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Abstract

Objective. fast and accurate contouring of daily 3D images is a prerequisite for online adaptive
radiotherapy. Current automatic techniques rely either on contour propagation with registration or
deep learning (DL) based segmentation with convolutional neural networks (CNN5s). Registration
lacks general knowledge about the appearance of organs and traditional methods are slow. CNNs lack
patient-specific details and do not leverage the known contours on the planning computed
tomography (CT). This works aims to incorporate patient-specific information into CNNs to improve
their segmentation accuracy. Approach. patient-specific information is incorporated into CNNs by
retraining them solely on the planning CT. The resulting patient-specific CNNs are compared to
general CNNss and rigid and deformable registration for contouring of organs-at-risk and target
volumes in the thorax and head-and-neck regions. Results. patient-specific fine-tuning of CNNs
significantly improves contour accuracy compared to standard CNNs. The method further
outperforms rigid registration and a commercial DL segmentation software and yields similar contour
quality as deformable registration (DIR). It is additionally 7-10 times faster than DIR. Significance.
patient-specific CNNs are a fast and accurate contouring technique, enhancing the benefits of adaptive
radiotherapy.

1. Introduction

Over the years, advanced radiation delivery paradigms such as intensity-modulated radiotherapy, volumetric
modulated arc therapy and intensity-modulated proton therapy have increased the dose conformality with the
tumor, resulting in improved healthy tissue sparing (Lomax 1999, Bortfeld 2006, Otto 2008, Tran et al 2017,
Moreno et al 2019). However, daily set-up variations and longitudinal anatomical changes throughout the
treatment, such as weight loss and tumor shrinkage, result in differences between the planned dose and the
delivered dose. This can lead to target coverage degradation for highly conformal radiotherapy that may impact
tumor local control. The effect is especially apparent for proton therapy, because the depth of the proton dose
peak is highly dependent on the tissue densities along the beam path, which changes with changing anatomy
(Lomax 2008, Zhang et al 2011). Uncertainties in set-up, anatomy and range are accounted for in the planning
process either by applying margins around the clinical target volume (CTV) (Albertini et al 2011) or by
incorporating the uncertainties directly using robust optimization (Liu et al 2012, Unkelbach et al 2018).
However, both techniques result in an increased dose to the normal tissue, reducing the advantage of conformal
radiotherapy.

With online adaptive radiotherapy, the set-up and anatomical uncertainty can be strongly reduced. The daily
treatment plan is reoptimized based on a 3D daily image taken shortly before the treatment (Yan et al 1997, Lim-
Reinders et al 2017, Albertini et al 2020, Paganetti et al 2021). The consequent reduction of uncertainty increases
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the plan conformality and, hence, the sparing of healthy tissue. Online plan adaptation is a time and resource-
intensive process as it requires the repetition of several planning steps for every fraction. In particular, it requires
organs-at-risk (OARs) and target volumes delineation on the new images, plan evaluation, adaptation,
reoptimization and quality assurance (QA). To be effective, all these steps need to be executed in several minutes
because the time between the image acquisition and the treatment needs to be as low as reasonably possible to
ensure high correspondence between the image and the treated anatomy. Furthermore, faster adaptation
shortens the patient’s overall treatment time and therefore increases patient comfort.

The time required for online adaptation implies automation of each sub-process with as little as possible
manual interventions. The most resource-intensive step is daily contouring, so there is a great interest to
automate it with sufficient accuracy and robustness (Lim-Reinders et al 2017). It can be automated in two
distinct ways: automatic segmentation or registration.

Firstly, state-of-the-art segmentation is usually based on deep learning (DL) with convolutional neural
networks (CNNs), which learn to segment medical images based on large datasets with manually annotated
contours (Chen etal 2021, Nikolov et al 2021). The advantages of these methods are that they are fast, consistent
and yield accurate results. On the downside, they require large amounts of annotated data to train and do not
always generalize well to out-of-distribution data, e.g. scans that are significantly different than the training data.
Furthermore, their applicability for tumor and target volume segmentation is limited (Kosmin et a/ 2019, Liu
etal2021). CNNs do not require manual contours for the patient under study, which is an advantage for
segmentation in general. However, in adaptive therapy, such a reference annotation is always available, i.e. on
the planning CT, containing information that is not used in the automatic segmentation of the daily scans.

