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Abstract: Background: Serum creatinine level, proteinuria, and interstitial fibrosis are predictive
of renal prognosis. Fractional excretion of phosphate (FEP)/FGF23 ratio, tubular reabsorption of
phosphate (TRP), serum calcification propensity (T50), and Klotho’s serum level are emerging as
determinants of poor kidney outcomes in CKD patients. We aimed at analysing the use of FGF23,
FEP/FGF23, TRP, T50, and Klotho in predicting the rapid decline of renal function in kidney allograft
recipients. Methods: We included 103 kidney allograft recipients in a retrospective study with a
prospective follow-up of 4 years. We analysed the predictive values of FGF23, FEP/FGF23, TRP,
T50, and Klotho for a rapid decline of renal function defined as a drop of eGFR > 30%. Results:
During a follow-up of 4 years, 23 patients displayed a rapid decline of renal function. Tertile of FGF23
(p value = 0.17), FEP/FGF23 (p value = 0.78), TRP (p value = 0.62) and Klotho (p value = 0.31) were
not associated with an increased risk of rapid decline of renal function in kidney transplant recipients.
The lower tertile of T50 was significantly associated with eGFR decline >30% with a hazard ratio of
3.86 (p = 0.048) and remained significant in multivariable analysis. Conclusion: T50 showed a strong
association with a rapid decline of renal function in kidney allograft patients. This study underlines
its role as an independent biomarker of loss of kidney function. We found no association between
other phosphocalcic markers, such as FGF23, FEP/FGF23, TRP and Klotho, with a rapid decline of
renal function in kidney allograft recipients.

Keywords: kidney transplant; decline of renal function; prediction; phosphocalcic markers

1. Introduction

Kidney transplantation is the best treatment mode for patients with end-stage kidney
disease [1]. Glomerular Filtration Rate (GFR) normally stabilizes at approximately 60% of
donor renal function before presenting a gradual decline influenced by numerous variables
as drug toxicity, rejection episodes and infections [2,3]. Serum creatinine, proteinuria, and
interstitial fibrosis are well-known predictors of kidney function evolution [4]. Defining
novel non-invasive markers that could precisely predict the individual eGFR decline in
kidney allograft recipients (KARs) is important in patient management. Amongst potential
tools, mineral metabolism biomarkers are of interest as disorders in phosphorus and
calcium homeostasis are common.

Klotho is a protein mainly expressed in kidney proximal and distal tubular cells.
During the early phases of experimental chronic kidney disease (CKD), Klotho expression
is decreased [5,6]. Lower Klotho serum levels are associated with a higher prevalence
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of cardiovascular disease, arterial stiffness and vascular calcification in the experimental
setting and some clinical observations [7–9]. Low serum Klotho levels are also significantly
associated with an increased risk of poor kidney outcomes in CKD, dialysed or transplanted
patients [10]. Despite the unknown effect of Klotho in kidney allografts, its protective role
in renal tubular cells and inhibition of renal fibrosis seems to impact the post-transplant
ischemia-reperfusion injury and eventually alleviate delayed graft function [11,12].

FGF23 is a key phosphaturic hormone produced by osteocytes and osteoblasts, which
increases early in CKD. FGF23 appears to be a sensitive marker of kidney disease and
cardiovascular complications in the CKD population [13]. The phosphaturic action of
FGF23 is based on its capacity to suppress renal phosphate reabsorption at the proximal
tubules and thus to increase its urinary excretion at each nephron, referred as the fractional
excretion of phosphate (FEP). Tubular reabsorption of phosphate (TRP), defined as 1-FEP,
emerges as a possible surrogate marker for phosphate regulation in pre-dialysis CKD
patients, as it correlates with renal function [14,15]. With the postulation that excreting
phosphate is a marker of nephron stress, Bellasi et al. showed in a retrospective study that
FEP is associated with end stage renal disease (ESRD), but not with all-cause mortality
risk in a large cohort of stages 3b to 5 CKD patients [16]. Yamada and Kuro-o proposed
the FEP to FGF23 ratio as an index that theoretically represents the number of healthy
nephrons [17]. This ratio is an independent risk factor for renal progression [18] and was
shown to be associated with aortic calcification in CKD [19]. Moreover, FGF23 is not only a
risk marker for CKD progression and cardiovascular mortality in primary CKD but seems
also important in KARs [13,20–23]. Elevated c-terminal FGF23 (cFGF23) concentration was
associated with overall graft loss in a previous observation [24].

