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Abstract
Objective. fast and accurate contouring of daily 3D images is a prerequisite for online adaptive
radiotherapy. Current automatic techniques rely either on contour propagationwith registration or
deep learning (DL) based segmentationwith convolutional neural networks (CNNs). Registration
lacks general knowledge about the appearance of organs and traditionalmethods are slow. CNNs lack
patient-specific details and do not leverage the known contours on the planning computed
tomography (CT). This works aims to incorporate patient-specific information intoCNNs to improve
their segmentation accuracy.Approach. patient-specific information is incorporated intoCNNs by
retraining them solely on the planning CT. The resulting patient-specific CNNs are compared to
general CNNs and rigid and deformable registration for contouring of organs-at-risk and target
volumes in the thorax and head-and-neck regions.Results. patient-specificfine-tuning of CNNs
significantly improves contour accuracy compared to standardCNNs. Themethod further
outperforms rigid registration and a commercial DL segmentation software and yields similar contour
quality as deformable registration (DIR). It is additionally 7–10 times faster thanDIR. Significance.
patient-specificCNNs are a fast and accurate contouring technique, enhancing the benefits of adaptive
radiotherapy.

1. Introduction

Over the years, advanced radiation delivery paradigms such as intensity-modulated radiotherapy, volumetric
modulated arc therapy and intensity-modulated proton therapy have increased the dose conformality with the
tumor, resulting in improved healthy tissue sparing (Lomax 1999, Bortfeld 2006,Otto 2008, Tran et al 2017,
Moreno et al 2019). However, daily set-up variations and longitudinal anatomical changes throughout the
treatment, such asweight loss and tumor shrinkage, result in differences between the planned dose and the
delivered dose. This can lead to target coverage degradation for highly conformal radiotherapy thatmay impact
tumor local control. The effect is especially apparent for proton therapy, because the depth of the proton dose
peak is highly dependent on the tissue densities along the beampath, which changes with changing anatomy
(Lomax 2008, Zhang et al 2011). Uncertainties in set-up, anatomy and range are accounted for in the planning
process either by applyingmargins around the clinical target volume (CTV) (Albertini et al 2011) or by
incorporating the uncertainties directly using robust optimization (Liu et al 2012,Unkelbach et al 2018).
However, both techniques result in an increased dose to the normal tissue, reducing the advantage of conformal
radiotherapy.

With online adaptive radiotherapy, the set-up and anatomical uncertainty can be strongly reduced. The daily
treatment plan is reoptimized based on a 3Ddaily image taken shortly before the treatment (Yan et al 1997, Lim-
Reinders et al 2017, Albertini et al 2020, Paganetti et al 2021). The consequent reduction of uncertainty increases
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the plan conformality and, hence, the sparing of healthy tissue. Online plan adaptation is a time and resource-
intensive process as it requires the repetition of several planning steps for every fraction. In particular, it requires
organs-at-risk (OARs) and target volumes delineation on the new images, plan evaluation, adaptation,
reoptimization and quality assurance (QA). To be effective, all these steps need to be executed in severalminutes
because the time between the image acquisition and the treatment needs to be as low as reasonably possible to
ensure high correspondence between the image and the treated anatomy. Furthermore, faster adaptation
shortens the patient’s overall treatment time and therefore increases patient comfort.

The time required for online adaptation implies automation of each sub-process with as little as possible
manual interventions. Themost resource-intensive step is daily contouring, so there is a great interest to
automate it with sufficient accuracy and robustness (Lim-Reinders et al 2017). It can be automated in two
distinct ways: automatic segmentation or registration.

Firstly, state-of-the-art segmentation is usually based on deep learning (DL)with convolutional neural
networks (CNNs), which learn to segmentmedical images based on large datasets withmanually annotated
contours (Chen et al 2021,Nikolov et al 2021). The advantages of thesemethods are that they are fast, consistent
and yield accurate results. On the downside, they require large amounts of annotated data to train and do not
always generalize well to out-of-distribution data, e.g. scans that are significantly different than the training data.
Furthermore, their applicability for tumor and target volume segmentation is limited (Kosmin et al 2019, Liu
et al 2021). CNNs do not requiremanual contours for the patient under study, which is an advantage for
segmentation in general. However, in adaptive therapy, such a reference annotation is always available, i.e. on
the planningCT, containing information that is not used in the automatic segmentation of the daily scans.