Another set of methods relies on image registration for contouring (Thor et al 2011, Kumarasiri e al 2014,
Elmahdy et al 2019). Specifically for adaptive therapy, the manual contours on the reference CT can be
propagated to the daily scan by registering the former to the latter and applying the same transformation to the
reference contours. The main advantage is that this technique does not require a large training dataset. The
disadvantage is that it requires at least one annotated scan per patient and that traditional techniques are slow
compared to auto-contouring with CNNs (Klein et al 2009, Costea et al 2022). Furthermore, when anatomical
changes occur, deformable image registration (DIR) is needed, which is an ill-posed problem requiring careful
hyperparameter tuning and algorithm choice to achieve high performance (Brock et al 2017).

To overcome the long runtime of traditional DIR algorithms, recent works have proposed image registration
with deep learning (Fu et al 2020, Haskins et al 2020, Xiao et al 2020). Instead of iteratively optimizing a similarity
metric, these CNNs are trained to directly predict the deformation which reduces the runtime strongly.
However, despite the great potential, these techniques have not yet achieved the same performance as iterative
algorithms (Fu et al 2020).

Both registration and segmentation have their advantages and disadvantages. On the one hand, iterative
deformable registration is slow and can be unreliable in case of large anatomical changes or mass variations (Oh
and Kim 2017, Brock et al 2017). On the other hand, CNNss can fail on out-of-distribution data and cannot
accurately segment tumors, so they cannot be employed in adaptive therapy without time-consuming manual
checks and adjustments made by clinicians. However, by including the information from the (contoured)
planning CT in the CNN, its robustness can be increased because the daily images are closely related to the
planning CT, so the distribution of the CNN is likely to encompass the daily images. This can be achieved by (re-)
training the CNN on the planning CT, also known as patient-specific fine-tuning, which has been explored for
prostate cancer on MR and CT (Elmahdy et al 2020, Fransson et al 2022), for a single OAR in the head region on
CT (Chun et al 2021) and for brain white matter segmentation on MR (Jansen et al 2020).

Whereas all works report a strong improvement of the quality of the CNN by patient-specific fine-tuning,
their implementation details differ and the results are specific to a single anatomical site. A rigorous comparison
of this technique to other auto-contouring methods for adaptive therapy has not yet been performed, and it is
therefore unclear whether it is usable and optimal.

In this work, we train patient-specific CNNs for automatic contouring in online adaptive proton therapy
(PT) and compare this technique to general segmentation networks and registration-based contour propagation
for patients with head and neck cancer (HNC) and non-small cell lung cancer (NSCLC). Our work differs from
previous publications in:

+ Ituses transfer learning, as in Elmahdy et al (2020), Jansen et al (2020), but updates all parameters of the CNN
instead of a subset which enhances the learning capabilities.

+ Itusesaffine and elastic deformations along with noise addition as data augmentations to mimic the set-up
and anatomical variations happening in adaptive therapy. This further prevents overfitting, making the
quality of the contours less sensitive to the number of training steps during the retraining.
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Table 1. Number of available ground truth labels in the CPT dataset.

OAR Annotated scans OAR Annotated scans
Brainstem 306 Lacrimal gland left 251
Chiasm 308 Lacrimal gland right 251
Cochlea left 290 Lung left 106
Cochlearight 295 Lung right 108
Esophagus 116 Optic nerve left 306
Eyeleft 297 Optic nerve right 307
Eye right 291 Parotid left 132
Heart 103 Parotid right 136
Hippocampus left 237 Spinal cord 306
Hippocampus right 241 Thyroid 97

+ The technique is evaluated for different anatomical sites. The HNC patients are representative of small
anatomical changes whereas the NSCLC patients undergo larger anatomical deformation, therefore also
covering a large spectrum of relevant clinical deformations in adaptive radiotherapy. Additionally, both OAR
and CTV segmentation is tested.

