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CrowdFusion: Multi-Signal Fusion SLAM
Positioning Leveraging Visible Light

Zan Li, Xiaohui Zhao, Zhongliang Zhao, Torsten Braun

Abstract—With the fast development of location-based services,
an ubiquitous indoor positioning approach with high accuracy
and low calibration has become increasingly important. In
this work, we target on a crowdsourcing approach with zero
calibration effort based on visible light, magnetic field and
WiFi to achieve sub-meter accuracy. We propose a CrowdFusion
Simultaneous Localization and Mapping (SLAM) comprised of
coarse-grained and fine-grained trace merging respectively based
on the Iterative Closest Point (ICP) SLAM and GraphSLAM.
ICP SLAM is proposed to correct the relative locations and
directions of crowdsourcing traces and GraphSLAM is further
adopted for fine-grained pose optimization. In CrowdFusion
SLAM, visible light is used to accurately detect loop closures and
magnetic field to extend the coverage. According to the merged
traces, we construct a radio map with visible light and WiFi
fingerprints. An enhanced particle filter fusing inertial sensors,
visible light, WiFi and floor plan is designed, in which visible
light fingerprinting is used to improve the accuracy and increase
the resampling/rebooting efficiency. We evaluate CrowdFusion
based on comprehensive experiments. The evaluation results show
a mean accuracy of 0.67m for the merged traces and 0.77m
for positioning, merely replying on crowdsourcing traces without
professional calibration.

Index Terms—Crowdsourcing, Visible Light, SLAM

I. INTRODUCTION

In recent years, location-based services become increasingly
important and widely used due to the fast development of
Internet services related to locations of people. To support
those location-based services, diverse positioning techniques
have been proposed in last decade. For indoor environments,
since the Global Positioning System (GPS) is not available,
wireless signals are widely adopted for positioning, such
as Radio Frequency Identification (RFID), Ultra Wide Band
(UWB), WiFi and Bluetooth. RFID and UWB can achieve
high positioning accuracy [1], but the limited deployment of
RFID readers and UWB base stations reduces their ubiquitous-
ness [2]. Fingerprinting approaches based on Received Signal
Strength Indicator (RSSI) of WiFi and Bluetooth are the most
ubiquitous and mature solutions, but their accuracy is limited
on meter level due to severe multi-path propagation [3], [4].
To achieve ubiquitous positioning with high accuracy, many
solutions relying on ubiquitous signals besides WiFi have been
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proposed, such as visible light and magnetic field. A traditional
visible light positioning approach normally relies on range
estimation. In visible light positioning, the Received Signal
Strength (RSS) of visible light is converted to the propagation
distance based on a propagation model. Because the RSS of
visible light is less affected by multi-path propagation, the po-
sitioning accuracy based on visible light can achieve sub-meter
level. However, locations of Light Emitting Diode (LEDs) are
required and propagation models need to be calibrated, which
limit the deployment of a visible light positioning system. In
our previous work [5], we propose a fingerprinting approach
based on visible light, which does not require LEDs with
known locations and correspondingly reduces the deployment
efforts compared with the range-based approaches.

Although fingerprinting approaches with either WiFi or
visible light have achieved acceptable accuracy, the calibration
effort of a radio map is extremely time consuming and
labor intensive. To reduce calibration efforts, GraphSLAM
techniques have been proposed to merge moving traces based
on ubiquitous signals, such as WiFi, Bluetooth or visible
light. Under the constraints of loop closures detected by
ubiquitous signals and inertial sensors, poses are optimized
following an assumption of the Gaussian distributed errors.
Hence, these GraphSLAM approaches require long traces with
loop closures. Moreover, in GraphSLAM, the errors of initial
relative locations and directions among the obtained traces
should be small to guarantee the convergence of optimization,
which limits its application.

Recently, to reduce the calibration effort of fingerprinting,
crowdsourcing approaches for automatic radio map construc-
tion have attracted more attention. Crowdsourcing positioning
generates a radio map by labeling RSSI values with loca-
tions on merged crowdsourcing traces without participation
of professionals. Walkie-Markie [6] and PiLoc [7] are two
pioneering works on merging user traces based on WiFi signals
as signal-marks. Both assume small rotation errors of the
collected traces to guarantee convergence of the algorithms. In
our previous work [5], we adopt a visible light GraphSLAM
to merge a long user trace with small relative direction and
location errors. However, in a real scenario, rotation errors of
crowdsourcing traces are normally large and relative locations
are unknown, resulting in failures of these algorithms. Hence,
it is challenging to accurately merge those crowdsourcing
traces with unknown relative directions and locations.

In this work, we propose a system named CrowdFusion to
leverage crowdsourcing traces from multiple users to construct
radio maps by fusing visible light and magnetic field. Based
on the radio map, CrowdFusion system locates the users with
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sub-meter accuracy and without professional calibration. The
contributions of this work are from three aspects, i.e., an
enhanced signal SLAM approach for merging crowdsourcing
traces, a robust loop closure detection approach leveraging
visible light and magnetic field, and an improved particle filter
for sensor fusion positioning. The details of contributions are
summarized as follows.

• Enhanced Signal SLAM: We propose a CrowdFusion
SLAM with two step trace merging based on an enhanced
ICP SLAM and GraphSLAM to merge the crowdsourcing
traces. ICP SLAM is enhanced to coarse-grained merge
the traces as rigid bodies by correcting the relative
rotations and locations among them. Afterwards, Graph-
SLAM is adopted to fine-grained tune the poses in the
merged traces of ICP SLAM. Based on this two step trace
merging approach, the crowdsourcing traces can be fine-
grained merged even with unknown relative rotations and
locations.

• Robust Loop Closures: In CrowdFusion, we propose
to leverage visible light to detect loop closures in both
ICP SLAM and GraphSLAM. To solve the challenges of
detecting loop closures based on visible light, a sequential
pose matching and a set of validation are proposed to
reduce the false positive matches. Besides visible light
for the loop closure detection, GraphSLAM further takes
the magnetic field data to detect the loop closures for
compensating the limited coverage of visible light.