Another set ofmethods relies on image registration for contouring (Thor et al 2011, Kumarasiri et al 2014,
Elmahdy et al 2019). Specifically for adaptive therapy, themanual contours on the reference CT can be
propagated to the daily scan by registering the former to the latter and applying the same transformation to the
reference contours. Themain advantage is that this technique does not require a large training dataset. The
disadvantage is that it requires at least one annotated scan per patient and that traditional techniques are slow
compared to auto-contouringwithCNNs (Klein et al 2009, Costea et al 2022). Furthermore, when anatomical
changes occur, deformable image registration (DIR) is needed, which is an ill-posed problem requiring careful
hyperparameter tuning and algorithm choice to achieve high performance (Brock et al 2017).

To overcome the long runtime of traditional DIR algorithms, recent works have proposed image registration
with deep learning (Fu et al 2020,Haskins et al 2020, Xiao et al 2020). Instead of iteratively optimizing a similarity
metric, these CNNs are trained to directly predict the deformationwhich reduces the runtime strongly.
However, despite the great potential, these techniques have not yet achieved the same performance as iterative
algorithms (Fu et al 2020).

Both registration and segmentation have their advantages and disadvantages. On the one hand, iterative
deformable registration is slow and can be unreliable in case of large anatomical changes ormass variations (Oh
andKim2017, Brock et al 2017). On the other hand, CNNs can fail on out-of-distribution data and cannot
accurately segment tumors, so they cannot be employed in adaptive therapywithout time-consumingmanual
checks and adjustmentsmade by clinicians.However, by including the information from the (contoured)
planningCT in theCNN, its robustness can be increased because the daily images are closely related to the
planningCT, so the distribution of theCNN is likely to encompass the daily images. This can be achieved by (re-)
training theCNNon the planningCT, also known as patient-specificfine-tuning, which has been explored for
prostate cancer onMR andCT (Elmahdy et al 2020, Fransson et al 2022), for a singleOAR in the head region on
CT (Chun et al 2021) and for brainwhitematter segmentation onMR (Jansen et al 2020).

Whereas all works report a strong improvement of the quality of the CNNby patient-specificfine-tuning,
their implementation details differ and the results are specific to a single anatomical site. A rigorous comparison
of this technique to other auto-contouringmethods for adaptive therapy has not yet been performed, and it is
therefore unclear whether it is usable and optimal.

In this work, we train patient-specific CNNs for automatic contouring in online adaptive proton therapy
(PT) and compare this technique to general segmentation networks and registration-based contour propagation
for patients with head and neck cancer (HNC) and non-small cell lung cancer (NSCLC). Ourwork differs from
previous publications in:

• It uses transfer learning, as in Elmahdy et al (2020), Jansen et al (2020), but updates all parameters of the CNN
instead of a subset which enhances the learning capabilities.

• It uses affine and elastic deformations alongwith noise addition as data augmentations tomimic the set-up
and anatomical variations happening in adaptive therapy. This further prevents overfitting,making the
quality of the contours less sensitive to the number of training steps during the retraining.
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• The technique is evaluated for different anatomical sites. TheHNCpatients are representative of small
anatomical changes whereas theNSCLCpatients undergo larger anatomical deformation, therefore also
covering a large spectrumof relevant clinical deformations in adaptive radiotherapy. Additionally, bothOAR
andCTV segmentation is tested.

2.Materials andmethodology

This section describes the differentmethods for contour propagation used in this study. First, the datasets used
for training and evaluation are presented. Then, the registration and segmentation-basedmethods are
described, followed by a short description of the evaluationmetrics.

