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Artificial intelligence achieves easy-to-adapt
nonlinear global temperature reconstructions
using minimal local data
Martin Wegmann 1,2,5✉ & Fernando Jaume-Santero 3,4,5✉

Understanding monthly-to-annual climate variability is essential for adapting to future climate

extremes. Key ways to do this are through analysing climate field reconstructions and rea-

nalyses. However, producing such reconstructions can be limited by high production costs,

unrealistic linearity assumptions, or uneven distribution of local climate records. Here, we

present a machine learning-based non-linear climate variability reconstruction method using

a Recurrent Neural Network that is able to learn from existing model outputs and reanalysis

data. As a proof-of-concept, we reconstructed more than 400 years of global, monthly

temperature anomalies based on sparse, realistically distributed pseudo-station data and

show the impact of different training data sets. Our reconstructions show realistic tem-

perature patterns and magnitude reproduction costing about 1 hour on a middle-class laptop.

We highlight the method’s capability in terms of mean statistics compared to more estab-

lished methods and find that it is also suited to reconstruct specific climate events. This

approach can easily be adapted for a wide range of regions, periods and variables.
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As global warming remains pervasive, extreme climate and
weather events have been highlighted as high-impact
threats to our society1,2. Fueled by Earth’s energy imbal-

ance, climate variability is projected to increase non-linearly in
response to anthropogenic global warming, a process governing
the occurrence and distribution of extreme climate events3–7.
Unfortunately, state-of-the-art General Circulation Models
(GCM) lack the ability to represent the correct magnitude of
variability in crucial parts of the climate system8,9. Gaining more
insights into a realistic range of climate variability is therefore of
utmost importance.

To investigate realistic climate variability across different tem-
poral and spatial scales with diverse climate background condi-
tions, long, global time series are required. However, the further
back in time one goes, the fewer climate and weather observations
are available, creating a problem of data scarcity. Near-surface
temperature, the variable with the longest records, was initially
recorded in just a handful of European cities and has been sur-
veyed since the late 18th century10–12. Other variables and
southern hemispheric measurements are considerably scarcer.
Indeed, to go further back in time, it is necessary to utilize sets of
indirect proxy measurements from paleoclimate archives. Com-
pared to observations, climate proxies from paleoclimate archives
suffer from a substantially reduced temporal resolution and a
significant increase in noise. Moreover, most of the available
documentary and proxy data record summer or growing season
climate, whereas winter climate is usually underrepresented13.

As such, the climate community has made a collaborative effort
to investigate tools for temporal and spatial reconstructions of
climate and weather data, including methods like kriging, prin-
cipal component (regression) analysis and Bayesian algorithms.
The results of these efforts include high spatial and temporal
resolution data sets, mostly focused on specific regions rather
than global coverage14–16. Climate reconstructions can further be
improved by optimizing the input data location using meta-
heuristic methodologies such as genetic and evolutionary
algorithms17–19. Nevertheless, most climate reconstructions today
rely on stationarity within and between climate records and often
operate on the assumption of linearity within time and space.
Climate reanalyses are another possible way to generate spatially
resolved climate reconstructions20–24. While they offer a four-
dimensional data set to explore high-resolution climate variability
for a wide range of variables, they are also constrained by the
availability of input data (e.g. stations, documentary data, proxy
data). It should be noted that, while the assimilation scheme itself
can be straightforward, most climate reanalyses require an
expensive set of GCM outputs for the background climate state
and co-variance matrix. This prerequisite makes the process of
generating a climate reanalysis rather expensive, since large
amounts of data need to be generated and stored.

Recently, rapid progress was made in the implementation of
artificial intelligence tools for climate science25–27. In particular,
deep learning tools show promise in extracting features of interest
out of gridded data, forecasting time series and representing
physical systems28–30. So far, these deep learning algorithms
provide a good compromise between skill and costs, while dealing
well with the non-linear characteristics of the data at hand. Their
application in climate information reconstruction has been limited
to examining gridded data31,32 or time series reconstructions33,34.

Here, we present a novel approach based on a simple recurrent
neural network that reconstructs global fields from sparse local
data. Our main goal focuses on proving the effectiveness of basic
recurrent neural networks in generating fast robust climate
reconstructions using minimal computational power. As such, we
stayed extremely conservative in both the spatial and temporal
availability of data and therefore operated on very small sample

sizes for a deep learning approach. Although temperature
anomalies are reconstructed in this study, our method is flexible
and can be applied to reconstruct multiple variables from dif-
fering local coordinates and input data types. In support of the
United Nations Sustainable Development Goals35,36, the whole
reconstruction process of training and generating more than
4800 months of global temperature anomalies takes just a few
minutes on an averaged-priced laptop, making climate research
more accessible and energy efficient.

Results and discussion
Figure 1 highlights the workflow of our approach. We use
monthly near-surface temperature data from three different
gridded climate data sets as training data for our global recon-
struction: The National Oceanic and Atmospheric Administra-
tion (NOAA) 20th Century reanalysis Version 3 (20CRv3)22

(1836-2015 CE, 1851-2015 CE used for the training), the Max
Planck Institute for Meteorology Grand Ensemble (MPI-GE)
GCM37 (1851-2005 CE), as well as, the National Center for
Atmospheric Research Community Earth System Model Last
Millennium Ensemble (CESM-LME)38 (850-2005 CE). We do so
in order to understand the impact that training data can have on
our approach and to highlight strength and weaknesses of this
often-used training data in the climate science space. Further-
more, it helps us understand the amount and variability of data
needed for the training. The three datasets used have enough
dissimilarities in origin, idea and time frame covered in order to
see some meaningful differences. 20CRv3 only assimilates surface
pressure data and uses sea surface temperature (SST) and sea ice
reconstructions as boundary conditions, whereas MPI-GE and
CESM-LME are free running models with transient forcing. All
three data sets consist of multiple ensemble members. For most of
our study, we focus on the ensemble mean of 20CRv3 since this is
the information most users will use as well as to highlight the
capabilities of small training sizes for this reconstruction proce-
dure. For all training data sets we calculate monthly temperature
anomalies with respect to the period 1951–1980 CE. We utilized
these three data sets because they are commonly used in the
climate science community, are fully open-access and cover cli-
mate information and variables close to the reconstruction goal.
Moreover, they are also independent allowing for the study of
significant differences on the final reconstructions.