• Improved Particle filter: After merging the traces, we
build radio maps with visible light and WiFi fingerprints.
We design an enhanced particle filter in CrowdFusion by
fusing inertial sensors, WiFi, visible light and floor plan.
In CrowdFusion, visible light fingerprinting is adopted
in the observation likelihood of particle filter and re-
sampling/rebooting the particles to respectively improve
the positioning accuracy and efficiently solve the sample
degeneracy problem.

According to the evaluation results in a complex indoor
environments, the proposed CrowdFusion SLAM can achieve
a sub-meter level accuracy relying on multiple traces of
unknown rotations and locations with zero-effort calibration.
Based on the produced crowdsourcing radio map, the proposed
particle filter achieves a mean accuracy of 0.77m, which is
significantly higher than that of the traditional fusion approach
based on WiFi fingerprinting as observations.

This paper is organized as follows. The related works are
reviewed in Section II. The detailed proposed CrowdFusion
positioning system description is given in Section III. The
system implementation and experiment are shown in Section
IV and Section V. Finally, the conclusion is provided in
Section VI.

II. RELATED WORK

Over the past decades, indoor positioning shows growing
popularity for the increasing demand of location-aware ap-
plications [8]. Intensive research has been conducted in the
field of indoor positioning mainly from two directions, i.e.,
enhancing deployment efficiency and improving positioning

accuracy. To enhance the deployment efficiency, crowdsoucing
and signal SLAM approaches have been proposed in recent
years. To improve the positioning accuracy, many ubiquitous
signals have been investigated, such as visible light. We sum-
marize the related works from three aspects, i.e., signal SLAM,
crowdsourcing positioning and visible light positioning.

A. Signal SLAM

SLAM is a task to estimate a robot location and reconstruct
an environment based on observation from LiDAR and other
sensors, which is widely used in robotic applications [9],
[10]. Many techniques such as Kalman filter [11], particle
filter [12] and graph-based solutions [13] have been proposed.
Besides the traditional SLAM, signal SLAM developed for
light-weight mobile devices with WiFi, magnetic field or other
signals has been investigated for indoor positioning, which
can build signal maps of buildings [14]. C-SLAM-RF [15]
applies RSSI from WiFi access points and the Pedestrian
Dead Reckoning (PDR) from user’s smartphone to implement
WiFi SLAM. However, the low spatial insensitivity of WiFi
fingerprints means that it can only provide a low positioning
accuracy. GraphSLAM [16] uses magnetic signals to find loop
closures to design signal SLAM, which may be limited by
magnetic environment of a building due to their rapid change.
To improve accuracy, some researches use fused multiple
signals. The authors in [17] introduce WiFi similarity con-
straints to the magnetic sequence matching in a complicated
indoor environments. The authors in [18] use the multi-path
parameters extracted from radio signals as input measurements
and develop a neural network to estimate the states of a
mobile agent. The authors in [19] propose a DCOGI-SLAM
positioning framework, in which multiple traces can be fused
based on Bluetooth signals. The authors in [20] propose a
cooperative localization method based on Laser-Visual-Inertial
(LVI) and GPS sensors achieved by communicating optimiza-
tion events between a LiDAR-Inertial-SLAM (LI-SLAM) and
Visual-Inertial-SLAM (VI-SLAM). In our previous work [5],
we propose a GraphSLAM approach based on visible light to
detect the loop closures.

Although these approaches can reduce the efforts of radio
map construction, they still require professionals to collect
long traces with loop closures in targeted buildings.

B. Crowdsourcing Positioning

When indoor space becomes huge, to construct a radio
map with the data collected by professionals is more labor-
intensive. Different from the pre-measured solutions, crowd-
sourcing is an economical and efficient way to obtain location
information from normal users [3]. Crowdsourcing positioning
based on WiFi RSSI is the most widely used method. Zee
[21] is an early crowdsourcing indoor positioning system
to leverage the convergence of true locations with WiFi
fingerprints. LIFS [22] maps a high dimensional fingerprint
space formed by the fingerprints and the PDR traces to a
floor plan to construct a 3-D radio map. PiLoc [23] divides a
single trajectory into disjoint path segments by turn detection
and merges the segments by path shape correlation and WiFi
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similarity. MPiLoc [7] also leverages this WiFi similarity to
merge the traces. KAILOS [24] provides a crowdsourcing
platform and a toolkit for contributors to upload indoor maps
and construct radio maps at target buildings. Other RSSI such
as Bluetooth, magnetic field and multi-signal fusion methods
can also be used in crowdsourcing positioning. FineLoc [25]
adopts a reference provided by iBeacons nodes to merge the
user traces which can profile detailed layout information of
indoor space. The authors in [26] take big data techniques
to obtain user traces and mark these traces with an accuracy
indicator to improve positioning accuracy by integrating iner-
tial, wireless and magnetic sensors, which requires more time
to collect enough PDR traces. While SoiCP [27] proposes a
seamless outdoor–indoor crowdsensing positioning which uses
WiFi and gates as landmarks to merge user traces.

However, these crowdsourcing approaches with WiFi, Blue-
tooth and magnetic signals can only achieve meter-level
accuracy due to low discrimination and severe multipath
propagation.

C. Visible Light Positioning

To further improve positioning accuracy, visible light is
investigated due to its high tolerance to multipath propagation.
A Visible Light Positioning (VLP) system consists of trans-
mitters and receivers. For receivers, there are Photo Detector
(PD) sensors and imaging sensors. Using PD sensor is a low
cost solution and provides high rate data communication, while
imaging sensors are more costly and only suitable for low data
rate transmission. After extracting position related parameters
from receivers through some commonly used methods, such as
Time Of Arrival (TOA), Time Differences Of Arrival (TDOA),
Phase Difference Of Arrival (PDOA), Angle Of Arrival (AOA)
or RSSI, position estimation can be performed. The primary
requirement for TOA or TDOA information in VLP systems to
estimate position is to precisely synchronize embedded clocks
in LED transmitters and receivers, which will increase costs
[28], [29], [30]. The authors in [31] propose an improved
PDOA scheme, which avoids using local oscillators at the
receiver. The information regarding AOA can be implemented
using PDs [32]. Normally, the VLC receiver structures involv-
ing multiple PDs with different orientations can be employed
to obtain AOA information from the received signals. The
system using RSSI [33], [34] needs to know the locations of
LED nodes as the anchors and trains a ranging model for each
anchor, which is laborious.

