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THE BIGGER PICTURE Deep neural networks (DNNs) are a key technology in many scientific domains. How-
ever, their inner workings are still insufficiently understood. The hope is that if we understand the inner work-
ing of DNNs, we can make sure that they do what we want, which is not necessarily the case today. One path
to understanding is to associate the inner structure of models with concepts that humans can understand.
Computer scientists have proposed methods to do exactly this. The present perspective reviews and dis-
cusses these methods from a philosophical perspective. For example, it has been argued that DNNs learn
concepts that are relevant to their task from scratch: a model can learn something akin to the concept of
‘‘airplane’’ to recognize images of hangars. However, saying that the model learned the concept ‘‘airplane’’
requires human interpretation. In sum, while existing methods are promising first steps, we are still quite far
from understanding the inner workings of DNNs.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY

The present perspective discusses methods to detect concepts in internal representations (hidden layers) of
deep neural networks (DNNs), such as network dissection, feature visualization, and testing with concept
activation vectors (TCAV). I argue that thesemethods provide evidence that DNNs are able to learn non-trivial
relations between concepts. However, the methods also require users to specify or detect concepts via (sets
of) instances. This underdetermines the meaning of concepts, making the methods unreliable. The problem
could be overcome, to some extent, by systematically combining the methods and by using synthetic data-
sets. The perspective also discusses how conceptual spaces—sets of concepts in internal representations—
are shaped by a trade-off between predictive accuracy and compression. I argue that conceptual spaces are
useful, or even necessary, to understand how concepts are formed in DNNs but that there is a lack of method
for studying conceptual spaces.
INTRODUCTION

There is a well-known story of how deep neural networks

(DNNs) predict classes in an image classification task1,2: In

the hidden layers of DNNs, progressively abstract concepts

are represented. Take a model that classifies animals such as

cats, dogs, and cows. According to the story, the model de-

tects low-level concepts such as colors and textures in the first

layers. In intermediate layers, the model detects higher-level

concepts, such as body parts (eyes, ears) or complex textures

(fur), by composing low-level concepts. In the final layer, the

model detects animals by composing higher-level concepts.

Importantly, these concepts are emergent, which means that

they are not hardwired into the models and do not correspond

to the labeled classes but are acquired through the learning

process.
This is an open access article under the CC BY-N
To verify this story, computer scientists examine the internal

representations (hidden layers) of DNNs and try to detect con-

cepts supposedly represented there. The main goal of the pre-

sent perspective is to review and discuss methods to do this,

in view of philosophical work on concepts. The perspective fo-

cuses on two issues. First, what do these methods tell us about

concepts that are supposedly represented in a DNN, and how

reliable are they? I argue that while these methods provide evi-

dence that DNNs are able to learn non-trivial relations between

concepts, the reliability with which concepts are detected runs

into well-known philosophical problems. Second, how are con-

ceptual spaces—sets of concepts in internal representations—

shaped by the classes to be predicted and by the representa-

tional capacities of DNNs? I argue that while answering this

question is important, as of now, there are few existing methods

that tackle this important question.
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BACKGROUND

Concepts
Before discussing methods to detect concepts in DNNs, it

should be specified under what conditions DNNs possess con-

cepts. There are various philosophical theories of concepts.3

Here, I use an undemanding theory, or explication, of concept

possession, which does not assume that concept possession re-

quires mental states or consciousness or that concepts are ab-

stract objects.4 Rather, concepts are taken to be associatedwith

abilities. An important distinction is between the extension and

the meaning (intension) of a concept—the distinction goes

back to Frege.5 The extension of a concept is the collection of

entities falling under it. DNNs show possession of concept ex-

tensions through activation patterns in their hidden or output

layers. DNNs are trained on (partial) extensions, viz. labeled in-

stances. When humans label instances, they do this on the basis

of prior knowledge about the instances—the meaning of a

concept. In DNNs, the possession of the meaning of a concept

encompasses the representation of some inferential relations,

e.g., a cat is an animal, has four legs, a head, and fur (usually),

and so on. Both the extension and the meaning of a concept

are relevant.