2.1.Datasets
Thiswork is based on three datasets. Thefirst dataset is from theCenter For ProtonTherapy (CPT) in
Switzerland and contains patients treatedwith proton therapy between 2013 and 2021. A total of 388 patients
with various indications was included, all having at least one planningCTwith orwithout replanningCTs,
yielding a total of 464 scanswith annotations. Depending on the tumor location, differentOARswere contoured
manually by expertmedical personnel, resulting in a large variation in the number of ground truth labels for
eachOAR (table 1). As none of these patients underwent online adaptive therapy, this dataset is solely used to
pretrain the segmentationmodels (see section 2.3). In the remainder of this paper, this dataset will be referred to
as theCPTdataset.

The second dataset consists offive patients with non-small cell lung cancer (NSCLC), not included in the
CPTdataset. This data has previously been described in Josipovic et al (2016), Nenoff et al (2020), Amstutz et al
(2021), Nenoff et al (2021). Each patient has one planning and nine repeated voluntary deep breath holdCTs.
The repeatedCTswere acquired on three different days, each day consisting of three different acquisitions.
However, for this study, wewill consider eachCT to be representative of a different fraction in online adaptive
therapy. All CTswere retrospectively recontoured by expert radiation oncologists according to the clinical
protocol (Nenoff et al 2021), which included propagating the planning contours withDIR and slice-wisemanual
adjustments, either in Eclipse or Velocity (VarianMedical Systems, Palo Alto, USA). This dataset will be referred
to as theNSCLC dataset.

The last dataset consists offive patients with various indications of head andneck cancer treatedwith proton
therapy at the CPT. Each patient has a planningCT and 4 to 7 repeatedCTs acquired on separate days
throughout the treatments. All patients were removed from theCPTdataset so that theywere not included in
pretraining the networks. Even though these patients were not treatedwith online adaptive therapy, the repeated
CTs are representative of the daily and longitudinal anatomic and set-up variations to be expected during online
adaptive therapy. The repeatedCTswere retrospectively recontoured by expert radiation oncologists according
to the same clinical protocol as theNSCLC scans.Wewill refer to this data as theHNCdataset.

2.2. Registration basedmethods
In registration-based contour propagation, the reference CT is considered themoving scanwhich is registered to
the daily CT, i.e. the fixed scan. This registration results in a deformable vector field (DVF), which is used to
interpolate the binarized reference contours to transfer them to the daily scan. In this work, we consider two
distinct registration techniques.

Table 1.Number of available ground truth labels in theCPTdataset.

OAR Annotated scans OAR Annotated scans

Brainstem 306 Lacrimal gland left 251

Chiasm 308 Lacrimal gland right 251

Cochlea left 290 Lung left 106

Cochlea right 295 Lung right 108

Esophagus 116 Optic nerve left 306

Eye left 297 Optic nerve right 307

Eye right 291 Parotid left 132

Heart 103 Parotid right 136

Hippocampus left 237 Spinal cord 306

Hippocampus right 241 Thyroid 97
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2.2.1. Rigid registration
Thefirst registrationmethod relies on rigid registration (RR), i.e. the reference CT is only translated and rotated
tomatch the daily CT. In case the anatomy is not strongly deforming (such as the head), this technique can be
preferred because of its simplicity, speed and consistency.More specifically, we employ rigid registration
implemented inelastix (Klein et al 2010)withmean squared error (MSE) as similarity criterion and four
consecutive resolutions.

2.2.2. Deformable registration
The second registrationmethod is a deformable image registration (DIR)method, which is the preferred
method for contour propagation in case of deforming anatomy. The downside ofDIR is that the problem is ill-
posed, so that the results of different algorithms and even hyperparameters can lead to strongly different results
(Brock et al 2017). In this work, we use the b-spline algorithm implemented inplastimatch (Sharp et al
2010)withMSE as similarity criterion. A detailed description of the hyperparameters can be found in (Nenoff
et al 2021). Several otherDIR algorithmswere also tested, but for the sake of clarity we focus on this one as it led
to good results compared to the otherDIR algorithms and is publicly available.