Comparing with the VLP systems mentioned above, our
proposed CrowdFusion system can construct a visible light
map for positioning with high accuracy only based on the
crowdsourcing traces from normal users.

III. CROWDFUSION SLAM FOR TRACE MERGING

To leverage the crowdsourcing traces with unknown relative
directions and locations, we design a CrowdFusion system
to achieve sub-meter level positioning without professional
calibration. As shown in Fig. 1, in this system, CrowdFusion
SLAM is proposed to make use of visible light and magnetic
field for a two-step trace merging algorithm, i.e., multi-trace
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Fig. 1: CrowdFusion System

merging based on visible light ICP SLAM and fine-grained
trace merging based on GraphSLAM. After fusing the traces,
the system builds a radio map with visible light and WiFi
signals for sensor fusion positioning based on an improved
particle filter.

A. Multi-Trace Merging Based on Visible Light ICP SLAM

Crowdsourcing traces collected from normal users are with
unknown relative directions and locations among different
traces. Hence, it is challenging to directly apply pose opti-
mization approaches on individual poses. In CrowdFusion, we
first apply an ICP SLAM based on visible light data for loop
closure detection to merge the large amount of crowdsourcing
traces by correcting the relative directions and locations of the
traces, in which each trace is considered as a rigid body and
the relative locations of poses in one trace are unaltered.

1) Preprocessing of Visible Light RSS: In our system, a set
of traces is obtained based on a PDR algorithm. On the i-th
trace Ti with the length of L, each pose corresponds to an
array of visible light RSS, i.e.,

Ti =
{(

xi
1, y

i
1

)
,
(
xi
2, y

i
2

)
, ...,

(
xi
L, y

i
L

)}
; (1)

Xi
l =

(
xi
l, y

i
l

)
→ RSSi

l =
{

RSSi
l,1,RSSi

l,2, ...,RSSi
l,K

}
(2)

where Xi
l is the l-th pose on the i-th trace, RSSi

l is the
visible light RSS vector attached with Xi

l , RSSi
l,k denotes RSS

detected from the LED with the k-th luminous frequency.
It is redundant to search all the poses for loop closures

based on the visible light RSS, which will result in massive
false positive matches. Hence, to reduce these mismatches, we
remove the invalid visible light RSS on the poses with low
discrimination and sheltered by user body. First, according to
the path loss model of visible light RSS, the discrimination of
RSS far from the effective coverage of LEDs is low. Hence, we
remove the visible light RSS smaller than a threshold RSSmin.
Second, if the difference between two neighboring RSS in one
trace is higher than a threshold ∆RSSmax, the light sensor is
considered to be sheltered by user body. Thus, these RSS is
also removed.
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2) Trace Clustering: After preprocessing of the traces and
their attached visible light RSS, we cluster the traces based
on the detected frequency of visible light to prepare for trace
merging. For each trace, we calculate the mean RSS of each
LED frequency over all poses and mark the top four LED
frequencies with the largest mean RSS as their identification.
The traces with the same identification are clustered into the
same cluster.

3) Loop closure Detection and Validation: In this work,
we propose a sequential pose matching algorithm via the
similarity of visible light RSS on a sequence of poses. To
design the sequential pose matching algorithm, we first define
matching pose, i.e., a matching pose is determined by the
similarity of the visible light RSS vectors between two traces
(Ti and Tj) as

E(RSSi
m,RSSj

n) =
1

K

K∑
k=1

|RSSi
m,k − RSSj

n,k| (3)

where RSSi
m represents the visible light RSS corresponding

to the m-th pose in the i-th trace. A pair of matching poses
is determined if the distance in Equation (3) is shorter than a
threshold of Emin by{

RSSi
m = RSSj

n, E(RSSi
m,RSSj

n) ⩽ Emin

RSSi
m ̸= RSSj

n, E(RSSi
m,RSSj

n) > Emin
(4)

where ”=” and ”̸=” denotes matching and mismatching.
Traditional approaches for detecting loop closures are nor-

mally based on the individual pose matching. However, due to
the noisy visible light, the individual pose matching approach
is prone to large amount of false positive matches. Hence, to
reduce the false positive matches, a pair of matching segments
is defined as the segments with more than three sequential
matching poses.

In a crowdsourcing scenario, the absolute direction of a trace
is normally unavailable. Therefore, the sequential matching
poses in a pair of matching segments need to be searched
by a two-round algorithm respectively for the same and
opposite directions. In the two-round sequential pose matching
algorithm, we fix one trace Ti and slide the other one Tj to
find out the sequential matching poses. Then, Tj is reversed
and calculated with the same principle as the first round.
Afterwards, we compare the length of segments with more
than three sequential matching poses in this two round and
keep the longer one.

To further remove the false positive matching segments, the
matching segments are validated according to the following
rules.

• Best matching poses: For each pair of the matching
poses in the matching segments, we find the top w
sequential matching poses with (3) and (4). In this work,
we set w = 3.

• Consistence of trace shape: We calculate the turning
angle at the middle pose in trace Ti, i.e., θmid. If the
difference of the turning angles in two matching segments
is lager than a threshold θt, i.e., ∆θmid > θt, these two
candidates are removed.

• Consistence of RSSI vector: We only reserve the candi-
date matching segments with the consistent order of RSS
values from different LEDs.