There is evidence that DNNs learn non-trivial inferential rela-

tions between concepts that are not the predicted classes, but

which emerge as a function of learning to predict the classes.

Also, DNNs apparently learn concepts that are relevant to pre-

dict several classes. To use the example of classifying animals,

in order to classify cats and dogs, a DNN may learn concepts

such as fur, head, paw, eye, and so on that are shared by cats

and dogs. This issue has been explored for some time. DNNs

apparently exploit that many classes share low-level features

in order to improve generalization.1 If we can confirm these find-

ings, it means that DNNs are in fact able to learn non-trivial infer-

ential relations between concepts, which implies that DNNs learn

information about meaning rather than extensions. However,

one of the main challenges with existing methods is that they

require users to specify or recognize concepts with the help of

(small) sets of instances, or extensions, and this may make it

hard for users to determine which concepts are actually repre-

sented.

One could argue that the exercise of examining concepts in in-

ternal representations is superfluous because the predictive

successes of DNNs show that they are able to automatically

identify predictively salient concepts. If this were not the case,

DNNs would not be able to generalize as well as they do. How-

ever, DNNs are not always successful; there are known failure

modes such as adversarial examples.6 Also, predictively suc-

cessful models are not necessarily models that represent their

target system adequately; this is true for scientific models as

well as for DNNs, as philosophers know.7,8 Thus, investigating

whether and how concepts are represented in DNNs is a worth-

while enterprise.

Conceptual spaces
DNNs may be able to learn concepts that are relevant to predict

more than one class. Other factors may shape how concepts are

represented in DNNs as well. First, the predicted classes may

not share certain concepts and may be mutually exclusive (to
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some extent). In the example of animal classification, in order

to classify cows, a useful concept to be learned by a DNN may

be horns. This concept does not contribute positively to the clas-

sification of cats and dogs because cats and dogs are not

horned. Second, the concepts populating the internal represen-

tation take up some space in the internal representation: they are

in competition for a finite amount of representational space. This

competition may lead to compression and thus shape the inter-

nal representation of all concepts. Third, individual concepts

may be compressed as well: if the representation of a concept

contains predictively irrelevant details, this will lead to overfitting.

All these factors contribute to the formation of a conceptual

space, the set of concepts in an internal representation of a

DNN. Conceptual spaces are formed as a function of both the

set of predicted classes and the representational capacity of

the DNN. There have been some studies of how conceptual

spaces are formed in DNNs, but less is known about this than

about the emergence of individual concepts. Below, we will

see some evidence for compression due to competing con-

cepts, and I will argue that understanding conceptual spaces

may be necessary to understand how individual concepts are

represented in DNNs.
Limitations
Not all aspects of the internal representation of a DNN have an

interpretation in terms of concepts. An internal representation

may not relate to any concept in that (1) there may be a failure

to represent, as in adversarial examples,6 or (2) what is repre-

sented may not be accessible or comprehensible to humans

and therefore not correspond to a concept.9 Note that adversa-

rial examples may also constitute predictively useful patterns, or

artifacts.10 Cases (1) and (2) are examples of non-conceptual

content of an internal representation. Understanding the scope

and limits of non-conceptual content is important, but the

following discussion will focus on the modes of representation

of concepts that can be grasped by humans. Also, we will focus

on post hoc methods to extract concepts from trained models,

excluding methods like concept whitening11 or concept bottle-

neck12 that modify the architecture of DNNs to enhance inter-

pretability.
DETECTING EMERGENT CONCEPTS

In this section, I review empirical work on the emergence of con-

cepts in the internal representation of DNNs. I focus on concepts

that are relevant to several of the predicted classes because

such concepts indicate non-trivial inferential relations.
Network dissection
Network dissection by Bau et al.13 proposes to detect concepts

associated with individual neurons in convolutional neural net-

works (CNNs). Specifically, the emergence of object detectors

in scene classifiers is examined. For example, according to

Bau et al., the CNN learned the concept ‘‘airplane’’ in the process

of classifying ‘‘airfield’’ and ‘‘hangar.’’ Concepts are detected

automatically by matching the region of the input that maximizes

activation of a neuron with a region associated with a

concept given by an image segmentation method. The authors
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found that many concepts are important for the classification of

multiple scenes.

