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SUMMARY

Expectations of sensory information change not only how well but also what we
perceive. Even in an unpredictable environment, the brain is by default constantly
engaged in computing probabilities between sensory events. These estimates
are used to generate predictions about future sensory events. Here, we investi-
gated the predictability of behavioral responses using three different learning
models in three different one-interval two-alternative forced choice experiments
with either auditory, vestibular, or visual stimuli. Results indicate that recent
decisions, instead of the sequence of generative stimuli, cause serial dependence.
By bridging the gap between sequence learning and perceptual decision making,
we provide a novel perspective on sequential choice effects. We propose that se-
rial biases reflect the tracking of statistical regularities of the decision variable,
offering a broader understanding of this phenomenon.

INTRODUCTION

From traffic lights to weather phenomena to speech perception, many events in real life follow a highly

structured temporal sequence. Statistical regularities commonly determine what follows next. By extract-

ing these regularities from the environment, the brain builds expectations regarding incoming sensory

information.1–4 Numerous studies on sequence learning provided compelling evidence that the brain

is capable of detecting, using, and leveraging statistical regularities. Findings include serial depen-

dencies in psychophysical tasks,5–18 variations in reaction times as a function of statistical properties

of a sequence,19–22 the biased perception of randomness23–25 and surprise-like signals in electrophysio-

logical (EEG) or magnetoencephalographic (MEG) data.26–29 The local transition probability (TP) model30

unifies these seemingly unrelated findings. It suggests that the brain’s constant engagement in trying to

infer a non-stationary transition probability matrix must represent a core computation of human

sequence knowledge. The local integration of the most recent transition probabilities about sensory

events causes the brain to predict incoming sensory information even when the stimuli are embedded

in a completely unpredictable sequence. In psychophysical experiments, the observer is usually con-

fronted with an unpredictable environment that supposedly ensures that stimuli cannot be predicted

on the basis of statistical regularities.4 Many real-life events, however, are highly structured in space

and time, so it is plausible that the brain makes predictions by default rather than distinguishing when

it can and cannot predict.

We hypothesize that the findings from Meyniel et al.30 provide a previously unexplored framework for

investigating serial dependencies in perceptual decision making. We examine how the brain’s default pre-

dictive mode unfolds and translates into choice behavior. Relying on the principles of Bayesian inference,

we use derivatives of themodels previously employed inMeyniel et al.30 andMaheu et al.27 to capture serial

dependencies in psychophysical tasks.8,12 We suggest that sequential choice effects arise from human ob-

servers possessing an internal model of the generative process underlying the sequences of observations

they encounter.23,24 These observers combine their prior beliefs with stimulus information in a way that ap-

proximates Bayes’ rule.12,30–33 When accurately performing a psychophysical task, this internal model is

most accurately reflected by the sequence of responses rather than the potentially unknown sequence

of generative stimuli. In addition, these responses are weighted according to their recency, leading to leaky

integration.13,30 The use of a leak factor approximates the Bayes-optimal solution and allows for flexibility in

case the statistical underpinnings of the environment change.
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Figure 1. Behavioral tasks from three independent experiments

(A) Auditory two-alternative forced-choice (2AFC) task: Participants (n = 75) had to decide whether the syllable /ka/or the

syllable /to/was presented. Stimuli were masked with varying degrees of white noise resulting in six different signal-to-

noise ratios per stimulus. The task was performed on a standard laptop and participants were wearing over-ear

headphones. After each trial, they indicated the perceived syllable by pressing a key without receiving feedback.

(B) Vestibular 2AFC task from Klaus et al.39: Participants (n = 20) were blindfolded to eliminate visual cues and equipped

with headphones delivering white noise to eliminate auditory cues. Stimuli consisted of roll, pitch, and yaw rotations

delivered by means of a motion platform. Participants had to indicate the motion direction by button press during each

trial without receiving feedback.

(C) Visual 2AFC task from Braun et al.8: Participants (n = 22) were presented with a dynamic random dot pattern of variable

direction and coherence. One beep indicated the start of the evidence interval, which contained some degree of

coherent motion. A second beep indicated the evidence offset and the start of the response interval in which participants

had to indicate the perceived net motion (up versus down). Figure (C) adapted from Braun et al.8
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A large body of work has provided different explanations for the modulation of response biases, such as

context and attention,11 adaptation,5 arousal in humans17,34 and arousal in animals,35 strength of sensory

evidence,6 fluctuations between modes of sensory processing,36 and confidence.8,17,37 Most likely,

response biases are modulated by simultaneous mechanisms.7 However, it is still unclear how the proba-

bilistic integration of preceding responses can help explain serial dependencies. To this end, we bridge the

gap between two different lines of research: sequence learning on the one hand and perceptual decision

making and psychophysics on the other hand.