Kidney transplantation incompletely mitigates the cardiovascular risk despite restor-
ing renal function. KARs have markedly accelerated vascular calcification even with a
stable renal function [25–27]. Serum calcification propensity test (T50) was developed
to monitor the maturation time of calciprotein particles in serum [28]. High calcification
propensity (or low T50) is closely associated with progressive aortic stiffening and increased
long-term mortality in CKD patients [29]. Conversely, a prolonged T50 indicates a high
residual capacity of serum in the patient, which prevents the formation of secondary cal-
ciprotein particles and is, therefore, indicative of an intact endogenous defence against
calcification. T50 was shown as an independent determinant of graft failure in kidney
transplant recipients [30,31]. Whether T50 is associated with rapid decline of renal function
in KARs is unknown.

Altogether, mineral metabolism markers may be interesting as non-invasive prognosis
markers of renal function loss in KARs. In this study, we aim to analyse the association
between FGF23, FEP/FGF23, TRP, T50, and Klotho with the rapid decline of renal function
in KARs, defined as a loss of eGFR > 30% at 4-years follow-up.

2. Material and Methods

We designed a retrospective study including adult KARs in whom serum was kept
for clinical reasons. Patients aged 18 or older, who received a kidney transplant between
1982 and 2013, who were followed routinely and whose serum was collected in 2015 at
our hospital, were eligible for enrolment. Two nephrologists, not in charge of the patients,
randomly selected 150 patients between January 2007 to December 2014. We excluded
21 patients because of the lack of available serum samples and 26 patients because of the
lack of available follow-up, leaving 103 patients for the current analysis (Figure 1).

Baseline characteristics, including medical history, co-morbidities and transplantation-
related outcomes were collected through patient records. The patient’s blood pressure, weight
and size were measured routinely during follow-up visits. Serum creatinine and other stan-
dard laboratory values were measured during routine follow-up visits or hospitalizations
and recorded at the time of the collected sample. Standard biochemical analyses were per-
formed in our hospital using the routine automated analysers. eGFR was calculated using the
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Chronic Kidney Disease Epidemiology Collaboration equation from 2012 (CKD-EPI 2012) [32].
Creatinine was measured using IDMS-traceable Jaffe’s kinetic method.
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We defined a threshold value for the rapid decline of eGFR as a decrease higher than
30% at 4-years follow-up, as already described in previous studies [33–35]. Frozen samples
were used to measure FGF23, Klotho and T50 in batch. Serum FGF23 levels were measured by
the ELISA system using the C-TER Immunotopics kit [36]. An ELISA essay kit from IBL was
used to measure serum levels of soluble Klotho [37]. The serum calcification propensity test
(T50) was performed using a Nephelostar nephelometer [28]. Fractional excretion of phosphate
(FEP) was calculated using the following formula: FEP = (24 h urine phosphate × serum
creatinine)/(serum phosphate × 24 h urine creatinine) × 100. TRP was calculated as 1-FEP.
TmP/GFR calculation depends on TRP: if TRP is ≤ 0.86, TmP/GFR = TRP × serum phosphate.
If TRP > 0.86, TmP/GFR is defined as ((0.3 × TRP)/(1 − (0.8 × TRP)) × serum phosphate.
Technicians from the laboratories were blinded to the clinical data and other results. The study
was approved by the local ethical committee for human studies (CER 14-149) and performed
according to the Declaration of Helsinki principles. All the patients were contacted to provide
written informed consent to participate in this retrospective study.

2.1. Statistical Analysis

Continuous variables are expressed as mean +/− SD and categorical variables are
expressed as numbers and percentages. p-values were calculated with Student’s t-test
for continuous variables or Chi2 for categorical variables. FGF23 and proteinuria were
logarithmically transformed before analysis due to abnormal distribution. The statistical
significance was determined as a p < 0.05, and all tests were two-tailed. For simple
correlation analyses between phosphocalcic parameters, including T50 and renal function,
we performed Pearson’s tests after controlling the linear associations with scatter plots.

To test the hypothesis that phosphocalcic markers could predict a rapid decline of
renal function, we performed log-rank tests for trends, comparing for each variable the
risk of renal function loss. Time-to-event data were evaluated using Kaplan–Meier esti-
mates and Cox proportional-hazard models. Hazard ratios, 95% confidence intervals and
p values were calculated. Proportionality of hazard was graphically verified by plotting log
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minus log of survival against time. Statistical analyses were performed using STATA 16.1
(StataCorp, College Station, TX, USA).