2. Materials and methodology

This section describes the different methods for contour propagation used in this study. First, the datasets used
for training and evaluation are presented. Then, the registration and segmentation-based methods are
described, followed by a short description of the evaluation metrics.

2.1. Datasets

This work is based on three datasets. The first dataset is from the Center For Proton Therapy (CPT) in
Switzerland and contains patients treated with proton therapy between 2013 and 2021. A total of 388 patients
with various indications was included, all having at least one planning CT with or without replanning CTs,
yielding a total of 464 scans with annotations. Depending on the tumor location, different OARs were contoured
manually by expert medical personnel, resulting in a large variation in the number of ground truth labels for
each OAR (table 1). As none of these patients underwent online adaptive therapy, this dataset is solely used to
pretrain the segmentation models (see section 2.3). In the remainder of this paper, this dataset will be referred to
asthe CPT dataset.

The second dataset consists of five patients with non-small cell lung cancer (NSCLC), not included in the
CPT dataset. This data has previously been described in Josipovic et al (2016), Nenoff et al (2020), Amstutz et al
(2021), Nenoff et al (2021). Each patient has one planning and nine repeated voluntary deep breath hold CTs.
The repeated CT's were acquired on three different days, each day consisting of three different acquisitions.
However, for this study, we will consider each CT to be representative of a different fraction in online adaptive
therapy. All CTs were retrospectively recontoured by expert radiation oncologists according to the clinical
protocol (Nenoff er al 2021), which included propagating the planning contours with DIR and slice-wise manual
adjustments, either in Eclipse or Velocity (Varian Medical Systems, Palo Alto, USA). This dataset will be referred
to as the NSCLC dataset.

The last dataset consists of five patients with various indications of head and neck cancer treated with proton
therapy at the CPT. Each patient has a planning CT and 4 to 7 repeated CT's acquired on separate days
throughout the treatments. All patients were removed from the CPT dataset so that they were not included in
pretraining the networks. Even though these patients were not treated with online adaptive therapy, the repeated
CTs are representative of the daily and longitudinal anatomic and set-up variations to be expected during online
adaptive therapy. The repeated CT's were retrospectively recontoured by expert radiation oncologists according
to the same clinical protocol as the NSCLC scans. We will refer to this data as the HNC dataset.

2.2.Registration based methods

In registration-based contour propagation, the reference CT is considered the moving scan which is registered to
the daily CT, i.e. the fixed scan. This registration results in a deformable vector field (DVF), which is used to
interpolate the binarized reference contours to transfer them to the daily scan. In this work, we consider two
distinct registration techniques.
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2.2.1. Rigid registration

The first registration method relies on rigid registration (RR), i.e. the reference CT is only translated and rotated
to match the daily CT. In case the anatomy is not strongly deforming (such as the head), this technique can be
preferred because of its simplicity, speed and consistency. More specifically, we employ rigid registration
implemented in elastix (Klein et al 2010) with mean squared error (MSE) as similarity criterion and four
consecutive resolutions.

2.2.2. Deformable registration

The second registration method is a deformable image registration (DIR) method, which is the preferred
method for contour propagation in case of deforming anatomy. The downside of DIR is that the problem is ill-
posed, so that the results of different algorithms and even hyperparameters can lead to strongly different results
(Brock etal 2017). In this work, we use the b-spline algorithm implemented in plastimatch (Sharp etal
2010) with MSE as similarity criterion. A detailed description of the hyperparameters can be found in (Nenoff
etal 2021). Several other DIR algorithms were also tested, but for the sake of clarity we focus on this one as it led
to good results compared to the other DIR algorithms and is publicly available.

