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We present a first-principles lattice QCD investigation of the R ratio between the eþe− cross section into
hadrons and into muons. By using the method of Ref. [1], that allows one to extract smeared spectral
densities from Euclidean correlators, we compute the R ratio convoluted with Gaussian smearing kernels of
widths of about 600 MeV and central energies from 220 MeV up to 2.5 GeV. Our theoretical results are
compared with the corresponding quantities obtained by smearing the KNT19 compilation [2] of R-ratio
experimental measurements with the same kernels and, by centering the Gaussians in the region around the
ρ-resonance peak, a tension of about 3 standard deviations is observed. From the phenomenological
perspective, we have not included yet in our calculation QED and strong isospin-breaking corrections, and
this might affect the observed tension. From the methodological perspective, our calculation demonstrates
that it is possible to study the R ratio in Gaussian energy bins on the lattice at the level of accuracy required
in order to perform precision tests of the standard model.
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Introduction.—The R ratio between the eþe− cross
section into hadrons with that into muons plays a funda-
mental rôle in particle physics since its introduction in
Ref. [3]. In recent years, the importance of the R ratio has
been mainly associated with the fact that its knowledge, as
a function of the center-of-mass energy of the electrons,
allows one to predict the leading hadronic contribution

(HVP) to the muon anomalous magnetic moment (aμ) via a
dispersive approach. The dispersive determinations of
aHVPμ , reviewed in detail in Ref. [4], are in strong tension
(about 4 standard deviations) with the experimental deter-
mination of aμ. On the other hand, lattice determinations of
(partial) contributions to aHVPμ , obtained without any
reference to the experimental measurements of R, are in
much better agreement with the aμ experiment [5].
The focus of this Letter is R, smeared with Gaussian

kernels, and not aμ.—The experiments that measure R are
radically different from those that measure aμ, and more-
over, R is an energy-dependent probe of the theory while aμ
is natively a low-energy observable. For these reasons a
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detailed phenomenological investigation of R represents an
independent precision test of the standard model with
respect to that provided by aμ. We address here the
theoretical side of this problem by computing the
energy-smeared R ratio on the lattice with the required
nonperturbative accuracy.
To this end, we rely on our effort within the ETMC that

produced a collection of state-of-the-art lattice QCD
ensembles with four dynamical twisted mass quark flavors
[6] at physical pion masses together with the Euclidean
correlators with two insertions of the hadronic electromag-
netic current (see Table I and Ref. [7]). From these
correlators, by using the method proposed in Ref. [1]
and recently validated in Ref. [8] (see also Ref. [9]), we
extract the R ratio smeared with normalized Gaussian
kernels, GσðωÞ ¼ expð−ω2=2σ2Þ=

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
, according to

RσðEÞ ¼
Z

∞

0

dωGσðE − ωÞRðωÞ: ð1Þ

We then compare our theoretical determinations of RσðEÞ
with experiments by smearing the Rmeasurements with the
same Gaussian. In this way, by varying E and σ, we probe R
in Gaussian energy bins of different widths (see also
Ref. [10]). With E around the ρ-resonance peak and at σ ≃
600 MeV we manage to compute RσðEÞ with an accuracy
at the 2% level. In these Gaussian bins our results are in
tension (about 3 standard deviations) with experiments.
From the phenomenological perspective, the observed

tension might be ascribed to QED and strong isospin-
breaking effects, which we have not included yet in our
isosymmetric QCD calculation, or to underestimated exper-
imental uncertainties (see, e.g., Ref. [11]). From the
methodological viewpoint, our results clearly demonstrate
that it is possible to study the R ratio in Gaussian energy
bins on the lattice at the precision level required to perform
precision tests of the standard model.
A resolution in energy of Oð600Þ MeV can also be

obtained by considering the so-called intermediate window
contribution (aHVP;Wμ ) to aμ. Presently, the comparison of
the lattice determinations [5,7,12,13] of aHVP;Wμ with the
corresponding dispersive determinations [2] represents a
more stringent test of the standard model with respect to the
one performed in this Letter. Having demonstrated here that
a precise lattice calculation of RσðEÞ is possible, we plan in
the near future to substantially reduce the widths of the
Gaussian bins by increasing the statistical precision of our
lattice correlators.
Methods and materials.—Methods:—In order to com-

pute RσðEÞ we start from the two-point Euclidean corre-
lator of the quark electromagnetic current