2.3. Segmentation basedmethods
We train deepCNNs for the task of contour propagation in adaptive radiotherapy in two different settings:
pretrained (or general) and patient-specific. All networks are based on the 3DUNet architecture, which takes as an
input the daily CT and outputs a set of segmentationmaps S, eachmap corresponding to anOARor target
volume (TV). The network has 16 initial convolutionalfilters, which are doubled in each of the four encoder
blocks.Max poolingwith kernel size and stride 2 is used for downsampling between the encoders. Four decoders
upsample the features to the original resolutionwith nearest-neighbor interpolation. All encoders and decoders
consist of 2 convolutionalfilters with kernel size 3× 3× 3 followed by a rectified linear unit activation. Afinal
convolutionwith kernel 1× 1× 1 is used to convert the 16 features into a set of organ-specific activationmaps.
All networks are trainedwith binary cross-entropy, i.e the segmentation allows each voxel to be part ofmultiple
labels. Even though organs generally do not overlap, this allows to easily handle sparsely annotated scans, i.e.
scans onwhich some organs are visible but not segmented by themedical personnel because theywere irrelevant
to the planning. To still leverage all the contours in the dataset, the loss function is adjusted in such away that it
ignores the loss contributions from labels that were notmanually segmented.

2.3.1. Pretrained neural network
The pretrained neural networks (PNN) arefirstly trained on the relatively large CPTdataset. Themodels are
trained from scratchwith theAdam optimizer for 200 epochs and initial learning rate 10−3, which is halved every
20 epochs. Early stopping is applied by retaining themodel with the lowest loss on the validation set (10%of the
patients). All scans are resampled to a fixed resolution 0.97× 0.97× 2mmand data augmentations include
random cropping, rotationswithin±5°,±5% scaling, small localized elastic deformations (Isensee et al 2020)
andGaussian noise withσ2= 10−4. Note that these networks do not segment any of the target volumes, because
the dataset contains a wide variety of indications and previouswork has shown the poor quality of CNNs for
target volume segmentation (Kosmin et al 2019, Liu et al 2021).

We train two networks, one specific for theOARs in the head and neck region, i.e pretrainedHNCnetwork,
and one for theOARs in the lung region, i.e pretrainedNSCLCnetwork. After training on theCPTdataset, the
models are in a second step retrained on theHNCandNSCLCdatasets themselves. The evaluation is donewith
leave-one-out validation, i.e the pretrainedmodel is retrained on 4 out of 5 scans of either theHNCorNSCLC
dataset and the retrainedmodel is evaluated on the remaining scan. In thatway, the pretrainedmodel has still
never seen the anatomy of the patient under study and should therefore generalize what it has learned fromother
patients. The retraining parameters are similar to the initial training parameters, but themagnitude of the data
augmentationswas increased to±10° rotations,±10% scaling andσ2= 10−2 Gaussian noise to avoid
overfitting the very small dataset.

2.3.2. Patient-specific neural network
During online adaptive therapy, clinically accepted contours on the planningCT are always available because
theywere used for the initial planning. The pretrained networks however do not leverage these. To include this
prior information, wefine-tuned the pretrained networks by retraining the networks only on the reference CT
(Elmahdy et al 2020, Chun et al 2021), yielding patient-specific neural networks (PSNN). This retraining results
in overfitting of the network to the referenceCT, but because the reference CT is very similar to the daily CTs, it
can be expected that this overfitted network still performs better than the generalizing pretrained networks.
Further, to avoid complete overfitting, training is restartedwith a lower learning rate 10−4 and, since there is
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only one scan in the training set, runs for 50 000 epochs. Data augmentations are the same as for the initial
pretraining, with the exception of a stronger Gaussian noise withσ2= 10−2.