2.3. Segmentation based methods

We train deep CNNss for the task of contour propagation in adaptive radiotherapy in two different settings:
pretrained (or general) and patient-specific. All networks are based on the 3D UNet architecture, which takes as an
input the daily CT and outputs a set of segmentation maps S, each map corresponding to an OAR or target
volume (TV). The network has 16 initial convolutional filters, which are doubled in each of the four encoder
blocks. Max pooling with kernel size and stride 2 is used for downsampling between the encoders. Four decoders
upsample the features to the original resolution with nearest-neighbor interpolation. All encoders and decoders
consist of 2 convolutional filters with kernel size 3 x 3 x 3 followed by a rectified linear unit activation. A final
convolution with kernel 1 x 1 x 11is used to convert the 16 features into a set of organ-specific activation maps.
All networks are trained with binary cross-entropy, i.e the segmentation allows each voxel to be part of multiple
labels. Even though organs generally do not overlap, this allows to easily handle sparsely annotated scans, i.e.
scans on which some organs are visible but not segmented by the medical personnel because they were irrelevant
to the planning. To still leverage all the contours in the dataset, the loss function is adjusted in such a way that it
ignores the loss contributions from labels that were not manually segmented.

2.3.1. Pretrained neural network

The pretrained neural networks (PNN) are firstly trained on the relatively large CPT dataset. The models are
trained from scratch with the Adam optimizer for 200 epochs and initial learning rate 10>, which is halved every
20 epochs. Early stopping is applied by retaining the model with the lowest loss on the validation set (10% of the
patients). All scans are resampled to a fixed resolution 0.97 x 0.97 x 2 mm and data augmentations include
random cropping, rotations within +5°, £5% scaling, small localized elastic deformations (Isensee et al 2020)
and Gaussian noise with > = 10~ %, Note that these networks do not segment any of the target volumes, because
the dataset contains a wide variety of indications and previous work has shown the poor quality of CNNs for
target volume segmentation (Kosmin et al 2019, Liu et al 2021).

We train two networks, one specific for the OARs in the head and neck region, i.e pretrained HNC network,
and one for the OARs in the lung region, i.e pretrained NSCLC network. After training on the CPT dataset, the
models are in a second step retrained on the HNC and NSCLC datasets themselves. The evaluation is done with
leave-one-out validation, i.e the pretrained model is retrained on 4 out of 5 scans of either the HNC or NSCLC
dataset and the retrained model is evaluated on the remaining scan. In that way, the pretrained model has still
never seen the anatomy of the patient under study and should therefore generalize what it has learned from other
patients. The retraining parameters are similar to the initial training parameters, but the magnitude of the data
augmentations was increased to £10° rotations, +10% scalingand o = 10~ Gaussian noise to avoid
overfitting the very small dataset.

2.3.2. Patient-specific neural network

During online adaptive therapy, clinically accepted contours on the planning CT are always available because
they were used for the initial planning. The pretrained networks however do not leverage these. To include this
prior information, we fine-tuned the pretrained networks by retraining the networks only on the reference CT
(Elmahdy et al 2020, Chun et al 2021), yielding patient-specific neural networks (PSNN). This retraining results
in overfitting of the network to the reference CT, but because the reference CT is very similar to the daily CTs, it
can be expected that this overfitted network still performs better than the generalizing pretrained networks.
Further, to avoid complete overfitting, training is restarted with a lower learning rate 10~ *and, since there is
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Table 2. Comparison of the average segmentation accuracy on the
NSCLC OARs when fine-tuning only the last layer versus fine-tuning
all weights.