VðtÞ ¼ −
1

3

X3

i¼1

Z
d3xTh0jJiðxÞJið0Þj0i; ð2Þ

where Jμ ¼
P

f qfψ̄fγμψf with f ¼ fu; d; s; c; b; tg,
qu;c;t ¼ 2=3, and qd;s;b ¼ −1=3. These correlators are the
primary data of our lattice simulations and are connected to
the R ratio by the well-known formula

VðtÞ ¼ 1

12π2

Z
∞

0

dωω2RðωÞe−tω: ð3Þ

Theoretically RðωÞ is a distribution, the spectral density of
the correlator VðtÞ, and it has to be probed by using suitable
smearing kernels,

R½K� ¼
Z

∞

0

dωKðωÞRðωÞ: ð4Þ

In this perspective the correlator VðtÞ itself represents
a class of observables, corresponding to KðωÞ ¼
ω2 expð−tωÞ=12π2, whose sensitivity to the energy
dependence of R can be varied by changing t. The window
contributions [14] to aHVPμ are elements of another class of
observables whose smearing kernels are natively well
localized in the Euclidean-time domain (see, e.g., Figs. 1
and 2 of Ref. [7]), but that can also be used to probe the
energy dependence of RðEÞ by changing the parameters
that define the time window (see Ref. [15] and Fig. 6
below). By choosing KðωÞ ¼ GσðE − ωÞ we provide here
results for RσðEÞ, a class of observables that are natively
well localized in the energy domain.
The determination of RσðEÞ on the lattice is possible,

with controlled statistical and systematic errors, by using
the method [16] of Ref. [1]. The starting point of this
approach is the following exact representation of the
smearing kernel for ω > 0:

12π2GσðE − ωÞ
ω2

¼
X∞

τ¼1

gτe−aωτ; ð5Þ

where τ is an integer variable and a is an arbitrary scale
that, on the lattice, we identify with the lattice spacing.
Once the coefficients gτ ≡ gτðE; σÞ are known, RσðEÞ can
be computed according to

RσðEÞ ¼
X∞

τ¼1

gτVðaτÞ: ð6Þ

Although the mathematics is quite simple the game is rather
delicate from the numerical point of view. Indeed, since the
sums in Eqs. (5) and (6) have necessarily to be truncated,
the goal is to find a finite set of coefficients such that both
the systematic and statistical errors on the resulting
approximation to RσðEÞ can be kept under control. The
smoother the kernel is, the simpler the game is. The
numerical problem rapidly becomes ill posed for σ ≪ E
(see Refs. [1,8] for illustrative numerical evidence of this
fact). In this regime, any procedure aiming at minimizing
the systematic error due to the imperfect reconstruction of
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the kernel produces coefficients gτ that are huge in
magnitude and oscillating in sign. As a consequence,
any tiny error on VðaτÞ is amplified when the truncated
sum of Eq. (6) is evaluated. The algorithm of Ref. [1]
provides a regularization mechanism to this problem. We
refer to Refs. [1,8] for extended discussions of this point
and to the Supplemental Material [22] for the details of the
numerical implementation performed in this Letter.
Materials:—The lattice gauge ensembles used in this

Letter, generated by the ETMC, are listed in Table I and
described in full details in Ref. [7] together with the lattice
correlators VðtÞ, used there to compute the short and
intermediate window contributions to aHVPμ and here to
compute RσðEÞ. In particular, in order to better estimate the
systematics associated with continuum extrapolations, we
use the same mixed-action setup described in Ref. [7,27]
and analyze both the so-called twisted mass (TM) and
Osterwalder-Seiler (OS) lattice regularized correlators
VðtÞ. The results for RσðEÞ obtained in the two regulariza-
tions differ by Oða2Þ cutoff effects [28,29] and must
coincide within errors in the continuum limit.
In order to compare our theoretical results with experi-

ments, we rely on the KNT19 compilation [2] of RexpðEÞ,
providing data in the range E ∈ ½0.216; 11.1985� GeV
together with the full covariance matrix that takes into
account the correlation between the different experiments;
see Fig. 1. The central values and errors of Rexp