2.2. Outcomes

The primary outcome was the rapid decline of renal function, defined as a decline of
eGFR of >30% over 4 years. For participants who died or were lost to follow-up, the last
available eGFR was used to assess the primary outcome.

3. Results
3.1. Characteristics of the Study Population

We included 150 KARs at different time points from transplantation (Figure 1). Among
them, only 103 were analysed because 21 patients had no serum available and 26 patients
were lost to follow-up at 4 years. The mean age was 56 years old, with mainly male gender
(63%) and Caucasian origin (98%). The clinical characteristics of the study participants are
shown in Table 1. Demographics data from the 2 groups are comparable. In total, 23 patients
were defined as having a rapid decline in renal function, defined as >30% of eGFR decline.

Table 1. Baseline characteristics of the study population.

Total
(n = 103)

eGFR Decline
at 4 Years ≤ 30%

(n = 80)

eGFR Decline
at 4 Years > 30%

(n = 23)
p Value

Characteristics -
Age, years 56 ± 14 56 ± 14 57 ± 13 0.57
Male, n (%) 63 (61.2) 48 (60) 15 (65.2) 0.65

Caucasian, n (%) 98 (95.2) 76 (95) 22 (95.7) 0.89
Clinical parameters

Systolic blood pressure (mmHg) *a 132 ± 16 132 ± 15 131 ± 20 0.76
Diastolic blood pressure (mmHg) *a 80 ± 12 80 ± 12 78 ± 12 0.44

BMI (kg/m2) 25.3 ± 4.3 25.4 ± 4.3 24.8 ± 4.4 0.57
Dialysis before tx, n (%) *c 40 (72.7) 31 (73.8) 9 (69.2) 0.75
Dialysis duration, mths, *c 24.2 ± 29.4 24.45 ± 30.8 23.3 ± 25.6 0.90

Donor age, years, *c 53 ± 14 54 ± 14 54 ± 15 0.94
Living donor transplant, n (%) 40 (38.8) 32 (40) 8 (34.8) 0.65

Graft vintage (year) 9.48 ± 7.3 9.45 ± 7.1 9.6 ± 8.2 0.94
2nd or 3rd transplant, n (%) 14 (13.6) 11 (13.8) 3 (13) 0.93

Rejection episodes, n (%) 46 (44.7) 32 (40) 14 (60.9) 0.08
Infections, n (%) 52 (66.7) 40 (66.7) 12 (66.7) 1

Opportunistic inf, n (%) *c

0.76
None 41 (51.3) 30 (49.2) 11 (57.9)

1 31 (38.8) 25 (41) 6 (31.6)
2 8 (10) 6 (9.8) 2 (10.5)

NODAT, n (%) 11 (10.7) 9 (11.3) 2 (8.7) 0.73
Etiology of kidney disease, n (%)

Diabetes 4 (3.9) 3 (3.8) 1 (4.4) 0.89
Hypertension 20 (19.4) 13 (16.3) 7 (30.4) 0.13

Glomerulonephritis 22 (21.4) 18 (22.5) 4 (17.4) 0.6
Polycystic kidney disease 20 (19.4) 15 (18.8) 5 (21.7) 0.75

Others (tubulo-interstitial nephritis . . . ) 41 (39.8) 34 (42.5) 7 (30.4) 0.3
Treatment, n (%)

CNI 92 (89.3) 77 (87.5) 22 (95.7) 0.27
Mycophenolate mofetil 80 (77.7) 61 (76.3) 19 (82.6) 0.52

Corticostéroids 60 (58.3) 43 (53.8) 17 (73.9) 0.08
ACE-I/ARB 54 (52.4) 39 (48.8) 15 (65.2) 0.16

Calcium channel blockers 50 (48.5) 37 (46.3) 13 (56.5) 0.39
Diuretics 7 (6.8) 4 (5) 3 (13) 0.18

Beta-blockers 56 (54.4) 44 (55) 12 (52.2) 0.81
Calcium 69 (67) 54 (67.5) 15 (65.2) 0.84

Vitamine D 88 (85.4) 68 (85) 20 (87) 0.82
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Table 1. Cont.