4) Multi-Tree Structure for Trace Ordering: Since multiple
traces are potential to be matched, the order of matching traces
can affect the positioning accuracy. Therefore, we propose a
multi-tree structure to decide the merging benchmark and the
merging order. In this multi-tree structure, the connections be-
tween parent and child nodes represent merging relationships
obtained by the algorithm in Subsection III-A3. A root node
as the merging benchmark and the matching order from parent
nodes to child nodes are decided based on three metrics, i.e.,
the number of matching traces, the number of matching poses,
and trace length. In these metrics, the number of matching
traces is with the highest priority. We observe that the trace
with more matching traces carries more valid RSS information
which is closer to the ground truth. If more than one candidate
traces have the same amount of the matching traces, longer
traces and the traces with more matching poses are preferred.
We perform a breadth-first traversal on the multi-tree structure
and repeat this process until all the candidate traces enter the
tree structure.

5) Trace merging with ICP algorithm: After determining
the loop closures and the merging order, an enhanced ICP
SLAM algorithm is adopted to merge the traces with loop
closures based on the merging order. In the proposed ICP
SLAM, the traces are considered as the rigid bodies without
shape adjustment. The traces are merged by rotation R and
translation T based on the shared loop closures. ICP SLAM
[35] algorithm is primarily used to solve the data registration
problem of point cloud on free form surface.

The ICP SLAM for the trace merging algorithm is taken
for this optimization by translation and rotation. Since ICP
SLAM may fail due to random initialization of locations and
directions of traces, the selected trace is first translated by
matching its center coordinate to its parent node in the multi-
tree structure for trace ordering. The coordinates of the target
pose set in the trace of Ti are defined as

K =
{
ki

∣∣ki ∈ R2, i = 1, 2, · · ·Nk

}
, (5)

and the coordinates of the reference pose set Tj as

M =
{
mi

∣∣mi ∈ R2, i = 1, 2, · · ·Nm

}
. (6)

A rotation matrix is defined as R and a translation matrix as
T. The pose coordinates are optimized by minimizing an error
function associated with R and T as

E(R,T) =
1

Nk

Nk∑
i=1

∥Rki +T−mi∥2 (7)

R∗,T∗ = argmin
R,T

E(R,T) (8)

The iterative calculation is performed until the error function
is minimized to find R∗ and T∗ for each pair of matching
traces. Based on the aforementioned ICP SLAM approach,
the crowdsourcing traces with unknown relative directions and
locations are sequentially merged under the merging order
determined in Subsection III-A4.
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B. Fine-Grained Trace Merging based on GraphSLAM Fusing
Visible Light and Magnetic Field

The above ICP SLAM based on visible light merges the
crowdsourcing traces by rotating and translating the traces as
rigid body. However, due to the unalterable shape of traces, the
traces are only coarse-grained merged. As the unknown rela-
tive directions and locations of the crowdsourcing traces have
been compensated based on the ICP SLAM, a GraphSLAM
can be further adopted to further fine-grained tune the poses
in the merged traces. In this work, we propose a GraphSLAM
approach based on visible light and magnetic field.

1) Loop Closure Detection based on Visible Light and
Magnetic Field: In the stage of GraphSLAM, the loop closures
are detected and validated based on visible light and magnetic
field data to build the constraints among the poses, i.e., edges.

The loop closures detected by visible light RSS as intro-
duced in Section III-A are only between the traces. Hence, in
GraphSLAM, we further detect the loop closures inside each
trace based on visible light with the same method introduced
in Section III-A3. The aforementioned loop closures detected
by visible light are accurate but the number of loop closures
are normally less especially in the area without visible light
coverage.

In those areas without visible light coverage, we take the
sequential variation of magnetic field as features to increase
the number of detected loop closures. The sequential variation
of magnetic field on the same ground truth path is very
similar. We leverage Dynamic Time Warping (DTW) to search
the matched poses in the same trace cluster based on the
magnitude of triaxial magnetometer data. DTW can find the
segments of trace Ti that best matches Tj . Moreover, it will
compress or stretch one sequence to find the best match, which
helps to mitigate speed changes as the candidates walk.

To further remove the false positive loop closures, we
validate all the detected ones according to the following rules.

• The spatial distance between the matched poses must be
less than 10m. According to our investigation of ICP
SLAM based on visible light RSS, the maximum merging
accuracy is smaller than 8m.

• The orientation difference between the matched poses
must be less than 30 degrees. When the same location
from the opposite directions is visited, the light RSS
observations will be affected by body shade. Hence, only
the matched pose locations from the same orientation are
expected.

2) Backend of GraphSLAM: A Dynamic Bayesian Graph
(DBG) with undirected edges among poses is adopted to
represent the pose graph SLAM problem, in which edges
are composed of PDR and loop closure constraints. The
pose of a pedestrian at each moment is expressed as a state
vector xi = (xi, yi)T with a 2-Dimensional position. In this
work, GraphSLAM considers multiple traces as a set of poses
X = {x1,x2, · · · ,xN} with the pose number of N . To
optimize the poses based on the edges, a robust SLAM back-
end is designed, in which a new formulation for the cost
function based on the types of constraints is proposed. This

method aims to mitigate the constraints associated with the
remaining false loop closures during the optimization process.

The PDR constraints connect two successive pose states
xi and xi+1 via a motion model f(·, ·). We assume that the
successive poses are the normally distributed random variables
as

xi+1 ∼ N (f(xi, si),Σi) (9)

where si is obtained from a PDR algorithm to denote the
pose change between the ith and i + 1th pose, and Σi is
the covariance. Note that the relative locations and directions
of raw PDR traces in the motion model f(·, ·) have been
corrected based on the aforementioned ICP SLAM.

The loop closure constraints obtained based on visible light
and magnetic field connecting two poses xi and xj between
two different traces follow a Gaussian distribution

xj ∼ N (f(xi, sij),Λij) (10)

where Λij indicates the certainty degree of the loop closures.
The motion model function f(·, ·) is reused, since a constraint
contains a pseudo-odometry measurement sij to express a dis-
placement between xi and xj . Note that Gaussian distribution
is assumed because that there is no priori knowledge on the
distributions of pose variables and a Gaussian distribution can
simplify the calculation.