σ ðEÞ quoted
below have been obtained by generating bootstrap samples
of RðEÞ, each of which simulating an independent
measurement, from a multivariate Gaussian distribution
using the RexpðωÞ central values and covariance matrix.
Each sample is then integrated with GσðE − ωÞ; see the
Supplemental Material [22] for more details.
Results.—In our lattice calculation we considered

three values for the smearing parameter, σ ¼ f0.44;
0.53; 0.63g GeV, and central energies in the range
E ∈ ½0.21; 2.54� GeV. A detailed discussion of the analysis
procedure, including the breakdown of RσðEÞ into the
contributions coming from the different flavors and from

connected and disconnected fermionic Wick contractions,
together with a careful study of the systematic uncertai-
nties affecting each contribution, can be found in the
Supplemental Material [22]. Here, in Fig. 2, we show an

TABLE I. ETMC gauge ensembles used in this Letter. The
quoted pion masses have been obtained by a direct computation
of the small light-quark mass correction that is necessary to match
mπ ¼ 135.0 MeV starting from simulations with slightly heavier
pions [mπ ¼ 0.1402ð2Þ GeV on the B64 ensemble, mπ ¼
0.1401ð1Þ GeV on the B96 ensemble, mπ ¼ 0.1367ð2Þ GeV
on the C80 ensemble, and mπ ¼ 0.1408ð2Þ GeV on the D96
ensemble; see Ref. [7] for more details].

ID L3 × T a fm aL fm mπ GeV

B64 643 × 128 0.07957(13) 5.09 0.1352(2)
B96 963 × 192 0.07957(13) 7.64 0.1352(2)
C80 803 × 160 0.06821(13) 5.46 0.1349(3)
D96 963 × 192 0.05692(12) 5.46 0.1351(3)

FIG. 1. The gray band shows RexpðEÞ from the KNT19
compilation [2]. The red points are the results of the smearing
of RexpðEÞ with a Gaussian of σ ¼ 0.44 GeV according to
Eq. (1). The smearing Gaussian corresponding to center energy
E ¼ 1.5 GeV is shown in blue.

FIG. 2. Continuum extrapolations of the different contributions
to RσðEÞ at E ¼ 0.79 GeV and σ ¼ 0.63 GeV. From top to
bottom, the plots correspond to the connected light-light
[Rll;C

σ ðEÞ], the connected strange-strange [Rss;C
σ ðEÞ], the con-

nected charm-charm [Rcc;C
σ ðEÞ] and the disconnected [RD

σ ðEÞ]
contributions. The blue and green points correspond respectively
to the OS and TM lattice regularizations. In the case of
the connected contributions we performed both correlated-
constrained (red) and uncorrelated-unconstrained linear extrap-
olations in a2 and found them to be compatible within errors in all
cases. The disconnected contribution has been computed in the
OS regularization only and extrapolated linearly in a2. In the case
of Rll;C

σ ðEÞ and Rss;C
σ ðEÞ there are two points for each regulari-

zation at the coarsest lattice spacing (slightly displaced on the x
axis to help the eye) corresponding to the ensembles B64 and B96
and, therefore, to different volumes. No significant finite-volume
effects have been observed for all considered values of E and σ.
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example (E ¼ 0.79 GeV and σ ¼ 0.63 GeV) of the con-
tinuum extrapolations of the different contributions to
RσðEÞ and, in the following, concentrate on the comparison
of our first-principles determination with the experimental
results Rexp