Network dissection has several advantages: it is automatic and

allows for a quantitative evaluation of similarity and for visual in-

spection of image regions. Adrawback is that the image segmen-

tationmethod can only detect a fixed, limited set of concepts. If a

concept is not included in this set, it cannot be detected. There-

fore, network dissection falls prey to a version of the ‘‘bad lot’’

argument by van Fraassen14,15: if we explain scientific evidence

(here: region with high activation by a neuron) using the best hy-

pothesis from a limited set (here: concepts from image segmen-

tation), it is not clear that the best hypothesis is also true; the

concept detected by the CNN may simply not be in the scope

of the image segmentation method. This problem can be over-

comeby letting users inspect regionswith high activation in order

to identify the concept. However, a concept we associate with a

certain region need not be the concept used by the CNN,

because the same region of an image is usually associated with

various meanings. A CNN may see a shiny tube with horizontal

barswherewe see a plane. This is a version of the so-called inde-

terminacy of reference described by Quine.16,17

Feature visualization
Feature visualizationbyOlahet al.18 proposes todetect concepts

by constructing input instances that maximize the activation of

neurons (or other parts) of CNNs. The method generates syn-

thetic images that maximize activation of a neuron. Olah et al.

note that direct, unregularized optimization can lead to degener-

acies (akin to adversarial examples) and that different kinds of

regularization have to be used to obtain natural-looking images.

Feature visualization can be used to show that low-level con-

cepts are combined and form higher-level concepts, e.g., a car

detector is assembled from features like windows, car body,

and wheels.19

Feature visualization has the advantage that one does not

need to infer the meaning of a concept from a set of instances.

Rather, it provides a single visualization (or a few). However, a

user still needs to determine meaning from the visualization. As

Olah et al. acknowledge, while many visualizations have a rather

clear semantic interpretation, some visualizations appear to

have a mixed meaning (so-called polysemantic neurons, more

on these below), and some visualizations have no discernible

meaning at all. Thus, the indeterminacy of the reference is an

issue here as well. Furthermore, the visualizations depend on

the choices made in optimization, the regularizations in partic-

ular, which may introduce artifacts. The use of optimization rai-

ses further concerns. For example, the method could get stuck

in a local optimum. Optimization in DNNs is not very well under-

stood from a theoretical point of view,20,21 and the possibility of

local optima makes the method susceptible to a bad lot-type

argument.

Testing with concept activation vectors (TCAV)
TCAV by Kim et al.22 is amethod to examine how strongly a user-

defined concept is associated with a predicted class in a partic-

ular layer. Concepts are defined extensionally by the user

through a set of input examples of that concept and a set of

random counterexamples. The concept activation vector of a

layer is the vector normal to the hyperplane that best separates
the activations of examples and counterexamples. One can test

how strong the association of this concept with a predicted class

is by measuring how well its vector aligns with the vector of that

class. Kim et al. claim that DNNs learn emerging concepts with

considerable accuracy. Classifiers of low-level concepts (colors,

shapes) achieve high accuracy in early layers, while more com-

plex concepts (race, gender) achieve higher accuracy in later

layers. Note that other researchers have explored the activation

of layers with linear classifiers.23

The main advantage of TCAV is that it allows users to choose

the concepts to be detected through customized sets of exam-

ples. TCAV thereby overcomes, to some extent, the problem of

indeterminacy of reference: in principle, there is no limit on the

number and variety of instances to define a concept extension-

ally. However, the extensional definition of concepts neverthe-

less limits the control on the meaning of the concept being

defined. Also, there are practical limitations on the instances

used. A further drawback of the method is its limitation to testing

for linear information in the layers.
Non-local representation of concepts
The above methods differ in how they propose to detect con-