Fine-tuning Dice [%] Surface Dice [%] HD95 [mm]

Last layer 87.2 85.0 6.2
Alllayers 91.9 93.2 4.0

only one scan in the training set, runs for 50 000 epochs. Data augmentations are the same as for the initial
pretraining, with the exception of a stronger Gaussian noise with o* = 102,

Pretraining a network for target volume segmentation is very difficult and would require a lot of data.
However, this does not mean that the target volumes (TV) cannot be segmented with deep CNNs. Similar to the
fine-tuned models, we can train a neural network solely on the reference CT, which contains the TVs contoured
by a clinician. This is commonly referred to as one-shot image segmentation (Shaban et al 2017). Contrarily to
the fine-tuned models, the training cannot restart from a pretrained neural network that is already able to
segment TVs. It is however possible to leverage some prior information during one-shot learning by means of
transfer learning (Weiss and Khoshgoftaar 2016), which has shown promising results in e.g video segmentation
(Caelles et al 2017). With transfer learning, the network is first trained on a different task than it is supposed to
(e.g. lung segmentation). In a second step the network is then retrained on the original task (e.g. TV
segmentation) starting with the initial weights from the other training. Here, we take the pretrained models on
the OARs and use transfer learning to segment the CTV. We restart the training from the final weights of the
pretrained models for all layers except the final convolution, as this convolution creates organ-specific maps
which are not informative for the TVs.

2.3.3. Commercial segmentation

Finally, the trained CNNs are also compared to a clinically used commercial auto-contouring software Limbus
Contour 1.7 (Al Limbus Inc., 2076 Athol Street, Regina, SK S4T 3E5, Canada). This software has been clinically
validated and shown to only rarely require manual adjustments of OARs (Wong et al 2020, D’Aviero et al 2022).

2.4. Evaluation methods

The performance of the above-mentioned contour propagation methods is evaluated on the HNC and NSCLC
by comparing the results with the manually annotated contours on the repeat CTs. We use three well-known
geometric metrics for this comparison. Firstly, the dice coefficient to evaluate the overlap between the manual
and propagated contour. The dice coefficient is however strongly dependent on the size of the structure and is
therefore difficult to compare for organs with different sizes. To alleviate this effect, we also include the surface
dice, which represents the proportion of the organ surface which is within a tolerance of the surface of the
manually annotated organ (Nikolov e al 2021). We set this tolerance to 2 mm. Both dice and surface dice
coefficients give insight into the average difference between segmentations. To also assess the maximal error, we
evaluate the 95th percentile of the Hausdorff distance (HD). A Wilcoxon signed rank test is performed between
each method and the patient-specific NN to test whether they perform significantly better or worse than the
other methods.

Two preliminary experiments are performed on the NSCLC dataset to highlight the differences between the
proposed method and previous works. Firstly, we compare our approach (i.e. the fine-tuning all weights of the
network) to fine-tuning only the final layer, as proposed by Elmahdy et al (2020), Jansen et al (2020). Secondly,
we evaluate the importance of using data augmentations, by comparing our approach to fine-tuning without
data augmentations.

3. Results

3.1. Preliminary experiments

Fine-tuning all weights of the network improves the segmentation compared to only fine-tuning the last layer
(table 2). This means that increasing the learning capability by retraining all weights indeed improves the
performance of the network.

Including data augmentations during fine-tuning increases contouring accuracy (figure 1). For all patients,
the maximum dice score during training is higher with data augmentation than without. Moreover, training
with data augmentations avoids overfitting, i.e. the segmentation accuracy on the repeated CTs first increases
and then stagnates, without significantly decreasing at the end of the training. Contrarily, without data
augmentations, the accuracy reaches a maximum after which it steadily decreases.
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Figure 1. Evolution of the average dice score on the repeated CTs of the NSCLC dataset during fine-tuning of the PSNNs. Solid lines
represent training without data augmentation, dashed lines with. The vertical dotted lines depict at which iteration the training
without data augmentation reaches maximum dice for each patient.
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Figure 2. Comparison of the contour propagation techniques on the relevant OARs and CTV for the NSCLC patients using dice,
surface dice and the 95th percentile of the Hausdorff Distance (HD95).