In each of the gridded products, 25 pseudo-station locations
chosen based on a realistic distribution of historical meteor-
ological station data. All locations are situated in the Northern
Hemisphere, with the majority in Western Europe. Using a
nearest neighbour approach, we then extract the grid temperature
data for each location in the specific training data set, resulting in
25 monthly near-surface temperature anomaly time series.

Overall we investigated 20 different models using three dif-
ferent data sets and two different training sizes for this study. The
models used were the simple Recurrent Neural Network (RNN),
Long-short Term Memory models (LSTM), Gated Recurrent Unit
models (GRU) and 1-dimensional Convolutional Neural Net-
works (CNN). Each of these models were then executed with a
variety of dropout and layer architectures. Summed up over all
these different contributors, we analysed 140 different deep-
learning models for this climate reconstruction task.

For the RNN models, we found that most models overfit for
the small training size of N= 1980 no matter the training data set
at hand. In order to avoid overfitting, dropout values would need
to be at least 20%. Recurrent dropout will further reduce the
chance for overfitting, but we see no additional benefit from
recurrent dropout in the RNN-type models. Increasing the
training sample size to N= 20,000 will drastically reduce the
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chance for overfitting and in most cases a dropout of just 5% is
enough to prevent any kind of overfitting. We performed a small
sensitivity test with the MPI-GE training set and found that a
training size of N= 10,000 with a dropout of 5% is enough to
avoid overfitting. A training size of N= 5000 still needs a dropout
of 20% to do so.

Overfitting is just one metric to assess the usefulness of a model.
In terms of the lowest validation loss, we found that very simple
models show the best results. On average over 140 models, we
found that one layer GRU and LSTMmodels with 32 or 64 neurons
for smaller training sizes and up to 256 neurons for larger sample
sizes beat models with more neurons, more layers or convolutional
structures. In cases of large training sizes, a second layer to the
LSTM did not show worse results, but due to increased complexity
showed substantially higher computational costs. Moreover, drop-
out rates needed to be slightly higher in two layer models to avoid
overfitting. During the training phase, we could not identify a
distinct preference of models for specific training data sets.

In the evaluation phase of our study we let the trained models
reconstruct 1000 unseen time steps of the training data set. We

then assessed their skill for the reconstruction using mean
squared error (MSE) and Pearson correlation coefficient (R)
metrics, common metrics for regression problems. Due to the fact
that the 1000 time steps used for evaluation are still part of a
population with similar characteristics, the best MSE scores were
achieved by simpler models that would generally overfit, namely
one layer RNN, GRU and LSTM models with no dropout.
However, adding 5 or 10% of dropout to these models still yields
very performant MSE values. For models trained on
N= 20,000 samples, more neurons seem to be appropriate, as can
be expected. The only training data for which the CNNs showed
an acceptable performance was the 20CRv3 multi-member data
set. All other data sets preferred any of the RNN architectures.

For the correlation evaluation, a virtually identical outcome
emerges. Simple GRU and LSTM models dominate the perfor-
mance assessment, small dropout rates have little impact on that
performance and models with larger training sizes benefit from
more neurons. The robustness of the simple GRU and LSTM
architectures for this task was also highlighted by an experiment
for which we reduced the time dependence of the prediction in

Fig. 1 Concept of the reconstruction process. As training data set we use monthly 2m temperature anomalies with respect to the period 1951–1980 CE
from three different gridded products, one reanalysis and two coupled climate models. We extract the nearest neighbour information from 25 locations,
which are then used to reconstruct the global grid. For validation we use 1000 time steps that are not used for training. Based on the validation results, we
choose one architecture out of 140 for the testing phase, where we use 20CRv3 and EKF400v2 data for the time series of the 25 locations in order to
reconstruct the 20CRv3 and EKF400v2 fields. These reconstructions are then compared to the actual 20CRv3 or EKF400v2 product.
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the 20CRv3 data set. We randomized parts of the training data
set, reducing the skill that can be learned from the previous time
step. In that case, one layer, 64-neuron GRU and LSTM models
still outperformed the rest of the models. Naturally, chances of
overfitting were reduced in that case and validation losses
increased.

To compare the deep learning climate reconstructions with a
more established, linear statistical tool, we created a Principal
Component Regression (PCR) reconstruction39,40 trained with
the MPI-GE data set. The PCR training sample size is N= 20,000.
Compared to the deep learning models, the PCR needs a cali-
bration period which is a time range where pseudo-location
information (i.e., testing data) and training data overlap. As the
testing data set spans 1602–2003 CE and the MPI-GE data spans
1850–2005 CE, the years in common are 1850–2003, which were
chosen as the calibration period for the linear regression. As such
we will evaluate the reconstruction for the full period 1602–2003,
for months outside the calibration period (1602–1849) and just
for the calibration period (1850–2003). Note that the deep
learning methods do not require such a calibration period and
can be trained purely on an independent data set. That said, due
to the fact that the calibration of the PCR substantially removes
the bias for the calibration period, we might expect a higher
performance of the PCR compared to the deep learning models in
those years. We refrain from performing the PCR for all training
sizes and training data sets since our point here is to just provide
a reference point for the interested reader rather than creating as
many reconstructions as possible.

As we move on to the testing phase of our study, we continue
with only one of the performant model architectures in order to
highlight the impact of the different training data sets. Out of 140
models, we focus on the output of an LSTM architecture model
with 64 neurons and a dropout of 5% to compare our recon-
structions with the independent test data sets. That said, as this
study is designed as proof-of-concept, the reader can adapt this
architecture easily for the task and training sample size at hand.
Our goal here is not to tune one model on one data set to produce
the most specific performance, but to show a range of outcomes
possible for this reconstruction task.