cepts, but they also vary in where they take concepts to be rep-

resented (in single neurons, entire layers, spread over several

layers). It is known that concepts are not (only) represented by

individual neurons but have distributed representations. There

is evidence that the representation of concepts is not limited to

single layers. Yosinski et al.24 examined concept representations

from the perspective of transfer learning. They found that feature

representation in intermediate layers is distributed over consec-

utive layers: freezing only a portion of consecutive intermediate

layers led to a worse performance than freezing all intermediate

layers in question. This is indirect evidence that the relevant con-

cepts are distributed over these layers.
CONCEPTUAL SPACES

In this section, I discuss how conceptual spaces arise as a

function of the predicted classes and of compression. The dis-

cussion is more speculative than in the last section because

there is less empirical work on the global perspective of con-

ceptual spaces.
Polysemantic neurons
Feature visualization provides indirect, local evidence for

competing concepts (see above). If concepts are disjunctive

and in competition for representational space, say, in a layer of

a DNN, then one observable consequence may be that some

concepts have imperfect representations and become mixed.

This phenomenon has been observed by Goh et al.25 They find

that whilemany neuronsmaximize activation for a single, identifi-

able concept, so-called polysemantic neurons are composites

of different, seemingly unrelated concepts, e.g., a neuron repre-

senting a mix of cats and cars. Goh et al. point out that one

possible explanation of this sort of disjunctive neuron is that

they could make ‘‘concept packing more efficient.’’25 This idea

is discussed in more detail by Olah et al.19 as the superposition

hypothesis.
Patterns 4, June 9, 2023 3



Figure 1. The WCS palette
The WCS palette, reproduced from Zaslavsky et al., arXiv.1808.03353, 2018.34,35
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Completeness-aware concept-based explanations
Completeness-aware concept-based explanation (CCE) pro-

posed by Yeh et al.26 is a method geared toward discovering

sets of concepts that are not only positively relevant to the pre-

dicted classes but also complete. A complete set is akin to a suf-

ficient statistic, a function of the input that retains all information

relevant to prediction.27 CCE identifies concepts by partitioning

linear directions in the activation space of a hidden layer such

that similar concepts are as close as possible and dissimilar

ones as distant as possible. The meaning of concepts is deter-

mined by inspecting input instances. This approach distin-

guishes itself by identifying complete sets of concepts as

opposed to single concepts. However, it affords little control

on whether the discovered concepts are meaningful.

Minimal sufficient statistics and the information
bottleneck
DNNs may learn compressed, efficient representations of con-

cepts because the space to represent concepts is limited.

From a statistical point of view, the layers of a DNN form a Mar-

kov chain, which means that in deeper layers, information is lost,

and internal representations become more abstract.23,28 But

what are the rules that guide how concepts are compressed?

To answer this, a global perspective on the representation of

concepts is necessary. The CCE approach provides a global

perspective in the form of a complete set of concepts (a sufficient

statistic). However, in order to account for the idea of an efficient

representation of concepts, minimal sufficient statistics (MSSs)

are needed.27 MSSs are sufficient statistics that are as coarse

as possible and thus provide the most efficient representation

without losing predictive power.