σ ðEÞ.
This is done in Fig. 3 where the plots show RσðEÞ (blue

points) and Rexp
σ ðEÞ (red points) as functions of E for σ ¼

0.44 GeV (first row), σ ¼ 0.53 GeV (second row), and σ ¼
0.63 GeV (third row). Our quoted final errors include the
estimates of the systematics associated with continuum
extrapolations, with finite-volume effects and also the ones
coming from the spectral reconstruction algorithm; see
Fig. 4. In order to properly interpret Fig. 3 it is very
important to realize that the information contained in RσðEÞ
and RσðE0Þ for central energies such that jE − E0j ≪ σ is
essentially the same. Moreover, our theoretical results at
different values of E and σ are obtained from the same
correlators and, therefore, are correlated (a table with the
numerical results and their correlation matrix is provided in
the Supplemental Material [22]). It is also very important to
stress that our lattice simulations have been calibrated by
using hadron masses to fix the quark masses and the lattice
spacing, and therefore, RσðEÞ is a theoretical prediction
obtained without using any input coming from Rexp

σ ðEÞ. In
view of these observations, and of the fact that the

extraction of spectral densities from Euclidean correlators
is a challenging numerical problem, we consider the overall
agreement between the theoretical and experimental data
quite remarkable.
Although our theoretical errors, ΔσðEÞ, are still sub-

stantially larger than the experimental ones, Δexp
σ ðEÞ, there

is a tension between RσðEÞ and Rexp
σ ðEÞ when the smearing

Gaussian is centered in the region around the ρ resonance.
This can be better appreciated in Fig. 5 where, for
E < 1.3 GeV, the plots on the left show the relative
difference RσðEÞ=Rexp

σ ðEÞ − 1 while those on the right
show the “pull”

ΣσðEÞ ¼
RσðEÞ − Rexp

σ ðEÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ΔσðEÞ�2 þ ½Δexp

σ ðEÞ�2
p : ð7Þ

Before ascribing this tension, of about 3 standard devia-
tions, to new physics or to underestimated experimental
uncertainties a very important remark is in order.

FIG. 3. Comparison of RσðEÞ (blue points) and Rexp
σ ðEÞ (red

points) as functions of E for σ ¼ 0.44 GeV (first row), σ ¼
0.53 GeV (second row), and σ ¼ 0.63 GeV (third row).

FIG. 4. Error budget for RσðEÞ at σ ¼ 0.44 GeV (first row),
σ ¼ 0.53 GeV (second row), and σ ¼ 0.63 GeV (third row). The
red points correspond to the total relative error, ΔσðEÞ=RσðEÞ.
The black points are the statistical errors combined in quadrature
with the systematic errors coming from the spectral re-
construction algorithm, Δ̄σðEÞ, divided by RσðEÞ. The violet
and orange points are, respectively, our estimates of the relative
systematic errors associated with the continuum extrapolations,
Δa

σðEÞ=RσðEÞ, and finite volume effects, ΔL
σ ðEÞ=RσðEÞ.
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The calculation of RσðEÞ that we have performed in this
study is an isosymmetric nf ¼ 2þ 1þ 1 lattice QCD
calculation, and therefore, we have not calculated yet,
from first principles, the contributions to RσðEÞ coming
from b quarks and from the QED and strong isospin
breaking corrections. Concerning the b-quark contribution,
if sizeable, this would represent a positive correction to
RσðEÞ and thus, given the fact that Rexp

σ ðEÞ is below RσðEÞ
in the region in which these are in tension, it can only lead
to an enhancement of the observed discrepancy. On the
other hand, in the Supplemental Material [22] we provide
numerical evidence that even the charm contribution is
negligible for E < 1.5 GeV at the current level of the
theoretical precision. This is evident at E ¼ 0.79 GeV and
σ ¼ 0.63 GeV, where we observe the largest tension, from
the comparison of the first and third panels in Fig. 2. We
therefore exclude that the observed tension can be ascribed
to the b-quark contribution.
Isospin breaking effects definitely have to be evaluated

from first principles:—Indeed, for very small values of σ
very large isospin breaking effects have to be expected at
certain values of E, e.g., at very low energy where the
channel π0 þ γ opens in QCDþ QED and also close to
other thresholds (see Refs. [30,31]). Nevertheless, we
notice that in order to explain the observed tension at E ∼
0.8 GeV and σ ∼ 0.6 GeV an isospin breaking effect larger
than 2% would be needed, and this is hard to reconcile with
the first-principle lattice calculation performed in Ref. [5]