The two constraints S = {si, sij} defined through the obser-
vations from different sensors are assumed to be independent.
Therefore, the conditional probability over all variables and
constraints is expressed by [36]

P (X |S ) ∝
∏
i

P (xi+1 |xi, si )
∏
ij

P (xj |xi, sij ). (11)

where P (xi+1 |xi, si ) and P (xj |xi, sij ) are called factors to
encode probabilistic constraints over the corresponding nodes.
Based on the Gaussian assumption on two constrains, the joint
pose distribution is expressed as

P (X |S ) ∝ Π
i
exp

(
−1

2
∥f(xi, si)− xi+1∥2Σi

)
·Π
ij
exp

(
−1

2
∥f(xi, sij)− xj∥2Λij

)
.

(12)

The final cost function is calculated based on a negative
logarithm operation on the joint pose distribution as

F(x) = Fpdr(x) + Floop(x)

=
∑
i

∥f(xi, si)− xi+1∥2Σi +
∑
ij

∥f(xi, sij)− xj∥2Λij

=
∑

(i,j)∈Φ

epdrij (x)TΩpdr
ij epdrij (x) +

∑
(i,j)∈Γ

eloopij (x)
2
Ωloop

ij

(13)

where Ωpdr
ij is the information matrix set to a second-order

unit diagonal matrix, Ωloop
ij represents the uncertainty of the

loop closure constraint, Φ is the set of the PDR constraints,
and Γ is the set of the loop closure constraints between pose
pairs. Note that the loop closure constraints in Equation (13)
are detected by visible light and magnetic field.
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IV. IMPLEMENTATION OF CROWDFUSION POSITIONING
SYSTEM

According to Section III, we implement the CrowdFusion
SLAM to construct a radio map based on the crowdsourcing
traces. Based on the radio map, an enhanced particle filter fus-
ing PDR, WiFi, visible light and floor plan in the CrowdFusion
system is designed to locate the users with high accuracy.

A. Data Collection

1) Configuration of LED emitters: Micro-controllers are
used to generate pulse width modulation (PWM) signals to
control the specified positioning frequencies of LEDs. We
control 10W LEDs with metal radiator panels as light sources
in 6 different frequencies of 714Hz, 909Hz, 1250Hz, 1428Hz,
1666Hz, and 2500Hz. A trigger switch module is used to
amplify PWM signal power so that the smartphones with light
sensors can capture the LED light signals.

2) Data Acquisition: In the data acquisition, users use
smartphones to collect visible light signals and inertial sensor
data. However, the low scanning frequency (100Hz) of the
light sensor equipped in an original smartphone cannot meet
the requirement to distinguish these high luminous frequen-
cies. We use an external light sensor to collect visible light
signals, whose analog output is converted to a digital signal
by the Analog-to-Digital Converter (ADC) in the microphone
of smartphone with a sample rate of 8000Hz. Since 8000Hz
is larger than twice of the maximum frequency (2500Hz), the
Nyquist Sampling Theory is satisfied. More detailed imple-
mentation is referred to [33]. The resulted digital signal, a two-
byte short value, is converted to an RSSI value by Fast Fourier
Transform (FFT) having a positive linear correlation with
LED intensity. Additionally, the inertial sensor data is sampled
with 50Hz from accelerometer, gyroscope and magnetometer
in the smartphone. WiFi RSSI are also collected with the
smartphone. All data are marked with their corresponding
timestamps to synchronize all the data from different sensors.

B. Trace Generation

1) Pedestrian dead reckoning: The trace information is
derived from the inertial sensor data where the orientation
and step count determine the direction and the length of the
trace. Step detection is calculated based on a pair of peaks
and valleys in the accelerometer data because human walking
motion patterns are periodic. A linear model between the step
length and frequency is used to estimate the step length.

For heading estimation, we design two PDR approaches,
respectively for offline trace generation and sensor fusion
positioning.

• For offline trace generation, we pay more attention to
the accuracy of relative direction change between two
adjacent poses instead of its absolute direction, because
the absolute direction errors of traces can be further
corrected in the following procedure of trace merging.
Hence, for offline trace generation, heading direction
estimation is obtained by integrating the angular velocity
from gyroscope based on an initial angle as a reference.

An X-AHRS filter is used to fuse data from gyroscope
and accelerometer to estimate the Euler angles [37], in
which data of magnetometer is not fused to protect the
trace from magnetometer noise.

• For PDR in sensor fusion positioning, data of mag-
netometer is required to obtain absolute direction. To
mitigate the influence of magnetometer noise, we leverage
an adaptive β X-AHRS filter to fuse data from gyroscope,
accelerometer, and magnetometer to estimate the Euler
angles [37]. In the adaptive β X-AHRS filter, β is
automatically tuned according to the surround magnetic
environments. We refer to our previous work [37] for
more details.

C. CrowdFusion Trace Merging

The crowdsourcing traces are merged by the proposed two-
step trace merging procedures in Section III. According to
[5], to anchor the merged traces in a floor plan and reduce
the calibration cost, the locations of doors are used as anchors
for mapping. To detect the doors, we find that the magnetic
signals collected by the IMU have a high peak over space due
to steel shells in most large buildings when a user passes a
door. Thus we can detect the peaks of the magnetic signals at
door locations. Finally, we can adjust the trace according to
the ground-truth locations of these doors in the floor plan.

D. Radio Map Generation

The locations of the poses on the merged traces are used to
label the measured signals to build up radio maps. In the radio
map, we store two kinds of signals including visible light RSS
and WiFi RSS.

• In those stored signals, the poses with the largest visible
light RSS larger than a predefined threshold are stored as
visible light fingerprints. The threshold is defined because
the low visible light RSS at the edge of LED coverage
is with low discrimination.

• Moreover, all the poses are attached with a vector of WiFi
RSSIs as WiFi fingerprints.

E. Sensor Fusion Positioning based on Particle Filter

To further improve the positioning accuracy and solve the
problem of limited coverage of a radio map, we take a particle
filter to fuse a real-time PDR with the above fingerprinting for
the final locations of users.