We used adapted versions of previously used observer models (i.e., learning models)27,30 to predict partic-

ipants’ responses in three psychophysical experiments involving either auditory, vestibular, or visual stimuli

(Figures 1, and S1). These observer models estimate different statistics that can be used to describe a

particular sequence. Sequences can be described at different levels of abstraction.38 Following the findings

from Meyniel et al.30 and Maheu et al.,27 we focus on the most basic statistics that can be used to describe

sequences: The item frequency (IF), the alternation frequency (AF), and transition probabilities (TP). The

following example sequence is used to illustrate the characteristics of each statistic: BBBBABBBAAAA.

IF is the simple count of each observation p(B) = 1 - p(A) = 7/12, whereas AF counts whether the successive

observation is the same or different p(repetition) = p(1 - alternation) = 8/11. IF is ignorant of the number of
2 iScience 26, 107123, July 21, 2023
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repetitions and alternations, and AF is ignorant of the number of A’s and B’s. TP captures both these as-

pects. Estimating TP requires tracking two statistics simultaneously and applying one of them depending

on the context p(B|A) = 1 - p(A|A) = 1/4 and p(B|B) = 1 - p(A|B) 5/7 (see STAR Methods for details and see

Meyniel et al.30 for a formal description of these and additional models). These estimates are used to pre-

dict the next response trial-by-trial. More specifically, IF, AF, and TP are used to compute the predictive

likelihood of the next response. In the case of AF and TP, the predictor needs to be transformed so that

response = 1 is predicted on each trial (see STAR Methods for details). Note that we refer to the predictive

likelihoods computed by the observer models as IF, AF, and TP. For all three observer models we can

change the input to examine whether the observer model is better informed by participants’ responses

or by the generative sequence of stimuli. Another aspect to consider when using models from the

sequence learning literature is that participants are often presented with stimulus intensities at threshold

level, which is typical for psychophysical research. Indeed, we will show that the maximally diagnostic con-

ditions to arbitrate between observer models and inputs for observer models are the difficult, and not the

easy trials; thereby showing a more informative model comparison strategy than the abrupt comparison on

all trials altogether.

Taken together, the current study examines three learning models (TP, IF, and AF) in three sensory modal-

ities (auditory, vestibular, and visual) for two trial difficulties (easy, difficult) by using two different model

inputs (responses, stimuli).
RESULTS

In this study, we employed two complementary analyses to investigate our research question. In the main

text, we report the log-likelihood analysis and in the supplemental information, we report the GLM analysis

(probit regressions). We predict participants’ responses on a trial-by-trial basis for each participant, type of

learning model, input of learning model, and timescale of integration using a first- and second-level anal-

ysis approach (i.e., subject-level followed by group-level analysis). To examine the effect of stimulus inten-

sity in the log-likelihood analysis, we categorized data into easy and difficult trials based on participants’

categorization accuracy (see STAR Methods and Figure S1 for details).
Model comparison

Advantages for model comparison using a log-likelihood approach are its robustness and clear interpret-

ability. Models reach high likelihood when participants’ choice behavior positively aligns with the predictive

likelihood of the choice obtained from the different learning models. To reduce any ambiguity in

terminology we clarify the following terms: In (1) response-based models, participants’ responses are

predicted by the predictive likelihood obtained from learning models that had participants preceding re-

sponses as input. In (2) stimulus-based models, participants’ responses are predicted by the predictive likeli-

hood obtained from learning models that had preceding generative stimulus identities as input. Note that

these predictions do not contain any actual stimulus information. Lastly, in (3) stimulus-onlymodels, responses

are predicted by the actual stimulus identity (i.e., type of syllable (i.e., /ka/ or /to/), direction of dot motion (i.e.,

up or down), and direction of passive motion stimulus (i.e., left or right and forward or backward).

The initial stage in evaluating the validity of the predictions obtained from the response-based learning

models is comparing them to a stimulus-only model. As anticipated, the stimulus-only model exhibits

higher prediction accuracy in easy trials where perceptual processing is unambiguous and clear.

Conversely, in difficult trials where sensory information is ambiguous and uncertain, the learning models

outperform the stimulus-only model in conforming to participants’ choice behavior (Figure 2, Table S1).