For testing, we extract 2m temperature data from the 25
locations in the updated global atmospheric paleo-reanalysis for
the last 400 years (EKF400v2)24. The task of the trained neural
network and the PCR is to reconstruct global temperature
anomaly fields for 4824 months covering 1602–2003 CE based
solely on the 25 local temperature time series. The reconstruction
created by the MPI-GE trained LSTM is henceforth called MPI-
GE-REC, same for the 20CRv3 and CESM-LME trained
reconstructions.

By using temperature anomalies rather than absolute tem-
perature values no information is given about seasonality. The
difficulty for the neural network is thus increased as it must learn
the physical relationships within the spatial domain. Given this
a-priori setup, we expect a higher skill in boreal winter tem-
perature anomaly reconstruction due to stronger Northern
Hemisphere planetary wave interactions in that season41. We
further expect boreal summer temperature anomalies to be better
represented in 20CRv3 than in the coupled climate models due to
the assimilated data. With the impact of large-scale circulation
prevailing in winter, the different reconstructions should perform
rather similarly in boreal winter and differently for boreal sum-
mer. We utilize anomaly correlation, mean temperature biases
and ability to reconstruct patterns of variability as assessments for
the skill of the reconstruction. Since we use EKF400v2 as baseline
comparison data set, it is noteworthy to mention that this paleo-
reanalysis is an imperfect data set in and of itself. Differences
between our reconstruction and EKF400v2 must thus be seen as

objective differences. We provide context and explanations for
stark dissimilarities whenever possible. Moreover, where applic-
able, we compare the RNN reconstructions to completely inde-
pendent products or time intervals. Details of the reanalysis and
climate models are described in the Methods section.

Reconstructed temporal and spatial variability. Figure 2 shows
the temporal correlation between EKF400v2 and the MPI-GE
reconstruction, highlighting regions of weak and strong correla-
tion skill. As expected, correlations for the Southern Hemisphere,
where no observations were available, are on average substantially
lower than for the Northern Hemisphere.

For tropical regions, near-surface temperatures within the El
Ni~n o domain show only weakly positive correlations. We found
that all reconstructions, independent of the training data set,
struggle in this region. The Eastern Pacific is a region of high
temperature variability and a trigger for non-stationary climate
tele-connections around the globe. We define tele-connections in
our context as a relationship between a variable or variables over
large distances. The correlation coefficient values here not only
depend on how well these climate tele-connections are repro-
duced by and copied from MPI-GE, but also on the quality of the
EKF400v2 SST boundary conditions. Particularly for the early
centuries, the EKF400v2 intra-annual SST variability is repre-
sented by climatology values blended with an El Ni~n o
regression42. A region of pronounced negative correlations
manifests over equatorial Western Africa. We find that in this
case, those differences are specific to MPI-GE as a training data
set and do not occur for 20CRv3 nor CESM-LME. As such, they
are a result of data artifacts in MPI-GE (for correlation analysis
with reconstructions based on 20CRv3 and CESM-LME see
Supplementary Figs. S1 and S2).

For the Northern Hemisphere, the central North Atlantic
temperature variability is difficult to reconstruct for the RNN, a
feature that occurs for any training data set but is less pronounced
for 20CRv3. Assimilated ship-based pressure observations in
20CRv3 might help to overcome this weakness. An interesting
region with lower reconstruction skill is the western United
States, where all training data sets show reduced performance. We
find that EKF400v2 does not have high confidence in this region
except for the boreal summer season (JJA) where most of the data
in this region are assimilated24.

As expected, global average boreal summer correlation
coefficients and the associated significance (Fig. 2a) are generally
lower than for boreal winter (Fig. 2b). Summer climate patterns
are often driven by local, dynamical processes between the surface
and the free atmosphere, making them hard to predict via large-
scale climate interactions. An example is the Eastern Mediterra-
nean region, which is well covered by assimilated data, but is
governed by rather local climate variability, inhibiting reconstruc-
tion skill by the MPI-GE trained RNN. Northern Hemisphere
winter on the other hand is marked by strong latitudinal
temperature differences, producing stronger atmospheric waves
which can be used to predict local temperature anomalies. High
latitude regions where the near-surface temperature variability is
mostly dominated by atmospheric large-circulation anomalies are
especially well reconstructed. Surprisingly, the Southern Hemi-
sphere summer variability is also well captured in our
reconstruction. This result can be partly explained by the
generally lower magnitude of climate anomalies predicted by
the RNN, which are far from the pseudo-station locations.

Furthermore, correlating monthly 2m temperature anomalies
(Fig. 2c) results in generally lower correlation coefficients than
those produced for seasonal means. This is partly explained by
the increased sample size. That said, annual mean correlations
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(Fig. 2d) show high skill across the globe, taking advantage of
smoothing intra-annual variability. Figure 2e, f exhibits the
impact of increased noise in the time series. Instead of extracting
local data from the EKF400v2 ensemble mean, smoothing inter-
member differences (or sampling uncertainty), we extracted
pseudo-station data from each of the 30 EKF400v2 members,
creating 30 noisy MPI-GE-REC realisations. The ensemble mean
of those 30 reconstructions is then employed to calculate the
correlation with the EKF400v2 ensemble mean. As anticipated,
correlation coefficients are overall lower in this case.

The reconstruction skill can be improved by increasing the size
of the training data set. Figure 2g shows the impact of increasing
the training sample size by a factor of 10. Among the improved
regions are the aforementioned Western United States, equatorial
Western Africa and the Eastern Mediterranean. Southern

Hemisphere regions profit less from prolonged training. Lastly,
Fig. 2h investigates the annual correlation skill with the completely
independent Last Millennium Reanalysis (LMRv2, available in
annual resolution only)43. Since LMRv2 uses a different approach
than EKF400v2 to reproduce annual climate variability and is
completely independent of the pseudo-station data used to
generate the reconstruction, global correlation skill is lower, as
can be expected (for a comparison between EKF400v2 and LMRv2
directly see Fig. S7). Similar regions appear to be challenging for
the RNN reconstruction, such as the Southern Ocean, the El Ni~n o
domain, the central North Atlantic and Eastern Mediterranean.
However no additional inconsistencies or artifacts appear in this
analysis. It is worth mentioning that both baseline data sets,
LMRv2 and EKF400v2, are imperfect reconstructions and carry
uncertainties into the correlation analysis.