In a particle filter, a target moves according to a non-linear
function, i.e., a system model xk = fk(xk−1,vk). The mea-
surement system observes the target according to another non-
linear function, i.e., an observation model zk = hk(xk,uk),
where vk and uk are the system and measurement noise,
respectively.

From Bayesian perspective, the goal is to calculate the pos-
terior Probability Density Function (PDF) p(xk|z1:k), which
is estimated by the following delta function

p(xk|z1:k) ≈
Ns∑
i=1

wi
kδ(xk − xi

k), (14)
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where xi
k is the i-th particle and wi

k is the associated weight.
Ns is the total number of particles. For Bootstrap Particle
Filter (BPF) [38], which is commonly used and efficiently
implementable, the associated weights are calculated by

wi
k ∝ wi

k−1 · p(zk|xi
k), (15)

in which the associated weights are only determined by the
likelihood function of p(zk|xi

k).
1) Movement Constraint based on Floor Plan: Leveraging

the knowledge of floor plan can remove the particles with
unreasonable movements. In this work, we represent the
environment with a grid of square cells, in which the size of a
cell is l = 0.25cm. We label the cells with two markers, i.e.,
allowed areas and obstacles. The particles are only allowed to
be located and move in the cells marked with allowed areas.

2) System Model based on Pedestrian Dead Reckoning: In
the system, state x at step k is defined as the location of the
target user as

xk = [xk, yk]. (16)

In this work, the particles are updated based on the system
model once a step is detected in the PDR algorithm. The
system model is defined based on the step length l and the
heading direction θ estimated in the PDR algorithm as

xk = Fxk−1 +Φ+ n (17)

where xk is the center location in one cell defined in Subsec-
tion IV-E1, n is the Gaussian noise vector on the latitude and
longitude, and

F =

[
1 0
0 1

]
,Φ =

[
lcosθ 0
0 lsinθ

]
.

Note that the particles only move when the connections
between two cells for one step is not blocked by obstacles.
Otherwise, the particles would stay at the original cells.

3) Observation Model based on Visible Light: The user
locations estimated by visible light are used in the observations
of particle filter. If the intensity of visible light is larger than
a predefined threshold and the detected frequencies match
the ones in radio map, the system leverages visible light
fingerprinting as the observations.

We adopt a coordinate pair (xVL, yVL) to design p(zk|xi
k)

in Equation (15) for updating the associated weights in the
particle filter, which is calculated by

p(zk|xi
k) = p(xVL

k |xi
k) · p(yVL

k |yik) (18)

where p(xVL
k |xi

k) and p(yVL
k |yik) follow the Gaussian distribu-

tion as {
p(xVL

k |xk) ∼ N (0, σ2)

p(yVL
k |yk) ∼ N (0, σ2)

(19)

where σ is the standard deviation of the Gaussian noise.
4) Observation Model Fusing WiFi Fingerprints: Because

the coverage of visible light fingerprints is limited, if the
intensity of visible light is smaller than a predefined threshold
or the detected frequencies do not match any one in the radio
map, the WiFi fingerprinting is additionally adopted as the
observations in particle filter. Then,

p(zk|xi
k) = p(xWiFi

k |xi
k) · p(yWiFi

k |yik) (20)

where p(xWiFi
k |xi

k) and p(yWiFi
k |yik) follow the Gaussian distri-

bution as {
p(xWiFi

k |xk) ∼ N (0, σ′2)

p(yWiFi
k |yk) ∼ N (0, σ′2)

(21)

where σ′ is the standard deviation of the Gaussian noise.
5) Resampling and Reboot: Because the movement of

particles is limited based on floor plan, the particle filter may
face severe sample degeneracy problem, which may result in
serious performance degradation. To deal with this problem,
resampling is a typical solution. A suitable measure of de-
generacy is the effective sample size Neff = 1/

∑Ns

i=1(w
i
k)

2

where Ns is the number of particles and wk is the weight
of the k-th particle . As soon as Neff is smaller than half
of Ns, the degeneracy is considered to be serious and a
suitable resampling method should be adopted. A systematic
resampling method is adopted in our work, because of its high
accuracy and efficient implementation.

Moreover, if the particle cloud diverges too much from
the visible light observations, resampling can not effectively
update the particles to the correct locations. Hence, in this
case, the system will directly reboot the particle filter from
the locations obtained from the visible light fingerprinting.

V. EXPERIMENT AND EVALUATION

A. Experiment Setup

We conduct comprehensive experiments to evaluate the
proposed trace merging and positioning approaches in the
CrowdFusion system. The testing environment is a space of
a building at Jilin University. LED lighting infrastructures are
deployed in a 600m2 space with 4 sub-regions and 16 LEDs
shown in Fig. 2. Fig. 3 shows the deployment of LEDs in one
sub-region. Note that the locations of LEDs are not required
in the CrowdFusion system.

We collect sensor data from 10 users and store them in a
center server for further processing, in which all the sensor
data are timestamped for sensor fusion. Based on the PDR
approach in Section IV-B1, data from accelerometer and
gyroscope are fused to generate the traces. In this experiment,
There are 31 recorded traces containing 1, 016 steps with
lengths varying from 18 steps to 182 steps. These traces are
used as input to the proposed CrowdFusion SLAM to construct
the walking paths, which further label the WiFi and visible
light RSS to construct a radio map of the target building.
Moreover, after constructing the radio map, we further evaluate
the positioning accuracy of the proposed CrowdFusion system.