Following the confirmation of superior performance by the stimulus-only model in easy trials and the learning

models in difficult trials, the subsequent stage involves contrasting the response-based model with a stimulus-

basedmodel for further analysis. This comparison aims to shed light on the question if the learningmodels are

better informed by participants’ preceding responses or by the preceding sequence of generative stimuli.
Improvement in model fit by using participants’ responses as input

In active tasks where participants are required to make a conscious behavioral response, such as pressing a

button, the question is whether the performance of the learning model is improved by using the generative

sequence of stimuli or participants’ responses as input. Informing the learning model with participants’
iScience 26, 107123, July 21, 2023 3



Figure 2. Learning models versus stimulus-only model

Comparison of log-likelihood values between response-based learning models (TP, IF, and AF) versus a stimulus-only

model. Absolute log-likelihood values are centered and outliers are hidden for plotting purposes. Higher values indicate

better performance. In easy trials, the stimulus-only model performs better, whereas in difficult trials, the learning models

based on participants’ preceding responses outperform the stimulus-only model, except for easy trials in the vestibular

dataset where some participants exhibited inaccurate performance. Despite this, we retained the data as is without

removing participants based on their performance. Corresponding statistics are reported in Table S1. Significance: *** =

p < 0.001; ** = p < 0.01.
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responses can be interpreted as a meta-observer making future predictions about its own actions based on

observations of those actions, without access to the actual stimuli. We investigated this question for all

three learning models. To ensure a fair comparison, for each participant and model separately, we tested

different values for the leak factor (u) to find the timescale of integration that best fits the data. Figure 3A

shows that across all modalities and learning models, using participants’ responses as input provides a bet-

ter fit of the data. To quantify this effect, we compute the differences in log-likelihoods between models

that differ in their input and obtain Dlog-likelihood where a lower value indicates that the response-based

model performs better. In difficult trials, this difference (Dlog-likelihood) was significant for all modalities

and learning models (p < 0.05) except for the TP model in the vestibular dataset (p > 0.05), complete sta-

tistics are provided in Table S2. In easy trials, this difference (Dlog-likelihood) is either not significant or the

stimulus-based model performs better. Note that this comparison is not informative of which learning

model performs best. Figure 4A provides an example; the effect emerges when the models using different

inputs make orthogonal predictions, and the behavior of participants more often matches the predictions

of the response-based model. An exhaustive characterization of orthogonal predictions between the

response-based model and the stimulus-based model is provided in Figure 4B.

Differences between learning models

Having confirmed that informing the models with the sequence generated by participants’ responses

notably enhances model fits compared to using the generative sequence of stimuli, we proceeded to

analyze the absolute log-likelihood values for each learning model and sensory modality, separately for

easy and difficult trials (Figure 3B). Although we have already determined that a stimulus-only model is

the preferred model for explaining participants’ choice behavior in easy trials, our attention in this analysis

is directed toward the difficult trials. Remarkably, across all modalities, the same pattern emerges, with

both IF and AF models significantly outperforming the TP model (according to Wilcoxon signed rank tests)

when u is chosen to best fit the data. This is intriguing, as both statistics are subsumed in the two-dimen-

sional space of transition probabilities.27,30 IF and AF both capture aspects of serial influence.

Timescales of integration between learning models

Following the results fromMeyniel et al.30 andMaheu et al.,27 we examined if a local or a global integration

based on preceding observations does provide the best fit of the data. The leak factor u determines the

strength of decay and thus integration over time. A smaller value for u corresponds to a more local inte-

gration, which means that recent responses are weighted more strongly in the inference process. A truly

global integration corresponds to an ideal observer with perfect memory (i.e., u = N). We compared
4 iScience 26, 107123, July 21, 2023



Figure 3. Learning models

(A) Comparison of model input (responses versus generative sequence of stimuli) based on accuracy (Figure S1). The data were categorized into easy and

difficult trials, and the mean difference in log-likelihood (Dlog-likelihood) between the response-based model and the stimulus-basedmodel was computed

across participants. To ensure a fair comparison, the timescale of integration (u) for bothmodels was chosen to best fit the data. Results show that for difficult

trials across modalities and learningmodels, the response-basedmodel achieved a better fit of the data. Note that this analysis does not provide information

about which learning model performed best. Error bars indicate the standard error of the mean (GSEM). Corresponding statistics are reported in Table S2.