Some have argued that DNNs cannot learn MSSs.29 MSSs

only yield a useful degree of compression for a very particular

kind of data distribution,27 which is not given for most empirical

datasets processed by DNNs. A helpful framework that general-

izes MSSs and can be applied to DNNs is the so-called informa-

tion bottleneck (IB) method.29–31 Tishby and collaborators pro-

pose that the IB explains how internal representations of DNNs

arise as a trade-off between predictive accuracy (sufficiency)

and compression (minimality). Formally, the IB trade-off is a con-

strained optimization problem, which yields a predictively

optimal representation for a given level of compression (informa-

tion loss). Tishby et al. argue that layers of DNNs in fact approx-
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imate the optimum given by the IB trade-off. Note that while the

IB framework has been applied extensively, it has been con-

tested whether it is an adequate account of how internal repre-

sentations arise in DNNs.32,33

Visualizing conceptual spaces: Color naming
The IB framework provides a theoretical picture of how entire

conceptual spaces emerge in DNNs. Unfortunately, it is unclear

what we can learn about actual conceptual spaces in given

DNNs, that is, what is learned, even if the theoretical picture of

how learning works as provided by the IB framework is correct.9

In order to illustrate what could be learned if conceptual spaces

in DNNs were accessible, we will now consider an application of

the IB framework to concepts in an empirical context.

Zaslavsky et al.34 use the IB framework to explain how color-

naming systems arise as a result of efficiency. Different natural

languages use different systems to name colors. Based on a

standard representation of colors (the WCS stimulus palette;

see Figure 1), one can determine how speakers of different lan-

guages name the color chips on this palette.

This yields different (soft) partitions of the color space, corre-

sponding to the color systems of these languages (cf. Figure 2,

top row).

Zaslavsky et al. propose a theoretical explanation of the origin

of these color-naming systems of different languages. They

argue that the different empirical partitions (Figure 2, top row)

match closely with partitions that are derived from the IB frame-

work (Figure 2, bottom row). The main difference between lan-

guages is the number of color concepts they use. A language

with more color concepts yields a more fine-grained partition

and a language with less colors a more coarse-grained partition.

The partitions derived from the IB framework are determined to a

large degree by the trade-off between accuracy and compres-

sion, controlled by the parameter bl, which yields different

numbers of concepts (the theoretical predictions also depend

on the so-called least informative prior). The close fit between

theoretical and empirical partitions suggests that color-naming

systems in different languages have evolved to communicate

accurately about colors at a given level of compression and

that the level of compression is due to the different communica-

tive needs of the societies using the languages.

How is this related to conceptual spaces in DNNs? To spell out

the analogy, the naming systems correspond to internal



Figure 2. Color naming of four different languages, determined empirically (top row) and theoretically from the IB (bottom row)
The parameter bl controls the degree of compression in the IB trade-off.34,35
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representations, e.g., partitions of activation patterns in a hidden

layer. The cells of the partition (colors) correspond to clusters of

activation patterns with a meaning (concepts). The degree of

compression is measured by the number of concepts, which is

determined by communicative need in the case of color-naming

systems and the predicted classes and representational capac-

ity in the case of DNNs. The analogy is substantive to the extent

that both color spaces and representations in DNNs are driven

by the IB objective.

The analogy allows us to get a sense of how sets of concepts

may emerge holistically in DNNs, that is, as a function of predict-

ing classes while having a limited representational capacity. If we

compare the different partitions in Figure 2, we can see that as

the number of colors changes, the entire partition changes and

therefore the representations of all concepts. This illustrates

how the representation of single concepts depends on the repre-

sentational capacity of a DNN and on all other concepts learned

at the same time.

Of course, this is only an illustration; the analogy has its limits.

For one, colors are special concepts because they are disjunc-

tive, which need not be the case for other concepts. Also, the

representation of colors is non-hierarchical, in contrast to com-

plex representations in DNNs. Note that the conceptual spaces

of other kinds of objects have been investigated, but they do

not allow for similarly striking visualizations.36 An important

open question about compressed representations concerns

the mechanism by which compression is achieved. It is unclear

whether compression is due to limited representational space

because many successful DNNs are overparametrized, as wit-

nessed by the double-descent risk curve.20,37 Compression

could also be an effect of randomness induced by stochastic

gradient descent.29

DISCUSSION

Robust detection of concepts
All methods we examined above require that concepts are spec-

ified or detected via partial extensions, which is problematic

because partial extensions underdetermine the meaning of con-

cepts. Feature visualization relies on optimization, which raises

other issues. These problems can be seen as in-principle, philo-

sophical obstacles to detecting concepts in DNNs. From a more

pragmatic perspective, the individual weaknesses of these

methods could be overcome to some extent by combining

them and performing what is known as robustness analysis.