Pretraining a network for target volume segmentation is very difficult andwould require a lot of data.
However, this does notmean that the target volumes (TV) cannot be segmentedwith deepCNNs. Similar to the
fine-tunedmodels, we can train a neural network solely on the reference CT,which contains the TVs contoured
by a clinician. This is commonly referred to as one-shot image segmentation (Shaban et al 2017). Contrarily to
thefine-tunedmodels, the training cannot restart from a pretrained neural network that is already able to
segment TVs. It is however possible to leverage some prior information during one-shot learning bymeans of
transfer learning (Weiss andKhoshgoftaar 2016), which has shownpromising results in e.g video segmentation
(Caelles et al 2017).With transfer learning, the network isfirst trained on a different task than it is supposed to
(e.g. lung segmentation). In a second step the network is then retrained on the original task (e.g. TV
segmentation) startingwith the initial weights from the other training.Here, we take the pretrainedmodels on
theOARs and use transfer learning to segment theCTV.We restart the training from the final weights of the
pretrainedmodels for all layers except the final convolution, as this convolution creates organ-specificmaps
which are not informative for the TVs.

2.3.3. Commercial segmentation
Finally, the trainedCNNs are also compared to a clinically used commercial auto-contouring software Limbus
Contour 1.7 (AI Limbus Inc., 2076Athol Street, Regina, SK S4T 3E5, Canada). This software has been clinically
validated and shown to only rarely requiremanual adjustments ofOARs (Wong et al 2020,D’Aviero et al 2022).

2.4. Evaluationmethods
The performance of the above-mentioned contour propagationmethods is evaluated on theHNCandNSCLC
by comparing the results with themanually annotated contours on the repeat CTs.We use three well-known
geometricmetrics for this comparison. Firstly, the dice coefficient to evaluate the overlap between themanual
and propagated contour. The dice coefficient is however strongly dependent on the size of the structure and is
therefore difficult to compare for organswith different sizes. To alleviate this effect, we also include the surface
dice, which represents the proportion of the organ surfacewhich is within a tolerance of the surface of the
manually annotated organ (Nikolov et al 2021).We set this tolerance to 2 mm.Both dice and surface dice
coefficients give insight into the average difference between segmentations. To also assess themaximal error, we
evaluate the 95th percentile of theHausdorff distance (HD). AWilcoxon signed rank test is performed between
eachmethod and the patient-specificNNs to test whether they perform significantly better orworse than the
othermethods.

Two preliminary experiments are performed on theNSCLCdataset to highlight the differences between the
proposedmethod and previous works. Firstly, we compare our approach (i.e. thefine-tuning all weights of the
network) tofine-tuning only thefinal layer, as proposed by Elmahdy et al (2020), Jansen et al (2020). Secondly,
we evaluate the importance of using data augmentations, by comparing our approach tofine-tuningwithout
data augmentations.

3. Results

3.1. Preliminary experiments
Fine-tuning all weights of the network improves the segmentation compared to onlyfine-tuning the last layer
(table 2). Thismeans that increasing the learning capability by retraining all weights indeed improves the
performance of the network.

Including data augmentations during fine-tuning increases contouring accuracy (figure 1). For all patients,
themaximumdice score during training is higher with data augmentation thanwithout.Moreover, training
with data augmentations avoids overfitting, i.e. the segmentation accuracy on the repeatedCTsfirst increases
and then stagnates, without significantly decreasing at the end of the training. Contrarily, without data
augmentations, the accuracy reaches amaximumafter which it steadily decreases.

Table 2.Comparison of the average segmentation accuracy on the
NSCLCOARswhenfine-tuning only the last layer versus fine-tuning
all weights.

Fine-tuning Dice [%] SurfaceDice [%] HD95 [mm]

Last layer 87.2 85.0 6.2

All layers 91.9 93.2 4.0
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In practice, afixed number of iterations needs to be defined.When trainingwithout data augmentations, the
iteration at which the dice score ismaximal depends on the patient (figure 1). For example, here, patient 1
reachesmaximal dice after 700 iterations, and for patient 3 this is 3500. Therefore, selecting afixed number will
result in suboptimal performance for some patients. Contrarily, when trainingwith data augmentations, the
number of iterations can simply be set high (50 000 in our case) as the quality stagnates.