In practice, a fixed number of iterations needs to be defined. When training without data augmentations, the
iteration at which the dice score is maximal depends on the patient (figure 1). For example, here, patient 1
reaches maximal dice after 700 iterations, and for patient 3 this is 3500. Therefore, selecting a fixed number will
result in suboptimal performance for some patients. Contrarily, when training with data augmentations, the
number of iterations can simply be set high (50 000 in our case) as the quality stagnates.

3.2. Contouring accuracy

Regarding the OAR contours, rigid registration (RR) performs generally worst of all methods for the NSCLC
dataset (figure 2), except for the spinal cord. This is because the RR aligns the spine well, and, hence, also the
spinal cord is accurately contoured. The pretrained NN achieves better contour accuracy but suffers from
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Rigid registration
Pretrained neural network
Commercial neural network

Deformable registration

Figure 3. Overview of the Wilcoxon signed rank test results for the surface dice of the contours in the NSCLC dataset. Green: patient-
specific NN performs significantly better than the method. Red: patient-specific NN performs significantly worse than the method.
White: the performance of the method is not significantly different from the PSNN. Grey: the method does not segment the structure.
The significance level is set to 2.5%.

outliers with low performance for the lungs and esophagus. This happens when the network is evaluated on out-
of-distribution data, i.e data that is significantly different from the training data. Because the training set is small
for these OARSs (table 1), the probability of this is indeed larger than for the more frequently occurring OARs.
The commercial system consistently outperforms the pretrained NN and is especially more robust, i.e. it suffers
less from outliers. The large HD95 in the lungs in some cases is due to the presence of a tumor, which, depending
onlocation, annotator or method is included or excluded in a contour. This has only a limited effect on the dice
and surface dice, but affects strongly the HD95.

Fine-tuning the segmentation networks on a specific patient improves the segmentation accuracy of the
OARs strongly, outperforming rigid registration, the pretrained NN and the commercial contouring software
significantly for all OARs (figure 3). Note that we only show the significance test results for the surface dice, but
similar results are found for the dice and HD95. It also resolves the outliers, because fine-tuning on the planning
CT avoids that the network is run on out-of-distribution data. The contour quality is similar to DIR for the
lungs, significantly lower for the heart and esophagus and significantly better for the spinal cord (figure 3).

In order to assess whether the obtained performance of the patient-specific NNs is clinically acceptable, it
can be compared to the variability between the contours drawn by different observers, i.e. the inter-observer
variability. This variability was not studied here, but has been quantified in other works for the relevant OARs in
the thorax region (Yang et al 2018). It is important to note that the values are organ and image-modality-specific,
as the metrics are strongly affected by the volume or contrast of the organ. The reported inter-observer dice
scores were 0.96 for the lungs, 0.93 for the heart, 0.81 for the esophagus and 0.86 for the spinal cord. These values
are very close to the dice scores for the patient-specific NNs and DIR (figure 2).

Regarding target segmentation, the patient-specific NNs perform significantly better than RR, but
significantly worse than DIR (figure 3). However, these differences are small and only significant for the surface
dice and not for dice. For one patient, the patient-specific NN has much lower contour quality. In this patient,
the shape of the tumor changed throughout the treatment, causing the manual delineations to alter significantly
from the reference. Whereas the performance of DIR is also low for this patient, the drop in quality is less
pronounced. Such strong outliers did not occur for the patient-specific OAR segmentation, which indicates that
one-shot segmentation lacks robustness because of its limited general knowledge.

Most general trends found for the NSCLC data also hold for the HNC dataset (figure 4). The main difference
is that RR performs much better. For OARs in head, close to the skull (e.g. brainstem, chiasm, hippocampus), RR
performs as well as the more advanced methods (figure 5), because it matches the skull accurately and the rigid
assumption is applicable there. Contrarily, for OARs further from the skull (e.g. spinal cord, thyroid), RR
performs badly because the rigid transformation matching the skull is not valid there. Lastly, for organs that
change strongly during radiotherapy (e.g. parotid glands), RR sometimes performs very badly.