of the isospin-breaking corrections on closely related
quantities, in particular on aHVP;Wμ . Indeed, the smearing
kernel that in energy space defines aHVP;Wμ is very similar in
shape to the Gaussian kernel with central energy E ¼
0.5 GeV and width σ ¼ 0.53 GeV (see Fig. 6), and the
isospin-breaking effect on aHVP;Wμ is found to be at the
2 permille level. We also note that, when RðEÞ is con-
voluted with the quite different (but always very much
spread out in energy) kernels that define the long and short
distance contributions to aHVPμ (see Ref. [32]), the isospin-
breaking corrections with respect to isosymmetric QCD
remain very small, namely of about 1 permille [5] and
3 permille [33] respectively.
Conclusions.—We presented, for the first time, a non-

perturbative theoretical study of the eþe− cross section into
hadrons. We have calculated the R ratio convoluted with
Gaussian smearing kernels of widths between 440MeVand
630 MeVand center energies up to 2.5 GeV. We compared
our first-principles theoretical results with the correspond-
ing quantity obtained by using the KNT19 compilation [2]
of R-ratio experimental data courteously provided by the
authors.
For central energies of the smearing Gaussian in the

region around the ρ resonance our results are sufficiently
precise to let us observe a tension of about 3 standard
deviations with experiments. Solid evidence of a significant
discrepancy between theory and experiment already
emerged also from the comparison of the lattice calcula-
tions [5,7,12,13] of the (window) contributions to aHVPμ and
the corresponding dispersive determinations [2]. Our
results corroborate this evidence and, being totally unre-
lated to the muon g − 2 experiment, highlight the fact that

FIG. 5. Left plots: relative difference RσðEÞ=Rexp
σ ðEÞ − 1 as a

function of the energy for σ ¼ 0.44 GeV (first row), σ ¼
0.53 GeV (second row), and σ ¼ 0.63 GeV (third row). Right
plots: the pull quantity ΣσðEÞ; see Eq. (7) as a function of the
energy for the three values of σ.

FIG. 6. The Gaussian kernels with central energy 0.5 GeV and
width 0.53 GeV (red) and central energy 0.8 GeV and width
0.63 GeV (green) are compared with the intermediate window
kernel Θ̃W × K̃ × ðE=mμÞ3 (see, e.g., Ref. [7] for the explicit
expression). The red Gaussian is centered at the peak of the
intermediate window kernel (vertical red line) that is shown in
blue and normalized such that the heights of the two peaks
coincide. The green Gaussian is centered at the energy (vertical
green line) where we observe the most significant tension (about
2.5% and 3 standard deviations) between RσðEÞ and Rexp

σ ðEÞ.
Using the red Gaussian we observe instead a 5% tension
corresponding to 2.2 standard deviations; see Fig. 3.
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the tension is between experimental measurements of the
eþe− inclusive hadronic cross section and first-principles
standard model theoretical calculations and are localized in
a Gaussian energy bin of width σ ∼ 600 MeV and center
energy E ∼ 800 MeV.
Although we argued that an isospin breaking corrections

larger than 2% would be required to fully reconcile our
lattice data with experiments, and that such a large
correction is hardly conceivable in view of the few permille
effects found in the related full and intermediate window
contributions to aHVPμ in Ref. [5], as a matter of fact, the
phenomenological relevance of our theoretical results is
partially reduced by the missing QED and strong isospin-
breaking corrections.
At the same time, from the methodological perspective,

the observed tension provides a solid numerical evidence of
the fact that it is possible to study the R ratio in Gaussian
energy bins on the lattice at the precision level required to
perform precision tests of the standard model.
In future work on the subject we plan to substantially

reduce the widths of the smearing Gaussians. Preliminary
investigations make us confident on the possibility of
studying RσðEÞ with σ ∼ 200 MeV by doubling the sta-
tistics on the isosymmetric QCD correlators already con-
sidered in this study. Moreover, we plan to compute
from first principles the missing QED and strong
isospin-breaking corrections to RσðEÞ.
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