Fig. 2 Global distribution of reconstruction performance. Maps of Pearson correlation coefficients between EKF400v2 ensemble mean and the MPI-GE-
REC (N= 1980 training months) temperature anomaly reconstruction for the period 1602–2003 CE. a Correlation coefficients for boreal summer (JJA)
seasons (N= 402). b Correlation coefficients for boreal winter (DJF) seasons (N= 401). c Correlation coefficients for all months (N= 4824).
d Correlation coefficients for yearly means (N= 402). e as d but instead of extracting pseudo-station data from the EKF400v2 ensemble mean, the
pseudo-station data is taken from 30 individual EKF400v2 member, computing 30 global reconstructions which are averaged to achieve a reconstruction
ensemble mean. This ensemble mean is then correlated with the EKF400v2 ensemble mean (N= 4824). f Same as e but for yearly mean values
(N= 402). g Same as c but for N= 20,000 training months. h Same as d but using the Last Millennium Reanalysis (LMRv2) as baseline data set
(N= 397). The location of the pseudo-stations is indicated in Fig. 2h as yellow diamonds. All non-grey fields are significant on a 95% level. Values on the
right side of the plot title indicate global mean Pearson correlation coefficient values.
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To investigate the time-dependent performance of RNN
reconstructions, Fig. 3 displays field correlations for boreal
summer and winter. Compared to the previous temporal
correlation analysis, field correlation uses co-variance in space
across the full grid.

Looking at the time series for boreal summer (Fig. 3a), the
20CRv3-REC exhibits a substantially higher correlation skill
compared to the MPI-GE-REC and CESM-LME-REC, with MPI-
GE-REC outperforming CESM-LME-REC for most decades. This
can be explained by the more realistic depiction of summer
climate in 20CRv3 (and EKF400v2) due to assimilation of surface
pressure data. The CESM-LME-REC shows negative or insignif-
icant correlation coefficients for two thirds of the reconstructed

era. This behaviour could be due to a substantial weakness of
CESM-LME in reproducing JJA climate patterns, the lower spatial
resolution of the original product, or the fact that CESM-LME
covers a much wider range of climate background states (going
back to 850 CE), from which we randomly sample only 1980
months. As such, it is possible that we sampled climate conditions
that are very different to the ones in the period 1602-2003 during
the training of the LSTM. However, decadal variability and a
general increase in correlation skill over time is visible in all three
reconstructions. Decadal variability is determined by how well the
three climate data sets reproduce temperature impacts by events
such as volcanic eruptions or El Ni~n o - Southern Oscillation.
Generally, the reconstructions based on ensemble mean pseudo-
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Fig. 3 Reconstruction performance over time. 10-year running mean time series of Pearson correlation coefficients between EKF400v2 ensemble mean
and the RNN temperature anomaly reconstruction (N= 1980 training months) fields per season (each time step contains N= 18,432 grid values). Solid
lines represent correlations between the EKF400v2 ensemble mean and the reconstruction based on extracting pseudo-station data from the EKF400v2
ensemble mean. The 30 transparent lines represent correlations between the EKF400v2 ensemble mean and the reconstruction based on extracting
pseudo-station data from the individual EKF400v2 member. a Correlation coefficients for boreal summer (JJA) seasons. b Correlation coefficients for
boreal winter (DJF) seasons.
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stations show higher correlation than the noisier input data. This
difference increases with time due to higher certainty in the
EKF400v2 ensemble.

The positive trend in correlation skill over time is mostly
governed by better representation of climate patterns with time in
EKF400v2 as well as more familiar climate background condi-
tions for the training data sets (with MPI-GE and
20CRv3 starting in 1851). The remarkable drop of skill for the
20CRv3-REC in the 20th century is an artifact due to a decrease
of global mean co-variance in both, 20CRv3-REC and EKF400v2.
Using anomalies with respect to 1951–1980 reduces the spatial
co-variance in both ensemble mean products for this time period,
resulting in reduced correlation skill. This feature is less prevalent
in the model-based reconstructions since we computed anomalies
with respect to an all-member average climatology, leaving
individual members with a higher co-variance for that time
period. We speculate that this feature appears only in JJA due to
the higher spatial climate variability in individual
December–January–February (DJF) seasons.

In winter, EKF400v2 assimilates less data than in summer.
Nevertheless, like all training data sets, EKF400v2 winter climate
is more influenced by planetary wave interactions which act as a
source of skill for inter-continental climate reconstructions. This
leads to all three reconstructions showing very similar overall
skill, decadal variability and improvement over time (Fig. 3b) for
boreal winter patterns. Therefore all three training data sets
provide a similar picture of DJF near-surface temperature
variability, with EKF400v2 itself being more model-like. Here,
MPI-GE-REC even outperforms the 20CRv3-REC consistently
over all decades. This is a testament to how well MPI-GE
manages to represent boreal winter climate tele-connections. The
improvement of correlation skill over time can most likely be
attributed to the incorporation of instrumental data in EKF400v2
(rather than warm season proxies and documentary data) as well
as to the aforementioned familiarity of the training data sets with
the reconstructed era.

Performing the same field correlation analysis using the
independent period of 1836–1850, and comparing to the
20CRv3 ensemble mean rather than to EKF400v2, we see
generally the same behaviour as in Fig. 3, with our 20CRv3-
REC outperforming EKF400v2. During DJF, all reconstructions
show equal performance (see Supplementary Fig. S3). That said,
20CRv3 in these early periods can be assumed to be highly
uncertain.

Finally, we evaluate reconstructed climate variability by
checking for the leading principal components of 2m temperature
anomalies in the global reconstructions. We find realistic first and
second rank empirical orthogonal functions (EOFs) for monthly
2m temperature anomalies in all reconstructions compared to
EKF400v2 (see Supplementary Fig. S4). The 20CRv3-REC EOFs
show the closest resemblance to EKF400v2 due to improved
representation of summer near-surface temperature variability
(Fig. 3a). Increasing the amount of observations would naturally
improve the representation of EOFs, especially for the Southern
Hemisphere.

We can thus argue, that, given that the training data set
represents all features of a realistic temperature variability, the
neural network is able to catch and represent those features
accordingly.