3.2. Contouring accuracy
Regarding theOAR contours, rigid registration (RR) performs generally worst of allmethods for theNSCLC
dataset (figure 2), except for the spinal cord. This is because the RR aligns the spinewell, and, hence, also the
spinal cord is accurately contoured. The pretrainedNNachieves better contour accuracy but suffers from

Figure 1.Evolution of the average dice score on the repeatedCTs of theNSCLCdataset duringfine-tuning of the PSNNs. Solid lines
represent trainingwithout data augmentation, dashed lines with. The vertical dotted lines depict at which iteration the training
without data augmentation reachesmaximumdice for each patient.

Figure 2.Comparison of the contour propagation techniques on the relevantOARs andCTV for theNSCLCpatients using dice,
surface dice and the 95th percentile of theHausdorff Distance (HD95).

6
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outliers with lowperformance for the lungs and esophagus. This happenswhen the network is evaluated on out-
of-distribution data, i.e data that is significantly different from the training data. Because the training set is small
for theseOARs (table 1), the probability of this is indeed larger than for themore frequently occurringOARs.
The commercial system consistently outperforms the pretrainedNNand is especiallymore robust, i.e. it suffers
less fromoutliers. The largeHD95 in the lungs in some cases is due to the presence of a tumor, which, depending
on location, annotator ormethod is included or excluded in a contour. This has only a limited effect on the dice
and surface dice, but affects strongly theHD95.

Fine-tuning the segmentation networks on a specific patient improves the segmentation accuracy of the
OARs strongly, outperforming rigid registration, the pretrainedNNand the commercial contouring software
significantly for all OARs (figure 3). Note that we only show the significance test results for the surface dice, but
similar results are found for the dice andHD95. It also resolves the outliers, because fine-tuning on the planning
CT avoids that the network is run on out-of-distribution data. The contour quality is similar toDIR for the
lungs, significantly lower for the heart and esophagus and significantly better for the spinal cord (figure 3).

In order to assess whether the obtained performance of the patient-specificNNs is clinically acceptable, it
can be compared to the variability between the contours drawn by different observers, i.e. the inter-observer
variability. This variability was not studied here, but has been quantified in other works for the relevantOARs in
the thorax region (Yang et al 2018). It is important to note that the values are organ and image-modality-specific,
as themetrics are strongly affected by the volume or contrast of the organ. The reported inter-observer dice
scores were 0.96 for the lungs, 0.93 for the heart, 0.81 for the esophagus and 0.86 for the spinal cord. These values
are very close to the dice scores for the patient-specificNNs andDIR (figure 2).

Regarding target segmentation, the patient-specificNNs perform significantly better thanRR, but
significantly worse thanDIR (figure 3). However, these differences are small and only significant for the surface
dice and not for dice. For one patient, the patient-specificNNhasmuch lower contour quality. In this patient,
the shape of the tumor changed throughout the treatment, causing themanual delineations to alter significantly
from the reference.Whereas the performance ofDIR is also low for this patient, the drop in quality is less
pronounced. Such strong outliers did not occur for the patient-specificOAR segmentation, which indicates that
one-shot segmentation lacks robustness because of its limited general knowledge.

Most general trends found for theNSCLCdata also hold for theHNCdataset (figure 4). Themain difference
is that RRperformsmuch better. ForOARs in head, close to the skull (e.g. brainstem, chiasm, hippocampus), RR
performs aswell as themore advancedmethods (figure 5), because itmatches the skull accurately and the rigid
assumption is applicable there. Contrarily, forOARs further from the skull (e.g. spinal cord, thyroid), RR
performs badly because the rigid transformationmatching the skull is not valid there. Lastly, for organs that
change strongly during radiotherapy (e.g. parotid glands), RR sometimes performs very badly.

Despite the largerOARdataset in theHN region compared to the thorax (table 1), the performance of the
pretrainedNN is still low. This ismost apparent for the smallerOARs (e.g. lacrimal gland, optic nerve, chiasm).
Again, the commercial systemoutperforms the pretrainedNN. The patient-specificNNs significantly
outperform all othermethods (includingDIR) for all organs in general (figure 5). However, for the individual
organs, wefind that the difference is not always significant and that segmentation of the optic nerves is even
better with registration and the commercial segmentation.