Despite the larger OAR dataset in the HN region compared to the thorax (table 1), the performance of the
pretrained NN is still low. This is most apparent for the smaller OARs (e.g. lacrimal gland, optic nerve, chiasm).
Again, the commercial system outperforms the pretrained NN. The patient-specific NNs significantly
outperform all other methods (including DIR) for all organs in general (figure 5). However, for the individual
organs, we find that the difference is not always significant and that segmentation of the optic nerves is even
better with registration and the commercial segmentation.

Several other works have investigated the inter-observer variability for OARs in the head and neck region
(Deeley etal 2011, Brouwer et al 2012, Mattiucci et al 2013, Verhaart et al 2014, Tao et al 2015, van der Veen et al
2019, Wong et al 2020). Whereas the stated values vary between the publications because of differences in
experimental set-up, we found that the mean dice scores of patient-specific NNs and DIR here are similar or
even higher than the reported inter-observer variabilities for all OARs except the thyroid.
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Figure 4. Comparison of the different contour propagation techniques the relevant OARs and CTV for the HNC patients using dice,
surface dice and the 95th percentile of the Hausdorff Distance (HD95). The commercial segmentation did not contain hippocampus
contours at the time of writing, so these metrics are not included.
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Pretrained neural network
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Figure 5. Overview of the Wilcoxon signed rank test results for the surface dice of the contours in the HNC dataset. Green: patient-
specific NN performs significantly better than the method. Red: patient-specific NN performs significantly worse than the method.
White: the performance of the method is not significantly different from the PSNN. Grey: the method does not segment the structure.
The significance level is set to 2.5%.

Contouring of the main CTV works best with DIR, followed by patient-specific NNs and rigid registration.
Rigid registration does not work well because the CTV covers part of the neck region, where significant
shrinkage happened for these patients which cannot be captured with rigid transformations. The improvement
of the patient-specific NNs compared to rigid registration is only significant based on dice score but not for the
surface dice (figure 5). For the boosted region, rigid registration works well and even significantly better than the
patient-specific segmentation, as this region is inside the head close to the skull.

3.3. Contouring speed
The runtime of the algorithms depends strongly on the hardware and potential GPU acceleration. Image
registrationinplastimatchand elastix runson CPUand the runtime is evaluated on a Linux based
system with 8 Intel Xeon E3-1240 v5 CPU cores. The runtime of the in-house trained NN is evaluated by
running inference on a Nvidia Quadro P6000 GPU and the commercial software was ran on a Nvidia RTX
3060 GPU.

Rigidly registering the CT's takes approximately the same time as running inference of the in-house trained
CNNs. The commercial segmentation software is approximately 2 times slower, but still significantly faster than
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Figure 6. Mean runtime versus mean OAR surface dice for the different contouring methods and datasets. The markers correspond to
the individual methods and the solid line depicts the pareto optimal front. Green: NSCLC dataset; Orange: HNC dataset.

Table 3. Average time for running contour
propagation for each method and dataset.

Method Time [s]
NSCLC HNC
Rigid registration 15.1 16.9
Pretrained NN 12.4 20.3
Commercial segmentation 30.6 49.4
patient-specific NN 12.4 20.3
Deformable registration 155.7 141.0

DIR, which is 7-10 times slower than rigid registration (table 3). Note that several DIR methods with GPU
acceleration exist, which could lead to significant speed up (Gu et al 2010, Weistrand and Svensson 2015).
Whereas the runtime of the DIR is likely acceptable, the speed of the other methods offers an advantage for
patient comfort and correspondence between CT and treated anatomy in a particularly time-dependent setting

such as adaptive therapy. Figure 6 visualizes the trade-off between speed and accuracy. Patient-specific NNs lie
on the pareto front for both HNC and NSCLC datasets, i.e. none of the other methods can improve accuracy
without increasing runtime nor improve runtime without reducing accuracy. For NSCLC, also DIR lies on the

pareto front, yielding slightly higher accuracy but slower runtime. For HNC, the pareto front is shared with RR,

which is faster but yields lower accuracy.