Total
(n = 103)

eGFR Decline
at 4 Years ≤ 30%

(n = 80)

eGFR Decline
at 4 Years > 30%

(n = 23)
p Value

Laboratory
eGFR at baseline (mL/min/1.73 m2) 55.6 ± 18.6 56 ± 18.4 54.4 ± 19.9 0.72
eGFR at 4 years (mL/min/1.73 m2) 48.3 ± 19.7 53.9 ± 16.9 28.8 ± 16.1 <0.001

Proteinuria (g/d) *b 0.4 ± 1.4 0.4 ± 1.6 0.2 ± 0.2 0.5
Alb/Creat ratio (mg/d) *b 148.8 ± 283 116.5 ± 272.1 255.6 ± 298 0.04

Hemoglobine (g/L) 129 ± 14 129.8 ± 13.4 126.4 ± 15.9 0.31
Calcium (mmol/L) 2.41 ± 0.14 2.41 ± 0.13 2.42 ± 0.17 0.9

Phosphate (mmol/L) 1.09 ± 0.23 1.07 ± 0.2 1.13 ± 0.32 0.32
Vitamine D (nmol/L) *a 68.6 ± 21.6 68.7 ± 21.6 68.3 ± 22.1 0.94

Parathormone (pmol/L) *a 9.14 ± 4.6 8.8 ± 4.1 10.1 ± 6.1 0.25
Bicarbonate (mmol/L) *a 24.3 ± 3.4 24.3 ± 3.6 24.3 ±2.6 0.99

Albumin (g/L) 37.4 ± 3.6 37.7 ± 3.6 36.5 ± 3.4 0.18
FEP/FGF23 § ratio *b 0.72 ± 0.39 0.73 ± 0.4 0.7 ± 0.4 0.77

FEP (%) 26.2 ± 11.1 25.9 ± 10.3 27.1 ± 13.5 0.68
FGF23 (pg/mL) 43.6 ± 28.7 43.2 ± 29.7 45.2 ± 25.5 0.77

TRP ‡,*b 0.98 ± 0.01 0.98 ± 0 0.98 ± 0.01 0.68
TmP/GFR ¶ (mmol/L) *b 1.48 ± 0.3 1.45 ± 0.3 1.58 ± 0.5 0.12

Klotho (pg/mL) 734.9 ± 244.2 751.6 ±264 676.6 ± 147.4 0.2
T50 (min) 285.2 ± 56.7 291.9 ± 55.9 262 ± 54.6 0.03

Continuous variables are expressed as mean ± SD. Categorical variables are expressed as numbers and percent-
ages; * Missing values: *a: 0–5; *b: 5–10; *c: >10; § FEP: fractional excretion of phosphate; FGF-23: c-terminal fibrob-
last growth factor 23; ‡ TRP: phosphate tubular reabsorption (plasma creatinine in umol/L); ¶ TmP/GFR: maximal
tubular phosphate reabsorption; glomerular filtration rate; BMI body mass index, CNI calcineurin inhibitors,
NODAT new onset diabetes after transplantation, ACE Inhibitors/ARB angiotensin-converting enzyme inhibitors,
angiotensin receptor blockers, eGFR estimated glomerular filtration rate, Alb/Creat ratio albumin/creatinine
ratio, T50 serum calcification propensity.

3.2. Association between Phosphocalcic Biomarkers and Renal Function at Baseline

At baseline, phosphate (r = −0.19, p = 0.048), Klotho (r = 0.27, p = 0.006), logFGF23
(r = −0.47, p < 0.001), bicarbonate (r = 0.25, p = 0.01) correlated with eGFR as we previously
described. TRP (r = −0.51, p < 0.001) (Figure 2A), TmP/GFR (r = −0.4, p < 0.001) (Figure 2B)
were also associated with renal function [4]. FEP/FGF23 (r = 0.15, p = 0.17) (Figure 2C) did
not correlate with renal function.

3.3. Univariable and Multivariable Analysis of Predictors of Renal Function Decline

During a follow-up of 4 years, 23 patients (23/103 = 22.3%) displayed a rapid decline of re-
nal function according to our definition. Baseline mean eGFR was 54.4 ± 19.9 mL/min/1.73 m2

in the group with rapid decline of renal function and 56 ± 18.4 mL/min/1.73 m2 in the
non-rapid decline of renal function group.

We tested the known risk factors of a rapid decline of renal function used in the kidney fail-
ure risk calculation: age, sex, eGFR, albuminuria, albumin, phosphate, bicarbonate, and calcium
at baseline. Sex, albumin, phosphate, bicarbonate, and calcium were not associated with a rapid
decline of renal function in our population (Supplementary Table S1 and Figure S1). Albumin-
uria > 300 mg/24 h was strongly associated (HR 4.37, 95% CI [1.46–13.3], p value = 0.008)
with a rapid decline of renal function (Supplementary Table S1 and Figure S1G).