Several other works have investigated the inter-observer variability forOARs in the head and neck region
(Deeley et al 2011, Brouwer et al 2012,Mattiucci et al 2013, Verhaart et al 2014, Tao et al 2015, van der Veen et al
2019,Wong et al 2020).Whereas the stated values vary between the publications because of differences in
experimental set-up, we found that themean dice scores of patient-specificNNs andDIR here are similar or
even higher than the reported inter-observer variabilities for all OARs except the thyroid.

Figure 3.Overview of theWilcoxon signed rank test results for the surface dice of the contours in theNSCLCdataset. Green: patient-
specificNNperforms significantly better than themethod. Red: patient-specificNNperforms significantly worse than themethod.
White: the performance of themethod is not significantly different from the PSNN.Grey: themethod does not segment the structure.
The significance level is set to 2.5%.
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Contouring of themainCTVworks best withDIR, followed by patient-specificNNs and rigid registration.
Rigid registration does not workwell because theCTV covers part of the neck region, where significant
shrinkage happened for these patients which cannot be capturedwith rigid transformations. The improvement
of the patient-specificNNs compared to rigid registration is only significant based on dice score but not for the
surface dice (figure 5). For the boosted region, rigid registrationworkswell and even significantly better than the
patient-specific segmentation, as this region is inside the head close to the skull.

3.3. Contouring speed
The runtime of the algorithms depends strongly on the hardware and potential GPU acceleration. Image
registration inplastimatch andelastix runs onCPU and the runtime is evaluated on a Linux based
systemwith 8 Intel Xeon E3-1240 v5CPU cores. The runtime of the in-house trainedNNs is evaluated by
running inference on aNvidiaQuadro P6000GPU and the commercial software was ran on aNvidia RTX
3060GPU.

Rigidly registering theCTs takes approximately the same time as running inference of the in-house trained
CNNs. The commercial segmentation software is approximately 2 times slower, but still significantly faster than

Figure 4.Comparison of the different contour propagation techniques the relevantOARs andCTV for theHNCpatients using dice,
surface dice and the 95th percentile of theHausdorff Distance (HD95). The commercial segmentation did not contain hippocampus
contours at the time of writing, so thesemetrics are not included.

Figure 5.Overview of theWilcoxon signed rank test results for the surface dice of the contours in theHNCdataset. Green: patient-
specificNNperforms significantly better than themethod. Red: patient-specificNNperforms significantly worse than themethod.
White: the performance of themethod is not significantly different from the PSNN.Grey: themethod does not segment the structure.
The significance level is set to 2.5%.
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DIR,which is 7–10 times slower than rigid registration (table 3). Note that several DIRmethodswithGPU
acceleration exist, which could lead to significant speed up (Gu et al 2010,Weistrand and Svensson 2015).
Whereas the runtime of theDIR is likely acceptable, the speed of the othermethods offers an advantage for
patient comfort and correspondence betweenCT and treated anatomy in a particularly time-dependent setting
such as adaptive therapy. Figure 6 visualizes the trade-off between speed and accuracy. Patient-specificNNs lie
on the pareto front for bothHNCandNSCLCdatasets, i.e. none of the othermethods can improve accuracy
without increasing runtime nor improve runtimewithout reducing accuracy. ForNSCLC, alsoDIR lies on the
pareto front, yielding slightly higher accuracy but slower runtime. ForHNC, the pareto front is sharedwith RR,
which is faster but yields lower accuracy.

4.Discussion

Our results show thatDIR yields generally themost accurate contours for the targets andOARs in the thorax
region. Contrarily, the patient-specificNNs are best forOARs in the head and neck region. The differences are
however small and not always significant for allmetrics. The PSNN is further on average 10 times faster, which is
advantageous in adaptive therapy. For theHNC specifically, rigid registration is both fast and accurate for the
structures close to the skull, but the accuracy is lower for those far from the skull which can lead to unacceptable
degradation in target coverage.