Mean biases of reconstructed fields. Assessing temperature
magnitude biases depends on the training data set, the amount of
stations and the imperfections in the base line data set. Figure 4
investigates temperature biases for two time intervals, an overall
assessment for the reconstructed 400 years and a shorter time

period of 15 years (1836–1850) in order to compare to 20CRv3.
MPI-GE-REC shows wide-spread positive temperature biases for
most of the continental and marine grid points with respect to
EKF400v2 (Fig. 4a). Strongest biases occur over the Southern
Ocean, likely as a result of the differences between the coupled
ocean in MPI-GE and the reconstructed SSTs in EKF400v2.
Arctic regions are slightly cooler in the MPI-GE-REC, a region of
little to no assimilation in EKF400v2. On the other hand, the
comparison to LMRv2 highlights the Arctic as the main region
with positive temperature biases in the MPI-GE-REC (Fig. 4b). As
such, EKF400v2 itself might be biased towards too warm tem-
perature anomalies in the Arctic. Globally, the comparison with
LMRv2 shows reduced biases for all regions outside of the Arctic
(Fig. 4c). Comparing both paleo-reanalyses reveals strong dif-
ferences in the Southern Ocean and higher temperature anoma-
lies in LMRv2 globally, except for the Arctic.

Analysing a much shorter period in the 19th century reveals
similar biases between EKF400v2 and the MPI-GE-REC (Fig. 4d):
positive temperature biases globally except over the Arctic. This
pattern changes when compared to 20CRv3, apart from mismatches
in the Southern Ocean. Strong positive temperature biases occur
over Northern Eurasia, with strong negative biases over large parts
of North America. Meanwhile weak negative temperature biases
dominate most of the remaining continents (Fig. 4e). Those
discrepancies are generally amplified in the comparison between
EKF400v2 and 20CRv3 (Fig. 4f). These results support the notion
that EKF400v2 might be too warm in the European Arctic and too
cold for many continental regions. It is not surprising that Fig. 4e, f
shows generally similar patterns, since the MPI-GE-REC uses
pseudo-stations based on EKF400v2 grid values (spatial biases for
the 20CRv3-REC and CESM-LME-REC reconstructions are shown
in Supplementary Figs. S5 and S12)

To examine the impact of the different training data sets on the
temperature bias, Fig. 4g displays the Kernel density distribution
of all temperature values over all grids and months for EKF400v2
and different RNN reconstructions. Choosing a reference period
in the second half of the 20th century results in the distribution
median for the whole time period being located in the slightly
negative temperature anomaly range. In general, the RNN
reconstructions show a narrower distribution with less extreme
values. This behaviour is expected when comparing few pseudo-
stations to a product assimilating much more data. Interestingly,
the 20CRv3-REC achieves a wider distribution compared to the
model-based reconstructions, probably due to better representa-
tion of summer temperature patterns. Another feature present in
Fig. 4a, is the overall shift of the distribution towards more
positive temperature values in the RNN reconstructions. This
might reflect the challenges of the RNN reconstructions in
capturing cold extremes, but could also be a result of biases in
EKF400v2 (Fig. 4c, f).

Focusing on the Northern Hemisphere, the distribution of
RNN reconstructed temperature anomalies become more aligned
with EKF400v2 (Fig. 4h). Interestingly, the MPI-GE-REC’s
median is now closest to EKF400v2, yet still undersampling
extreme values. Nevertheless, the positive temperature bias in the
RNN reconstructions persist for the Northern Hemisphere sub-
sample. Overall, the RNN reconstructions are able to reproduce a
realistic distribution, where the exact shape and median depend
on the training data sets and the number of pseudo-stations.

So far we have analysed the overall statistical performance of
the MPI-GE-REC. However, climate reconstructions are often
used to investigate case studies and as such should reproduce
individual events in the correct magnitude and location. In order
to have good amount of independent data to compare to, we
analysed several case studies from the early 19th century cold
seasons (Oct–May) (See Supplementary Figs. S8–S12). As
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independent data sets we utilize (an experimental version of)
20CRv3, EKF400v2 and a recently released Bayesian cold season
reconstruction for the 19th century (CSR)16 in order to compare
temperature anomalies to MPI-GE-REC. We find that 20CRv3 is
often times the outlier between all four data sets, with the least
sophisticated MPI-GE-REC providing reasonably similar maxima
and minima locations as EKF400v2 and CSR. In general, MPI-
GE-REC shows a slightly reduced anomaly magnitude compared
to the other three products. This behaviour is a result of the
temperature anomaly magnitudes represented in the training data
sets, as well as the lower magnitudes of the pseudo-station
anomalies compared to the magnitude of the assimilated data in
the reanalyses. Still, the magnitude of anomalies depends on the
setup of the RNN and can be improved with different input and
training data sets. Note that due to the temporal limitations of the
CSR, we are forced to use a different reference period. Thus CSR
anomalies should mostly be seen as qualitative check for the
location of anomalies, since we would expect positive anomalies
to be weaker and negative anomalies to be stronger when
compared to 1951–1980.

Linear versus non-linear reconstructions. In order to assess
the performance of MPI-GE-REC compared to a PCR recon-
struction, Fig. 5 shows correlation coefficients between the two

reconstructions and EKF400v2 temperature anomalies. Since the
PCR reconstruction requires a calibration period, we split Fig. 5
in three time slices, (1) the complete time period 1602–2003 CE,
(2) the pre-calibration period 1602–1849 CE and (3) the cali-
bration period 1850–2003 CE (which is the overlap of the time
span covered by MPI-GE and EKF400v2). Note that we expect
the PCR to benefit greatly from this bias-reduction procedure,
which the LSTM can not access. We show this performance
assessment for the MPI-GE training data set only, due to time
and space constraints. For all three time periods, we see a slightly
better performance of the LSTM on a global level. Interestingly,
the strongest difference in performance can be found for the pre-
calibration period, possibly due to more flexibility and non-
linearity in the neural network. That said, striking regional dif-
ferences appear. The deep learning reconstruction substantially
outperformed the PCR reconstruction in the northern extra-
tropics. The PCR reconstruction on the other hand shows a better
performance over the tropics and parts of the extra-tropical
oceans. While MPI-GE artifacts have stronger negative impacts
for the PCR reconstruction, the Southern Ocean is better repre-
sented by these linear models. This seems to hint towards an
easier, systematic bias in the SSTs that can be reduced by learning
from the calibration method, whereas the artifacts over western
Africa and Northern India are less systematic.