Tertiles of Klotho, FGF23, FEP, FEP/FGF23 ratio, TRP and TmP/GFR were not associ-
ated with a rapid decline of renal function. However, the first tertile of T50 was strongly
associated with a rapid decline of renal function in kidney allograft patients (HR 4.26, 95%
CI [1.2–15.1], p = 0.025) (Table 2).
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Figure 2. Correlations between TRP, TmP/GFR, FEP/FGF23 and renal function defined by eGFR.
Scatter plots of TRP (A), TmP/GFR (B) and FEP/FGF23 (C) versus GFR. Each symbol represents one
patient. The continuous line indicates least-square linear regression. The correlation coefficient (r)
and significance (p) are displayed in each scatter plot.

Table 2. Predictors of decline of renal function by univariable analysis.

HR 95% CI p Value

Tertile Klotho
First tertile Reference

Second tertile 1.41 0.56–3.58 0.47
Third tertile 0.63 0.21–1.92 0.42

Tertile FGF23
First tertile Reference

Second tertile 2.65 0.92–7.64 0.07
Third tertile 1.72 0.55–5.42 0.35
Tertile FEP
First tertile Reference

Second tertile 1.52 0.54–4.28 0.43
Third tertile 0.97 0.31–3.02 0.96

Tertile FEP/FGF23
First tertile Reference

Second tertile 0.72 0.25–2.08 0.54
Third tertile 1.01 0.37–2.8 0.98
Tertile T50

Third tertile Reference
Second tertile 2.78 0.74–10.48 0.13

First tertile 4.26 1.2–15.09 0.025
Tertile TRP
First tertile Reference

Second tertile 1.56 0.56–4.4 0.4
Third tertile 1.03 0.33–3.19 0.96

Tertile TmP/GFR
Third tertile Reference

Second tertile 2.29 0.69–7.62 0.18
First tertile 2.53 0.78–8.22 0.12
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For clarity in graphs and the interpretation of results, we decided to use the higher
values of the third T50 tertile as a reference and the lower as a first tertile. The same
reflexion applies to tertile TmP/GFR. Kaplan Meier curves are shown in Figure 3.
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3.4. Multivariable Analysis of Predictors of Renal Function Decline

In the multivariable analysis, including eGFR at baseline, albuminuria and T50,
eGFR < 30 mL/min, albuminuria >300 mg/day and lower T50 were associated with a
rapid decline of renal function (Table 3).

Table 3. Predictors of decline of renal function by multivariable analysis.

HR 95% CI p Value

eGFR
≥45 & <60 mL/min/1.73 m2 0.27 0.05–1.51 0.14
<45 & ≥30 mL/min /1.73 m2 0.28 0.06–1.33 0.11

<30 mL/min/1.73 m2 0.1 0.01–0.97 0.047
Albuminuria

30–300 mg/24 h 1.89 0.65–5.48 0.24
>300 mg/24 h 4.47 1.39–14.52 0.012

Tertile T50
Second tertile 2.5 0.62–10.01 0.2

First tertile 3.86 1.01–14.7 0.048

4. Discussion

In this retrospective study including 103 kidney allograft recipients followed up to
4 years, phosphocalcic biomarkers such as FGF23, Klotho, FEP/FGF23 ratio and TRP were
not associated with a rapid decline of renal function. T50 was in contrast associated with a
rapid decline of renal function and this association remained significant in multivariable
cox analysis including albuminuria and eGFR at baseline.

A shortened T50 reflects an abnormal mineral metabolism that predisposes to vascular
vessels calcification leading to fatal or nonfatal cardiovascular disease in ESRD patients [38].
A high arterial calcification burden increases arterial stiffness and is associated with a faster
decline of kidney function in patients with arterial hypertension and/or CKD. Although
the underlying mechanisms are not completely understood, Pruijm et al. found that a
shortened T50 was associated with lower renal tissue oxygenation (confirmed by MRI)
and perfusion in hypertensive and CKD patients [39]. As restoration of renal function
after transplantation does not mitigate cardiovascular risk due to accelerated vascular
calcification in the transplanted patient, such alterations of perfusion may also occur in
KARs. Since inflammation may occur for various reasons, and pro-inflammatory cytokines
restrict the synthesis of Fetuin-A in the liver, the ability to counteract the calcium mineral
disbalance-driven injury progression is further reduced [40]. This may lead to alterations of
T50 and progression of vasculopathy in the kidney. Consequently, accumulating calcipro-
tein particles might subsequently affect graft function by ischemia, leading to a more rapid
decline of renal function. Further studies are needed to evaluate prospectively the impact
of T50 measurement on KARs prognosis and care.