To obtain the ground truth locations for evaluating the
positioning accuracy, the moving paths are predefined, in
which the coordinates of all turning points are measured. Then,
the ground truth coordinates of the other positions along the
paths are obtained by interpolation. To know the time when
the user passes each ground truth position, we record the time
passing each turn and keep the moving speed constant for
the whole moving path. All the sensor information including
WiFi and visible light signal strength lists are timestamped
and mapped to each ground truth position based on the time
when the user passes.
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Fig. 2: Experiment Layout Fig. 3: LED Setup in Office

Fig. 4: Initial Traces Fig. 5: ICP SLAM (Random Ordering)

Fig. 6: ICP SLAM Fig. 7: ICP+GraphSLAM

B. Evaluation of CrowdFusion Trace Merging

1) Evaluation of Multi-Trace Merging based on ICP SLAM:
Fig. 4 shows the original 31 traces with unknown relative
locations and directions. A traditional GraphSLAM approach
can not directly been applied to optimize the poses on these
traces. Hence, to merge these traces, the ICP SLAM based
on visible light is first applied to correct the unknown relative
locations and directions among these traces.

TABLE I: Loop Closures based on Visible Light ICP SLAM

Individual
poses

Sequential
poses

Matching poses
after validation

No. of Poses 422 232 176
Precision 64% 89% 98%

Loop closure detection and validation: To merge the
original traces, loop closures are detected based on visible
light RSS. Table I summarizes the amount of loop closures
based on individual matching poses, sequential matching poses
and matching poses after validation, which are introduced in
Subsection III-A3. The evaluation results in Table I shows that
the quantity of loop closures detected based on the individual
matching poses is large and a large number of the false positive

ones are included. These false positive loop closures would
severely degrade the performance of ICP SLAM. The loop
closure detecting method based on sequential matching poses
significantly reduces the amount of loop closures, especially
the false positive ones. Moreover, the validation approaches
in Subsection III-A3 further reduce the the false positive loop
closures and the amount of remaining loop closures is 176,
which is 246 less than that of the individual matching poses.
Because false positive matching poses significantly affect the
merging accuracy, we require high precision (precision =
TP/(TP+FP )), where TP is True Positive and FP is False
Positive. The precision of matching poses is given in Table
I. The precision of sequential poses achieves 89% which is
significantly higher than the individual ones with 64%. By
conducting the validation approaches in Subsection III-A3,
the precision further increases to 98%. Moreover, we evaluate
the influence of two parameters (ω and θt) introduced in
Section III-A3 on the precision of loop closure and mean
accuracy of ICP SLAM based on visible light via Taguchi
methods. The evaluation results in Table II show that the best
combination of ω and θt are ω = 3 and θt = 15◦. With
larger ω which is the number of best matching poses, the
precision gets lower and correspondingly the merging accuracy
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TABLE II: Evaluation of Different Parameters in Matching Poses Validation

Best Matching Poses Consistence of Shape Precision Merging Accuracy
ω = 3 θt = 15◦ 98% 0.84m
ω = 4 θt = 15◦ 97% 0.92m
ω = 5 θt = 15◦ 97% 0.93m
ω = 3 θt = 5◦ 98% 1.01m
ω = 3 θt = 25◦ 96% 0.95m

degrades. If θt indicating the shape of matching poses is too
low such as 5◦, the precision is still high (98%) but many true
positive matching poses are removed. Hence, with θt = 5◦, the
merging accuracy degrades to 1.01m. With larger θt such as
25◦, the precision gets lower and correspondingly the merging
accuracy degrades. Hence, ω = 3 and θt = 15◦ are selected
in the following evaluation.

Trace ordering: The trace order in ICP SLAM affects the
merging accuracy. In Subsection III-A4, we propose a multi-
tree structure trace ordering approach based on three metrics,
i.e., the number of matching traces, the number of matching
poses, and the trace length. Fig. 5 and 6 respectively represent
the merged traces based on a random order and the multi-
tree structure trace order, showing that the proposed multi-
tree structure trace ordering approach can effectively improve
the merging accuracy. In the procedure of trace merging, we
find that if the parent traces introduced in Section III-A4,
especially the benchmark one, are wrongly selected, the child
traces would be difficult to accurately merged. Especially, if
a short trace is selected as the benchmark (root) trace, the
performance will significantly deteriorate. Hence, the proposed
multi-tree structure trace ordering approach is fundamental for
trace merging.

TABLE III: Accuracy of Trace Merging

Mean Median 90%
ICP+GraphSLAM (VL+Mag) 0.67m 0.65m 1.11m

ICP+GraphSLAM (VL) 0.74m 0.64m 1.26m
ICP SLAM (Trace Ordering) 0.84m 0.72m 1.61m

ICP SLAM (Random Ordering) 1.04m 0.76m 1.92m

Fig. 8 and Table III summarize the Cumulative Density
Function (CDF) and statistics of trace merging errors based on
different approaches. The evaluation results show that the trace
merging based on ICP SLAM with multi-tree structure trace
ordering achieves a mean accuracy of 0.84m outperforming
the one with the random ordering (1.04m) by 16.3%.

ICP SLAM merging: As shown in Fig. 6, the original
traces are merged by using the proposed ICP SLAM, in which
the relative locations and directions among traces are effec-
tively corrected. However, because each trace is considered as
a rigid body, the relative locations of the poses inside each
trace can not be optimized by ICP SLAM.

2) Evaluation of Fine-Grained Trace Merging based on
GraphSLAM: Since the relative locations and directions
among traces have been corrected by ICP SLAM, the poses in-
side traces are further fine-grained optimized by GraphSLAM
based on visible light and magnetic field. Because the traces
are merged by rotation and translation in ICP SLAM as rigid
bodies, more than three loop closures on one trace will be

enough for merging. In GraphSLAM, each pose is fine-grained
tuned based on the loop closures. Hence, visible light with
limited coverage may not be enough to obtain sufficient loop
closures. In this evaluation, we compare the trace merging
based on GraphSLAM with and without fusing magnetic field.

Trace merging merely based on visible light: According
to the evaluation results in Fig. 8 and Table III, the fine-grained
traces based on GraphSLAM are more accurate than those
coarse-grained ones only with ICP SLAM, because the relative
locations of the poses in each trace are optimized under the
constraints of the loop closures and PDR. Considering 90%
accuracy, the combination of ICP SLAM and GraphSLAM
based on visible light achieves 1.26m, which is 21.7% higher
than that of only using ICP SLAM (1.61m). However, visible
light only provides a limited coverage in the defined four
sub-regions covered by LEDs. Hence, the optimized poses by
GraphSLAM still do not well behave in the area without LED
covering.