4. Discussion

Our results show that DIR yields generally the most accurate contours for the targets and OARs in the thorax
region. Contrarily, the patient-specific NNs are best for OARs in the head and neck region. The differences are
however small and not always significant for all metrics. The PSNN is further on average 10 times faster, which is

advantageous in adaptive therapy. For the HNC specifically, rigid registration is both fast and accurate for the
structures close to the skull, but the accuracy is lower for those far from the skull which can lead to unacceptable

degradation in target coverage.

Although both patient-specific NNs and DIR lead to high-quality contours, they do not perfectly correspond
to the manual ones. This can be due to limitations of the methods, but also due to inaccuracies in the manual

contours, as it has been shown that substantial inter- and inter-observer variability in delineation of HNC and
NSCLC exists (Deeley et al 2011, Brouwer et al 2012, Mattiucci et al 2013, Verhaart et al 2014, Tao et al 2015,
Yangetal 2018, van der Veen etal 2019, Wong et al 2020, van der Veen et al 2021, Kumar et al 2022, Zhang and
Huang 2022). The PSNN and DIR methods reach accuracies similar to such inter-observer variabilities found in
the literature, which impose an upper-bound for the average achievable accuracy. This further means that the

methods perform similar to a human, indicating that they can be used directly in adaptive therapy.

In order to meticulously evaluate the use of contour propagation methods for adaptive therapy, the effect on

the dose and the corresponding biological effect should be analyzed. Treatment plans reoptimized on

automatically propagated contours should be compared to plans reoptimized on manual contours, and these
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dosimetric differences have to be interpreted clinically before implementation in the clinic. This is the subject of
current work at CPT.

The size of the evaluation datasets is relatively small, mainly because manual delineation of all daily CTsis a
time-consuming process. For the NSCLC dataset, the clinicians completely manually recontoured because of
the limited number of OARs. As the number of OARs in the HNC region is much larger, the clinicians manually
adjusted contours propagated from the reference using DIR, in accordance with the current clinical protocol for
replanning. Even though this creates a bias, the resulting contours are clinically acceptable and the DIR
algorithm used to create these initial contours was different from the one used in this study.

The quality of the pretrained NN for the HNC dataset is low, even though the training dataset is relatively
large. Especially for the smaller organs, the segmentation accuracy is largely insufficient. This could be due to the
large number of OARSs segmented by a single network. During training, the loss function is only slightly affected
by these small organs, similar to class imbalance. This could result in the network favoring accurate
segmentation of the larger structures over the smaller ones. This can be overcome by simply training one
network for each structure. Even though this would lead to an increase in runtime, inference could still be
parallelized or hierarchical approaches could be employed instead of splitting the image in patches (Shaheen et al
2021).

This analysis relies on the presence of daily CT scans, which requires an in-room CT. Although such in-
room CT is present at several proton therapy centers, gantry-mounted CBCT scanners are more prevalent. In
the future, also daily MRI scans might be used. The registration-based methods could easily be adjusted to allow
multi-modal registration between CBCT/MRI and CT to propagate the contours. Further, a general
segmentation network for CBCT/MRI could also be developed if an appropriate dataset is available. The
patient-specific fine-tuning cannot be applied directly with CBCT/MRI. However,it can be applied on synthetic
CTs, which are produced from the daily CBCT/MRI to reoptimize the plan in adaptive therapy. Although it is
expected that the networks will work on such synthetic CTs, the quality of contours will have to be evaluated.

5. Conclusion

In this work, patient-specific CNNs were compared to general CNNs and (deformable) registration for the task
of contour propagation in adaptive radiotherapy. We found that the patient-specific fine-tuning leads to higher
quality contours than general segmentation networks, reaching similar quality as DIR but with a significant
reduction in runtime. Fine-tuning further allows target volume segmentation, which is not yet feasible with
general CNNGs.
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