In a study including stable kidney transplant recipients with a median transplant
vintage of 3.9 years, patients with lower T50 had a 2.3-fold increased risk of cardiovascular
disease. Even after multivariate adjustment, each standard deviation decrease in T50 was
independently associated with a 22% greater CVD risk [41]. While low T50 values are
shown to be independently associated with increased all-cause mortality (HR 1.43, 95%
CI [1.11–1.85]; p = 0.006), cardiovascular mortality (HR 1.55, 95% CI [1.04–2.29], p = 0.03),
and risk of graft dysfunction (HR, 3.80; 95% CI [1.53–9.45], p = 0.004) in an independent
cohort [31], this is the first time that T50 emerges as a new marker of renal function decline
in KARs. This marker may thus be of interest to determine renal prognosis and as a
potential future therapeutic target.

We did not observe any association between Klotho level after transplantation and the
rapid decline of renal function at 4 years. The inclusion of patients after transplantation
may explain those results. Indeed, the pre-transplant Klotho level seems to be decisive
for the post-transplant period, independent of transplant or donor characteristics [42].
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Deceased donor Klotho polymorphism, also predicts early transplant glomerular lesions
and function [43]. While Klotho levels of the recipient and donor before transplantation
may be significant, Klotho levels measured after transplantation are not associated with
decline of renal function in our cohort.

No association between FGF23 and the rapid decline of renal function in KARs was
observed. Up to now, few studies have evaluated the role of FGF-23 in mortality and graft
loss prediction in KARs, and their results are contradictory. In recent studies including
patients with a median transplantation vintage of about 6–7 years, FGF23 was an inde-
pendent risk factor for allograft loss, cardiovascular, and all-cause mortality [22,44]. In
contrast, FGF23 was not an independent risk factor for mortality in the short period (until
48 months) post-transplant in a French cohort [45]. Thus, FGF23 is not a clear marker for
renal function decline in KARs.

TRP was also not associated with a rapid decline of renal function in kidney allograft
patients despite previous promising studies.

The major limitation of our study is its monocentric, retrospective and cross-sectional
design. A sample size calculation was made at the time of the research protocol and the
risk of a negative study due to a lack of power was low. Some of our negative results
might nevertheless be explained by the small sample size. Technical limitations in regard to
Klotho measurement in human research may also have impacted results interpretation [37].
In addition, Klotho serum levels in KARs may not reflect renal expression. The same
limitation applies to FGF23 measurement. In our study, we measured the C-terminal
portion of FGF23 (cFGF23). We therefore cannot completely exclude that intact FGF23
(iFGF23) would have a different predictive value over the C-terminal portion measurement,
although it has been described that cFGF23 concentrations have a better discriminatory
ability than iFGF23 concentration in predicting overall (all-cause) graft loss [24].

5. Conclusions

In this retrospective study, T50 was the only parameter associated with a rapid decline
of renal function in kidney allograft patients. T50 is a well-described predictive marker for
its reflection of intravascular calcification and risk of cardiovascular mortality. We confirm
that this marker is predictive of renal function evolution in KARs, but we were not able to
demonstrate an association between FGF23, Klotho, FEP/FGF23 and TRP and the rapid
decline of renal function. Our study confirms the need to initiate large-scale, prospective,
multicentre studies for longitudinal follow-up of KARs and to integrate T50 as a marker of
renal prognosis in this population.

6. Three Statements

(1). What is known:
a. Serum creatinine and proteinuria are predictive of renal prognosis.
b. Novel individualized non-invasive markers of renal function decline are needed in

kidney allograft recipients (KARs).
(2). What this study adds:
a. This study tries to define mineral metabolism markers that could precisely predict

the individual eGFR decline in KARs.
b. T50 is associated with a rapid decline of renal function
(3). What impact this may have on practice:
a. Finding new non-invasive predictors of renal function decline in KARs could help

clinicians to monitor and anticipate kidney allograft dysfunction, and thus prevent invasive
procedures such as kidney biopsy.

b. T50 may be used to predict a rapid decline of renal function. However, other
mineral metabolism alterations may not play the same role in KARs’ renal prognosis as in
native kidney patients.
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