Fig. 4 Mean differences between reconstructed and reanalysed 2m temperature anomalies. a Mean differences between MPI-GE-REC and EKF400v2
for all time steps 1602–2003 CE. b Mean differences between MPI-GE-REC and LMRv2 for all time steps 1602–2000. c Mean differences between
EKF400v2 and LMRv2 for all time steps 1602–2000 CE. d Mean differences between MPI-GE-REC and EKF400v2 for all time steps 1836–1850. e Mean
differences between MPI-GE-REC and 20CRv3 for all time steps 1836–1850 CE. f Mean differences between EKF400v2 and 20CRv3 for all time steps
1836–1850 CE. g Kernel density distribution for all monthly values and all grids in EKF400v2 and three RNN-based reconstructions. Distribution is cut off at
−2 and 2 Kelvin. h Same as g but for Northern Hemisphere grids only (30–90∘ N). Values on the right side of the plot title above maps indicate global mean
values.
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We explain the strong performance of the deep learning based
reconstruction due to its ability to assess evolution from month to
month, from location to location as well as its ability to
reconstruct better non-linear features. The atmospheric dynamics
in the Northern Extra-tropics are driven by large planetary waves
which move information and energy across longitudes and in
time. This time dependency is better caught by the LSTM as well
as its ability to extrapolate to new atmospheric conditions from
training to prediction. Moreover, the month-to-month signal
propagation is much stronger in the extra-tropics than the
tropics, where the seasonality is substantially weaker.

Concerning the strong PCR performance in the tropics, we
assume that the calibration between the MPI-GE ocean and the
EKF400v2 SSTs allows to catch the “right” (right as in close to the
target, in our case EKF400v2) climate tele-connections, tropical
features and to remove over- or underrepresentation of climate
signals. Moreover, signal transport in oceans can be a magnitude
slower than in the atmosphere, meaning there would probably need
to implement multiple time scales in the training procedure to
reconstruct oceans and atmosphere in the best way possible. On the
other hand, tropical climate over land is mostly defined by daily
climate, which the LSTM can not learn from monthly anomalies.

Nevertheless, the global performance can of course be
improved with different pseudo-station locations. Due to the
nature of the method, the PCR is allowed to get a glimpse into the
test data set (something not allowed for the models based on
neural networks), which in turn is constrained to reality by
assimilating real-world data. We find that the LSTM is a great

addition to the PCR, especially skilled for the reconstruction of
extra-tropical regions.

Conclusion
With the recent convergence of open-access big-data availability
and user friendly, easy-to-implement machine learning software
packages, there is a huge untapped potential for providing non-
linear, flexible climate field reconstructions and services to the
community. By utilising existing data, storage and energy con-
sumption can be kept at a minimum, while at the same time
contributing to the United Nations Sustainable Development
Goals.

To prepare for the challenges of the 21st century, equalizing
access to and production of knowledge needs to be a key goal for
the upcoming decades. Our approach shows that machine
learning generated knowledge can help decentralise climate
expertise. The RNN reconstructions can be created in less than an
hour on a average-priced laptop, operating solely with open-
access, open-source software and data. Adding GPU access will
increase the speed of the reconstruction, but is not crucial.

We focus here on a grid reconstruction problem, a typical issue
in the (paleo-) climate community. By using a very conservative
approach with small sample sizes (especially for deep learning),
we could produce a realistic, robust global temperature recon-
struction. Compared to previous gridded climate reconstruction
techniques31,32, we use sparse time series to reconstruct a grid of
temperatures with four orders of magnitude more data. However,
our methodology can be improved in a few ways: (a) more data

Fig. 5 Performance compared to established reconstruction method. Maps of Pearson correlation coefficients between EKF400v2 ensemble mean and
the LSTM trained on MPI-GE (MPI-GE-REC) as well as the PCR trained on MPI-GE (N= 20,000 training months) monthly temperature anomaly
reconstruction for the period 1602–2003 CE. a Correlation coefficients between monthly temperature anomalies reconstructed by the LSTM trained on
MPI-GE (MPI-GE-REC) and EKF400v2 ensemble for the period 1602–2003 CE. b Same as a but for 1602–1849 CE. c Same as a but for 1850–2003 CE.
d Correlation coefficients between monthly temperature anomalies reconstructed by the PCR trained on MPI-GE (MPI-GE-REC) and EKF400v2 ensemble
for the period 1602–2003 CE. e Same as a but for 1602–1849 CE. f Same as a but for 1850–2003 CE. g Correlation coefficients anomalies (a) minus (d).
h Correlation coefficients anomalies between (b) minus (e). i Correlation coefficients anomalies (c) minus (f). Values on the right side of the plot title
indicate global mean values.
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can be incorporated; (b) meta-heuristic algorithms can be applied
to find optimal measuring locations; (c) seasonal information and
co-variate data can be incorporated as an additional layer; (d)
longer training periods can be performed; (e) hyper-parameters
and loss function can be tuned more vigorously and (f) larger
ensembles of reconstruction can be computed.

In terms of training data set selection, we could see that data
assimilation in 20CRv3 helps reconstructing summer features
correctly. This comes with the drawback of smaller training sizes.
In the end, it is up to the user to decide which features are most
important for the reconstruction and should thus decide on the
training data set. In our case, we would refrain from recom-
mending CESM-LME for reconstructing EKF400v2, since it
shows apparent flaws compared to 20CRv3 and MPI-GE.