Robustness analysis, first proposed in population biology, deter-
mines whether different, imperfect methods arrive at the same

prediction to increase reliability, under the slogan ‘‘truth is at

the intersection of independent lies.’’38–42 In analogy, robust

detection of concepts means using multiple methods like

TCAV and feature visualization to detect the same concept. If

different methods detect the same concept independently, this

should raise our confidence that the methods are somewhat reli-

able. The required independence of methods seems to be given

because, e.g., feature visualization depends on optimization,

while TCAV does not. Robustness analysis is limited in that it

will not yield an absolute confirmation of concepts43—it is only

as good as the set of methods in combination—but it is better

than using only one method. A combination of different

methods contributing to interpretability has been proposed

and explored.22,44 If new methods of concept detection are pro-

posed, it would be desirable that they use a different path than

existing methods, in order to increase robust detection.
Testing methods with synthetic data
The methods for detecting concepts are limited to extracting

local or linear information. It would be desirable to extend the

scope of the methods to encompass concepts with distributed

and non-linear representations. However, this will be hard to

carry out by sticking to the extensional paradigm of concepts.

Defining concepts with sets of instances, like TCAV, only allows

for limited control on the meaning of concepts. One possibility to

gain more control of meaning would be to create synthetic data-

sets in which not only the predicted classes (animals) are labeled

but also intermediate concepts (body parts, textures, etc.),

which may re-emerge in internal representations of DNNs—

interpretable datasets, so to speak. This approach has been pro-

posed in the context of interpretable architectures.12 However,

synthetic datasets could also be used to test methods for non-

interpretable architectures, such as TCAV or feature visualiza-

tion. In the context of physical modeling, the use of simulation

data has led to some progress in developing DNN emulators

for which emerging, high-level properties (e.g., energy conserva-

tion) can be checked.45–47 One of the main challenges of this

approach would be to come up with a principled system for la-

beling intermediate concepts.
The need for conceptual spaces
Above, I discussed both concepts and conceptual spaces. One

could ask whether both are really necessary because once we

have found all the concepts in an internal representation,
Patterns 4, June 9, 2023 5
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we have arguably also found the conceptual space. This argu-

ment presupposes that the detection of individual concepts in

internal representations is reliable and leads to a neat partition

of the representational space. However, this presupposition

is not realized in practice. Existing methods are not (yet) reli-

able. Also, conceptual spaces may contain elements like poly-

semantic neurons, as well as artifacts, which do not have neat

conceptual counterparts. Understanding how entire conceptual

spaces are formed is an additional path to understanding how

individual concepts are formed. Bottom-up methods, which

allow the detection of individual concepts, and top-down

methods, which examine entire conceptual spaces, should

not be seen as competing but as complementary ways of trian-

gulating concepts in internal representations, ultimately making

the triangulation more reliable.
Conclusions
Reviewingmethods for concept detection, we saw evidence that

DNNs are able to represent non-trivial inferential relations be-

tween predicted classes and emergent concepts. This indicates

that DNNs may be able to acquire information that is not purely

extensional. However, detecting emergent concepts in the first

place is unreliable because existing methods rely on partial ex-

tensions of concepts, which makes them susceptible to philo-

sophical problems such as the indeterminacy of reference and

the bad lot argument. These limitations should give us pause,

given that we have used an undemanding theory of concepts.

Finally, the problem of understanding how entire sets of con-

cepts arise holistically in internal representations through

trade-offs between predictive accuracy and compression is

underexplored. Novel methods to detect concepts as well as

conceptual spaces are needed.
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