 32 645 759a a a LOC106560122 p.Arg54delinsLeuPro* XM_038566048.1

chr20 46 971 084 A G OR10H1 p.Ter316Argext* XM_038565308.1

chr20 50 356 072 CA C PLPPR2 p.Leu522fs XM_038567212.1

Note: Positions are based on the CanFam4 assembly; consequence predicted from mutant translation.

Abbreviations: Alt, alternative base(s); Ref, reference base(s).
aCompound indel derived from manual sequence annotation g.32645759_32645840delinsCCTCC CAG GCT CTG CCT TCC CCG GGC GGC GGG CCC CGA GGC 
CCC TCGGTCTCAGGGGA.

 13652052, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/age.13336 by U

niversitaet B
ern, W

iley O
nline L

ibrary on [20/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

info:refseq/XM_038562736.1
info:refseq/XM_038562771.1
info:refseq/XM_038566048.1
info:refseq/XM_038565308.1
info:refseq/XM_038567212.1


4 |   LITTLEJOHN et al.

Prospectively gathered samples were obtained in accord-
ance with protocols approved by the Massey University 
Animal Ethics Committee, Palmerston North, New 
Zealand (approval MUAEC 21/33). The control brain 
displayed in Figure  1b was sourced from a Massey 
University bank of archival samples, originally submit-
ted for routine diagnostic necropsy outside the scope of 
activities requiring formal committee assessment and 
approval. No additional animals were sacrificed for this 
study. The dogs in this study from the VetGen Biobank 
at the University of Bern were privately owned and 
samples were collected with the consent of their own-
ers. The collection of blood samples from control dogs 
was approved by the ‘Cantonal Committee for Animal 
Experiments’ (Canton of Bern; permit 71/19; approval 
date 9 September 2019).
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