On the other hand, additional challenges could occur when
modifying our method. 2m temperatures are one of the easiest
climate variables to reconstruct. Meanwhile, reconstructing short-
term, local processes such as precipitation, will be more chal-
lenging for the RNN to learn, while large-scale, long-term pro-
cesses like SSTs will be easier to reconstruct. In-situ data like
proxy or station data will be less homogeneous, less complete, and
noisier than our pseudo-station data. We tried to evaluate the
impact of additional noise for the input data and found an
expected decrease in reconstruction skill. To counter-act the
impact of noise, we find that training with noisy data such as
using 20CRv3 individual members rather than ensemble mean,
and then creating large ensembles of reconstructions is a good
solution (not shown). Moreover, we find that both, long-term
variability patterns expressed in EOFs as well as specific, single-
season case study temperature anomaly patterns can be recon-
structed accordingly by a RNN.

We see potential for this approach to reconstruct climate
variables from (paleo) climate archives such as tree rings, coral
and ice cores, even without forward-modelling temperature from
the proxy in the first place. Future studies will investigate dif-
ferent types of input data in time and space, with varying
uncertainty and resolution. Moreover, with novel deep learning
architectures, non-numeric historical documents could also be
used as input information, reconstructing climate fields from text
and image data sets. Needless to say, reconstructions do not need
to be global, but can focus on a region of interest. It is also
possible to reconstruct multiple variables from single variable
input data. In the context of paleo-reanalyses, spatial RNN
reconstructions of specific variables or regions could then be
assimilated, reducing the uncertainty of the reanalysis outcome.
With paleo-reanalyses performing best during warm seasons, the
tested PCR performing best over the tropics and our promising
RNN-performing best for boreal winter and the extra-tropics, all
three spatial reconstruction methods complement each other
excellently.

Methods
Neural Network Architecture. Overall we investigated 20 different models using
three different data sets and two different training sizes for this study. The models
used were the simple Recurrent Neural Network (RNN), Long-short Term
Memory models (LSTM), Gated Recurrent Unit models (GRU) and 1-dimensional
Convolutional Neural Networks (CNN). Each of these models were then executed
with a variety of dropout and layer architectures. Summed up over all these dif-
ferent contributors, we analysed 140 different deep learning models for this climate
reconstruction task (a list of those models can be found in the Code Availability git
repository). After evaluation of those models, we decided to focus one long short-
term memory (LSTM) recurrent neural network with 955,232 trainable parameters,
one layer of 64 neurons and 5% dropout. A LSTM is an archetype of neural
network designed to memorize sequences of data for multiple time steps44.
Through a series of feedback connections, the LSTM processes the input infor-
mation sequentially, storing the previous hidden state through time. This makes it
an excellent architecture to reconstruct the climate of the past using observational
and proxy time series. In our case, we utilized a small LSTM with an output
dimensionality of 64 neurons and the hyperbolic tangent as activation function,

followed by a dense layer of 18,432 parameters that were reshaped into a grid of
96 × 192 temperature points. The neural network was trained with three features
(i.e., latitude, longitude, and 2m temperature anomaly) using the ADAM
optimizer45 with a learning rate of 10−4 and the Mean Squared Error as loss
function. Five ensemble members were then generated and subsequently averaged
for each output of the neural network, creating a total of 4824 reconstructed
months of 2m mean temperature anomalies. Note that, the training and validation
data sets were composed of 80% and 20% of the available information, respectively.
With this setup, the training process in a middle-class laptop takes less than an
hour to complete on CPU, and five to ten minutes on a standard GPU (e.g.,
NVIDIA GeForce RTX 3050 Ti).

Selection of pseudo-station data. To pick realistic locations for possible tem-
perature records, we use the International Surface Temperature Initiative (ISTI)
data bank46 and choose 25 stations with records that span continuously multiple
centuries and thus go back into the 19th or 18th century (Table 1). As this study
represents a proof-of-concept, the absolute amount of locations is not crucial for
the reconstruction procedure. That said, the more locations available, the better the
reconstruction. Our example selection was chosen based on a semi-realistic dis-
tribution of historical temperature data in time and space. This conservative
approach means that all of our station locations are in the Northern Hemisphere,
with most of them located in either Europe or North America. Note that these
locations are by no means sampling the best possible co-variability in space for 2m
temperatures, especially so with many stations being clustered together in Central
Europe. As such, not only more data, but also optimal data locations would
improve the results.

As the selected ISTI stations have missing data and other inhomogeneities in
their records, we sub-sample EKF400v2 2m temperature values with a nearest-
neighbour approach at the respective ISTI locations. This approach allows us to
have 25 continuous, homogeneous 2m temperature time series. That said, this
approach also smoothes the temperature record, since the temperature from a
model grid represent average temperature over a larger region. We try to assess the
impact of smoothing for the reconstruction procedure by looking at individual
ensemble member in EKF400v2 (see below).

Paleo-reanalyses and cold season reconstruction. As a source data set for the
pseudo-station data as well as a benchmark data set for global 2m temperature
anomalies, we use the updated global atmospheric paleo-reanalysis covering the last 400
years (EKF400v2)24. EKF400v2 is based on the ECHAM5.4 global circulation model in
atmospheric-only configuration with reconstructed sea surface temperatures to provide
a fully global, monthly reanalysis for 1602–2003 CE. It consists of 30 ensemble
members and assimilates instrumental, documentary and proxy data using an offline
Ensemble Kalman Filter approach. EKF400v2 was found to perform well when

Table 1 Selection of long-term ISTI stations used for
sampling pseudo-station locations in EKF400v2.