(B) Comparison of absolute log-likelihood values for each response-based (learning) model and each sensory modality, separately for easy and difficult trials.

Here, the focus is on difficult trials, in which the IF and AF model perform best across modalities. Note that variance explained by stimulus identity is not

considered in this analysis, which is especially important when comparing learning models in easy trials. Outliers are hidden for plotting purposes.

Corresponding statistics are reported in Table S3.

(C) Fixing the timescale of integration (u) across participants: Consistent with previous studies,27,30 TP favors a local timescale of integration, whereas IF and

AF favor global timescales of integration. Shadings indicate the standard error of the mean (GSEM).
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Figure 4. Orthogonal predictions between models that differ in their input

(A) Illustration of orthogonal predictions between the response-based model and stimulus-based model using the item

frequency model in the auditory dataset in the fully stochastic conditions (see STAR Methods for full description of

experimental conditions). The x axis shows the trial index from a random subject, whereas the y axis (left-hand side) displays

the prediction. Predictions below 0.5 indicate prediction of response A, whereas predictions above 0.5 indicate prediction of

response B. The y axis (right-hand side) shows the true sequence of stimuli (Stimulus A/ka/and Stimulus B/to/) as well as

participants’ responses (A and B). Vertical lines indicate incorrect responses. Orthogonal predictions can occur after incorrect

responses, as evident in trial 161 and trial 163 where the response-based model outperforms the stimulus-based model. The

best fitting value for u was determined based on log-likelihood analysis to ensure a fair comparison.

(B) Summary of the effect described in (A). Instances of orthogonal predictions between the best fitting response-based

model and the best fitting stimulus-based model were counted for all participants, modalities, and learning models. The

ratio of how often one model outperforms the other was computed. A ratio higher than 1 indicates a better performance

of the response-basedmodel, whereas a ratio smaller than 1 indicates a better performance of the stimulus-basedmodel.

The finding that preceding responses, rather than the generative sequence of stimuli, are informative of participants’

responses is observed across different datasets and learning models. Outliers are hidden for plotting purposes.
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the log-likelihood averaged over participants as a function of the temporal integration of preceding re-

sponses for each modality and learning model separately (with fixed u across participants). The results

from these analyses suggest that local integration of TP and a global integration of IF provides the best

results, adding further evidence to the findings from Meyniel et al.30 and Maheu et al.27 We further show

that the AF model also favors longer time scales of integration and albeit not significant, even better

than the IF model. Best fitting values for u are provided in Figure S2.
Quantifying conditional probabilities of participants’ preceding responses in different

experimental conditions

The auditory and visual experiments entailed sequences of stimuli with different underlying statistical regular-

ities. Experimental conditions consisted of orthogonal variations in the two-dimensional space of transition

probabilities.27 For example, a frequency-biased condition in which one of the two stimuli was presented

more frequently than the other, or a repetition-biased condition in which there were more repetitions than
6 iScience 26, 107123, July 21, 2023



Figure 5. Psychometric functions conditioned on the two preceding responses

The pairs in the legend refer to [rt–2, rt–1] where r corresponds to the response and t corresponds to the trial number.

Corresponding statistics are reported in Table S4.

(A) Fully stochastic, same number of A’s and B’s, and the same number of repetitions and alternations: Participants show a

response bias even in the complete absence of any statistical bias, in this case the tendency to repeat their responses.

Importantly, this effect is driven by the two preceding responses.

(B) Frequency-biased, one of the two stimuli occurred more often: Counterbalanced across participants, but data were

transformed so that stimulus B appeared more often for all participants. Like in the fully stochastic condition, participants

tend to repeat their responses in a streak-like manner.

(C) Repetition-biased, more repetitions than alternations: Because the generative sequence matches the tendency to

repeat the preceding response, we observe the same effect as in the fully stochastic and the frequency-biased condition,

but stronger.

(D) Alternation-biased, more alternations than repetitions: Here, the results well illustrate that the same analysis, but

conditioned only on the preceding response (cf.8,41), does not reveal that the effect is driven by the two preceding

responses. For example, if the preceding responses AA and BA are combined, the effect disappears.
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alternations. We complement and highlight further aspects of choice behavior by quantifying the conditional

probabilities of participants’ responses for each experimental condition separately. We report the results for

the auditory dataset in the main text and summarize the results for the visual dataset in Figure S5 and

Table S5. This analysis was not performed for the vestibular dataset, because conditions did not have different

underlying generative stimulus probabilities.We computed and visualized psychometric functions conditional

on the two preceding responses, as shown in Figure 5. Psychometric functions were computed using a Gener-

alized Linear Model (GLM) with logit link function.40 This analysis shows various aspects of human choice

behavior. In terms of group-level analysis, when considering all responses together (solid black lines), partici-

pantsdonotexhibit abias, as all psychometric curves intersect themidpointof the coordinate system(Figure 5).