Although both patient-specificNNs andDIR lead to high-quality contours, they do not perfectly correspond
to themanual ones. This can be due to limitations of themethods, but also due to inaccuracies in themanual
contours, as it has been shown that substantial inter- and inter-observer variability in delineation ofHNCand
NSCLC exists (Deeley et al 2011, Brouwer et al 2012,Mattiucci et al 2013, Verhaart et al 2014, Tao et al 2015,
Yang et al 2018, van der Veen et al 2019,Wong et al 2020, van der Veen et al 2021, Kumar et al 2022, Zhang and
Huang 2022). The PSNNandDIRmethods reach accuracies similar to such inter-observer variabilities found in
the literature, which impose an upper-bound for the average achievable accuracy. This furthermeans that the
methods perform similar to a human, indicating that they can be used directly in adaptive therapy.

In order tometiculously evaluate the use of contour propagationmethods for adaptive therapy, the effect on
the dose and the corresponding biological effect should be analyzed. Treatment plans reoptimized on
automatically propagated contours should be compared to plans reoptimized onmanual contours, and these

Figure 6.Mean runtime versusmeanOAR surface dice for the different contouringmethods and datasets. Themarkers correspond to
the individualmethods and the solid line depicts the pareto optimal front. Green: NSCLCdataset; Orange:HNCdataset.

Table 3.Average time for running contour
propagation for eachmethod and dataset.

Method Time [s]

NSCLC HNC

Rigid registration 15.1 16.9

PretrainedNN 12.4 20.3

Commercial segmentation 30.6 49.4

patient-specificNN 12.4 20.3

Deformable registration 155.7 141.0
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dosimetric differences have to be interpreted clinically before implementation in the clinic. This is the subject of
current work at CPT.

The size of the evaluation datasets is relatively small,mainly becausemanual delineation of all daily CTs is a
time-consuming process. For theNSCLCdataset, the clinicians completelymanually recontoured because of
the limited number ofOARs. As the number ofOARs in theHNC region ismuch larger, the cliniciansmanually
adjusted contours propagated from the reference usingDIR, in accordancewith the current clinical protocol for
replanning. Even though this creates a bias, the resulting contours are clinically acceptable and theDIR
algorithmused to create these initial contours was different from the one used in this study.

The quality of the pretrainedNN for theHNCdataset is low, even though the training dataset is relatively
large. Especially for the smaller organs, the segmentation accuracy is largely insufficient. This could be due to the
large number ofOARs segmented by a single network. During training, the loss function is only slightly affected
by these small organs, similar to class imbalance. This could result in the network favoring accurate
segmentation of the larger structures over the smaller ones. This can be overcome by simply training one
network for each structure. Even though this would lead to an increase in runtime, inference could still be
parallelized or hierarchical approaches could be employed instead of splitting the image in patches (Shaheen et al
2021).

This analysis relies on the presence of daily CT scans, which requires an in-roomCT. Although such in-
roomCT is present at several proton therapy centers, gantry-mountedCBCT scanners aremore prevalent. In
the future, also dailyMRI scansmight be used. The registration-basedmethods could easily be adjusted to allow
multi-modal registration betweenCBCT/MRI andCT to propagate the contours. Further, a general
segmentation network for CBCT/MRI could also be developed if an appropriate dataset is available. The
patient-specificfine-tuning cannot be applied directly with CBCT/MRI.However,it can be applied on synthetic
CTs, which are produced from the daily CBCT/MRI to reoptimize the plan in adaptive therapy. Although it is
expected that the networkswill work on such synthetic CTs, the quality of contours will have to be evaluated.

5. Conclusion

In this work, patient-specific CNNswere compared to general CNNs and (deformable) registration for the task
of contour propagation in adaptive radiotherapy.We found that the patient-specificfine-tuning leads to higher
quality contours than general segmentation networks, reaching similar quality asDIR butwith a significant
reduction in runtime. Fine-tuning further allows target volume segmentation, which is not yet feasible with
general CNNs.
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