Station ID Longitude Latitude Start year End year

USC00508503 −135.33 57.05 1828 1990
USC00226177 −91.34 31.59 1799 2005
USW00013880 −80.04 32.90 1823 2005
USW00014735 −73.81 42.74 1795 2005
IN020040900 80.18 13 1796 2005
IN024140300 88.33 22.53 1816 2005
RSM00022550 40.73 64.5 1813 2005
RSM00024959 129.72 62.02 1829 2005
RSM00030710 104.35 52.27 1820 2005
RSXLT181644 37.56 55.75 1779 2005
SNXLT983389 103.9 1.3 1825 1984
AU000005010 14.13 48.05 1767 2005
BE000006447 4.35 50.8 1794 2005
FIE00142246 25 60.13 1829 2005
FRM00007150 2.45 48.97 1757 1995
GME00121150 13.31 52.56 1701 2005
ITE00105250 13.35 38.11 1791 2005
LH000026730 25.1 54.63 1777 2005
NO000098550 31.1 70.37 1829 2005
NOE00111040 10.45 63.41 1761 2005
UKXLT476306 −3.35 55.95 1764 2005
UKXLT793735 0 51.5 1763 1969
UKXLT912439 −3.1 57.6 1781 1975
UPM00033345 30.53 50.4 1812 2005
USW00012836 −81.75 24.55 1830 2005
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compared to independent records24. We downloaded all 30 individual member for
monthly 2m temperature fields on a T63 resolution from https://cera-www.dkrz.de/
WDCC/ui/cerasearch/entry?acronym=EKF400v2.0. We calculate monthly, member-
specific 2m temperature anomalies with respect to the monthly climatology of
1951–1980 CE. We use nearest-neighbour selection to get the pseudo-station data from
the EKF400v2 grids, resulting in 25 time series with N= 4824 months to reconstruct.
To investigate the impact of uncertainties in the data, we use individual member as well
as ensemble mean pseudo-proxy data for the neural network reconstruction.

For an independent evaluation of annual 2m temperature anomalies, we use the
updated Last Millenium Reanalysis (LMRv2)43. LMRv2 also uses an offline
Ensemble Kalman Filter approach, but key differences exist compared to
EKF400v2. Firstly, LMRv2 only assimilates proxy data, rather than instrumental or
documentary data. It further uses the CCSM4 Last Millennium simulation as the
source of prior, where the prior is generated by randomly sampling 100 randomly
drawn years. LMRv2 covers the time period 0–2000 CE, and we use an ensemble
mean of the years 1602-2000 for comparison with EKF400v2 and the neural
network reconstruction. We downloaded the LMRv2.1 data on T42 resolution from
https://atmos.washington.edu/~hakim/lmr/LMRv2/. LMRv2 2m temperature data
is only available as anomalies with respect to the 1951–1980 CE climatology.

For an independent evaluation of cold season 2m temperature anomalies, we
use a newly published climate field reconstruction for the years 1701–1905 (CSR)16.
The October–May average temperature field reconstructions were computed using
a Bayesian reweighting method with the same ECHAM5.4 model run of EKF400v2
as prior, however using completely independent, newly digitized plant and ice
phenology data to constrain the weights of each field. We downloaded the CSR
data on T63 resolution from https://doi.org/10.1594/PANGAEA.934288.

Training data. For training we investigate three different gridded climate data sets;
one climate reanalysis and two coupled general circulation models.

For reanalysis data, we use the National Oceanic and Atmospheric
Administration 20th Century Reanalysis Version 3 (20CRv3)22. Monthly mean,
ensemble mean (of 80 ensemble members) 2m temperature data for 1836–2015 CE
on a 1 degree spatial resolution were downloaded from https://psl.noaa.gov/data/
gridded/data.20thC_ReanV3.html. This reanalysis assimilates surface pressure
observations only, with sea surface temperature and sea ice reconstructions as
boundary conditions. We use the years 1851–2015 CE (1980 months) for training
purposes and leave out the years 1836–1850 for independent evaluation. 20CRv3
was found to represent global climate variability in terms of magnitude, timing and
spatial precision, with substantial improvements over previous versions47. 2m
temperature is among the most skilful variables in the data set, and as such we
assume a realistic representation of near surface temperature inter-continental
correlations for the neural network to learn.

The second data set we use for training purposes is the Max Planck Institute for
Meteorology Grand Ensemble (MPI-GE)37. MPI-GE consists of 100 members of
the well-tested MPI-ESM1.148 model, run on four different forcing scenarios,
including a historical forcing (1850–2005 CE) as well as RCP2.6, RCP4.5, and
RCP8.5 (2006–2099 CE). We only use the historical forcing ensemble data on a
monthly resolution and download 2m temperature data on a T63 resolution from
the DKRZ ESGF-CoG Node https://esgf-data.dkrz.de/search/mpi-ge/. MPI-GE was
found to capture temperature variability skillfully49. The total amount of available
months for training in the historical forcing setup is N= 187,200. Out of this data
pool, we randomly sub-sample the data to either 1980 or 20,000 months for our
training routine.

The third data set we use for training purposes is the National Center for
Atmospheric Research Community Earth System Model Last Millennium
Ensemble (CESM-LME)38. This data set consists of 36 last millennium simulations
for 850–2005 CE from NCAR’s CESM− CAM5CN general circulation model, 13
members including transient forcings (solar radiation, volcanic aerosols,
greenhouse gases, land use/land cover conditions and orbital parameters). We
downloaded monthly 2m temperature fields on a 1.9∘ × 2.5∘ spatial resolution for
the 851-2005 CE period of the full-forcing CESM-LME at https://www.cesm.ucar.
edu/projects/community-projects/LME/data-sets.html. This data set has been
successfully used in a variety of studies trying to disentangle the contribution of
internal and external climate variabilities50. The total amount of available months
for training in this forcing setup is N= 180,024. Out of this data pool, we randomly
sub-sample the data to either 1980 or 20,000 months for our training routine.

For all training data sets, we calculate monthly 2m temperature anomalies with
respect to the monthly climatology of 1951–1980 CE. We use bilinear interpolation
to regrid all training data to the EKF400v2 grid, namely T63 with 1.875∘ spatial
resolution. We also utilize two-sided t-tests to assess the statistical significance of
results shown in Figs. 2 and 3.

Data availability
All gridded data products as well as the ISTI database are freely available for research and
education purposes. EKF400v2 can be downloaded at https://cera-www.dkrz.de/WDCC/
ui/cerasearch/entry?acronym=EKF400_v2.0. 20CRv3 ensemble mean can be
downloaded at https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html. MPI-GE can

be downloaded at https://esgf-data.dkrz.de/search/mpi-ge/. CESM-LME can be
downloaded at https://www.cesm.ucar.edu/projects/community-projects/LME/data-sets.
html. The cold season reconstruction can be downloaded at https://doi.org/10.1594/
PANGAEA.934288.

Code availability
Code to reproduce the results in this publication can be found at https://github.com/
martin-wegmann/RNN_climate_reconstruction.
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