Trace merging based on visible light and magnetic field:
To further optimize the poses outside the coverage of LEDs in
GraphSLAM, we fuse the loop closures detected by magnetic
field based on DTW matching introduced in Section III-B1.
Fig. 7 shows the final merged traces through the combination
of ICP SLAM and GraphSLAM based on visible light and
magnetic field. According to the evaluation results in Fig.
8 and Table III, the CrowdFusion approach achieves a 90%
accuracy of 1.11m, which outperforms the one with only
taking the visible light by 12%. Hence, by fusing magnetic
field data into the visible light data, the accuracy of the merged
traces are further improved, especially in the areas without
coverage of LEDs.

In CrowdFusion, the merged traces after applying the pro-
posed two-step trace merging approach with ICP SLAM and
GraphSLAM by fusing visible light and magnetic field achieve
a mean accuracy of 0.67m and a median accuracy of 0.65m,
which is fundamental for achieving a sub-meter accuracy of
crowdsourcing positioning system.

TABLE IV: Accuracy of CrowdFusion Positioning

Mean Median 90% Success rate
Light 0.71m 0.67m 1.31m 46%

PDR+light 0.98m 0.76m 1.81m 100%
PDR+light+WiFi 0.88m 0.73m 1.62m 100%

WiFi 2.0m 1.62m 3.81m 100%
PDR+light+

WiFi+FloorPlan 0.77m 0.71m 1.39m 100%

PDR+WiFi+
FloorPlan 1.73m 1.35m 2.94m 100%
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Fig. 10: Positioning with Floor Plan

C. Accuracy of CrowdFusion Positioning

1) Comparison of WiFi and Visible Light Fingerprinting:
Based on the merged traces in CrowdFusion as the location
labels, a radio map with visible light and WiFi fingerprints
is constructed. Based on this radio map, we compare the
accuracy of the visible light and WiFi fingerprinting. From Fig.
9 and Table IV, we find that the accuracy of the visible light
fingerprinting significantly outperforms WiFi fingerprinting.
The mean accuracy of the visible light fingerprinting achieves
0.71m and 90% positioning errors are lower than 1.31m.
In contrast, the WiFi fingerprinting only achieves a mean
accuracy of 2.0m and a 90% accuracy of 3.81m. Although
the accuracy of the visible light fingerprinting is significantly
higher than that of WiFi fingerprinting, the positioning cov-
erage by visible light is only 46% because visible light can
not penetrate walls and the discrimination of the visible light
fingerprints is low at the edge of visible light coverage.

2) Comparison of PDR, Visible Light Fusion with and
without Fusing WiFi Fingerprinting: To increase the coverage
of the visible light fingerprinting, we evaluate two fusion
approaches with particle filters, i.e., with and without fusing
WiFi. In Fig. 9 and Table IV, the coverage of the fusion
approaches achieves 100%. However, the mean accuracy of
the fusion approaches is lower than that of visible light fin-
gerprinting, because only PDR and WiFi positioning are used
outside the coverage of visible light fingerprinting. In these
two fusion approaches, the mean accuracy of the particle filter
fusing visible light, WiFi and PDR achieves 0.88m, which is
better than the one only fusing visible light and PDR with a
mean accuracy of 0.98m, because the WiFi fingerprinting can
correct the accumulated errors of PDR outside the coverage
of visible light.

3) Comparison of Different Fusion Approaches with Floor
Plan: By fusing the floor plan, the particle movement is
limited by the floor plan and the positioning accuracy is
improved. We compare the fusing approaches with and without
visible light when using the particle filter to fuse the floor plan.
From Fig. 10 and Table IV, it is shown that the fusion approach
of PDR, WiFi, visible light and floor plan achieves a mean
accuracy of 0.77m, which outperforms the fusion approach
without the floor plan by 0.11m.

From the evaluation results in Fig. 10 and Table IV, we
find that the approach (with floor plan) fusing the visible light

fingerprinting with a mean accuracy of 0.77m is much higher
than the one without the visible light of 1.73m. On one hand,
the accuracy of the visible light fingerprinting is much higher
than that of the WiFi fingerprinting. Hence, fusing visible light
as the observation in the particle filter of Equation (19) can
improve the accuracy. On the other hand, a large number of
particles in the particle filter fusing WiFi, PDR and floor plan
are often locked by the walls when users pass doors. It takes
a long time for the particle filter only fusing the WiFi data as
observation to detect the sample degeneracy problem, which
degrades the accuracy. In CrowdFusion positioning, since
a resampling and rebooting approach with the visible light
fingerprinting is adopted, the particle filter is more frequently
resampled and rebooted when the visible light fingerprints
are detected. Hence, the sample degeneracy problem is more
efficiently solved which results in a higher accuracy.

VI. CONCLUSION

In this work, we propose a crowdsourcing system, namely
CrowdFusion, with sub-meter positioning accuracy and zero-
effort calibration. In this system, we develop a two-step trace
merging approach on the basis of ICP SLAM and GraphSLAM
by fusing visible light and magnetic field data. In the Crowd-
Fusion trace merging approach, ICP SLAM is proposed to cor-
rect the relative directions and locations among traces. In ICP
SLAM, we give a sequential pose matching approach to reduce
the false positive loop closures and a multi-tree structure trace
ordering approach to improve the merging accuracy. After ICP
SLAM, the proposed GraphSLAM optimizes the poses inside
the merged traces. Based on these merged traces, an enhanced
particle filter fusing PDR, WiFi, visible light and floor plan
is designed in CrowdFusion system to achieve a sub-meter
positioning accuracy. According to a set of comprehensive
experiments, the proposed CrowdFusion system achieves a
mean positioning accuracy of 0.67m for the merged traces.
Based on the constructed radio map labeled by the merged
traces, the CrowdFusion system finally reaches a positioning
accuracy of 0.77m.
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