However, when examining responses conditioned on the preceding responses, participants tend to repeat

their responses more frequently in the fully stochastic, frequency-biased, and repetition-biased conditions.

Notably, this tendency to repeat responses is primarily driven by instances where a repetition of two responses

occurred just before the current response, resembling a streak of repetitions. In contrast, in the alternation-

biased condition, the response bias depends on whether the preceding transition was a repetition or an alter-

nation. The same analysis, when conditioned only on the preceding response as done in previous studies,8,41

does not reveal the effect being driven by the two preceding responses. For instance, if the preceding re-

sponses AA and BA are combined, the effect disappears, suggesting that the bias is dependent on the transi-

tion type from the preceding responses. Regardless of the experimental condition, the differences in the
iScience 26, 107123, July 21, 2023 7
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horizontal shifts in the psychometric functions between the pair of preceding responses AA versus BA and the

pair of preceding responses BB versus AB were significant in six out of eight cases. Results from significance

tests are provided in Table S4.
DISCUSSION

This study aimed to investigate the effects of statistical learning on perceptual decision making in 2AFC

tasks. Using Bayesian inference, we found that probabilistic integration of preceding responses underlies

response biases in perceptual decisions, as shown through computational modeling of behavioral data

across modalities and participants. Results showed an improvement in model fit when using the predictive

likelihood computed based on participants’ responses as input for different learning models, consistent

with previous research indicating that observers are strongly influenced by their previous responses rather

than by previous stimuli.8,12 That is, decision outcomes, instead of generative stimuli, had a serial influence

on human participants’ choice. By bridging the gap between sequence learning and perceptual decision

making, we provide a potential new perspective on interpreting serial influence. According to this view, se-

rial bias tracks statistical regularities of the decision variable, instead of considering the serial effect as a

smoothing process to the latent environment variables, as environments are stationary or change gradually

but slowly. Previous understanding is extended through this broader perspective.

We showed that the stimulus-only model performed better than the learning models in trials with easy stimuli,

where sensory information was unambiguous and participants accurately performed the task with minimal to

nonexistent response bias. In trials with difficult stimuli, where sensory information is insufficient, the learning

models showedbetter performance,meaning that theyare able to capture serial dependence.Our results offer

a potential firsthand explanation from our analysis on why response-models outperform stimulus-based

models. The internalmodel about thegenerative sequenceof observations is better informedby the sequence

of responses, asparticipantsproduced the response sequence through theirmotor actions (cf.16).Weconclude

that the active (re-)production by means of motor responses is creating a more accessible representation that

may overwrite any potentially false representation of the generative sequence of stimuli. Furthermore, the

differences between the sequence of responses and the sequence of stimuli are only detectable when post-

decision metacognitive capabilities, such as decision confidence42,43 and post-error detection,44–46 are

perfectly accurate. Findings were further supported by a complementary GLM analysis that included stimulus

identity, stimulus intensity, type of learning model and the interaction between stimulus intensity and learning

model as predictors (Figure S4). To investigate the possibility whether participants had a simple preference for

repetitions as may have been indicative from visual inspection of Figure 5, we compared all three learning

models to a model that, instead of the predictions obtained from the learningmodels, included a simple pref-

erence for repetition. Probabilistic learningmodelsdonotdiffer significantly fromeachotherwhenusingaGLM

approach, but they all differ significantly from the model that includes a preference for repetition. On closer

examination of the psychometric curves, it becomes evident that the effect is not solely driven by a repetition

bias. For example, in the alternation-biased condition, it depends on whether the preceding transition was a

repetition or an alternation (i.e., depending on the specific preceding transition type).

FollowingMeyniel et al.30 andMaheu et al.,27 we systematically compared learningmodels that estimated item

frequency, alternation frequency, and transition probabilities. The results extend previous findings on passive

processing of unambiguous auditory stimuli by Maheu et al.27 They found that late post-stimulus brainwaves

were best explained by local integration of transition probabilities and that early post-stimulus brainwaves

were best explained by a global integration of item frequency, consistent with our results as shown in Figure 3C.

When we allowed the timescale of integration to vary between participants and aimed for optimal performance

of themodels, we observed that the IFmodel and the AFmodel weremost effective in predicting participants’

choice behavior in difficult trials. When participants are presented with difficult perceptual decisions, their

sensitivity to both frequency of items and the number of repetitions and alternations over longer periods of tri-

als (longer timescales of integration) translates into specific choice behavior that aligns with the predictions of

the item frequency and alternation frequency models. The log-likelihood approach ensures that the models

achieve high likelihood only when participants’ choice behavior positively aligns with the model’s predictions.

Of interest, our results suggest that the concept of transition probabilities may not be necessary, as both item

frequency and alternation frequency capture aspects of serial influence. This finding is intriguing because tran-

sition probabilities capture the same information as the two simpler competitors, which is the frequency of

items and their co-occurrence. In addition, transition probabilities also capture the serial order, whereas IF

and AF do not take into account these dependencies between items in terms of their order or context.
8 iScience 26, 107123, July 21, 2023
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Previous researchhasexamined the level of informationprocessingatwhich sequential dependencies emerge.

Several studies suggest that the serial effectoccursnoearlier than theperceptual level,47,48 andmay require the

involvement of working memory or the conscious processing level.49,50 Our finding that recent decision out-

comes, rather than generative stimuli, generate serial dependencies underpins current knowledge in the field

of sequential dependencies. Although there is a plethora of important work,5–9,11,12,17,18,37,51–55 we argue that

the parsimonious model presented here will inspire future work on sequential dependence. The studies cited

here either find that participants are more likely to repeat or alternate their responses, or they find that partic-

ipants employ a win-stay, win-switch, loose-stay, or loose-switch strategy, all of which can be quantitatively

captured by the analyses employed in this study.

Looking through the lens of sequence learning provides a useful framework for investigating serial choice

effects in perceptual decision making. The present work sets the stage for incorporating models of

sequence learning and the concept of probabilistic integration of preceding responses into other models

of perceptual decision making (e.g., drift-diffusion models) and the parsimonious characters make them

potential candidates for unifying the results of previous studies.
Limitations of the study

We modeled the non-stationarity of the transition matrix via leaky integration. This could also be modeled

hierarchically by a dynamic belief in the possibility of a sudden change in the generative process (i.e., vola-

tility). In other studies, both possibilities yield similar results, and both can be implemented in a biologically

plausible manner.30,56,57 How exactly decision confidence,42,43 post-error detection,44–46 and metacognitive

capabilities in general relate to the findings presented here remains to be investigated. The results presented

here provide evidence that the concept of transition probabilities might not be required. However, to conclu-

sively address this issue, future research will be necessary and incorporate experimental designs that are able

to specifically test this hypothesis. Moreover, alternative measures to assess the style of response bias could

be helpful. The GLM analysis also revealed that some participants responded systematically but opposite to

the predictions of the learning model, resulting in significant negative regression coefficients (Figure S4). It is

possible that participants for whom we obtain negative regression weights for learning models oppose the

local statistics of their responses and thereby attempt to counteract local biases, so that the local sequence

of their choices appears locally more random. Similar results have been observed in the literature on the

perception of randomness (cf.24). More advanced statistical analysis techniques may be required to fully

disentangle the different learning models. A GLM approach that includes two predictions obtained from

different learning models, faces problems of multicollinarity. This is because IF and TP are highly correlated,

which is especially true when u is low. For example, when u = 1, then the correlation between IF and TP z

0.97. As u increases, the correlation between TP and IF decreases monotonically.
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39. Klaus, M.P., Schöne, C.G., Hartmann, M.,
Merfeld, D.M., Schubert, M.C., and Mast,
F.W. (2020). Roll tilt self-motion direction
discrimination training: First evidence for
perceptual learning. Atten. Percept.
Psychophys. 82, 1987–1999. https://doi.org/
10.3758/s13414-019-01967-2.

40. Knoblauch, K., and Maloney, L.T. (2012).
Modeling Psychophysical Data in R
(Springer).

41. Lueckmann, J.M., Macke, J.H., andNienborg,
H. (2018). Can serial dependencies in choices
and neural activity explain choice
probabilities? J. Neurosci. 38, 3495–3506.
https://doi.org/10.1523/JNEUROSCI.2225-
17.2018.

42. Meyniel, F., Sigman, M., and Mainen, Z.F.
(2015). Confidence as Bayesian Probability:
From Neural Origins to Behavior. Neuron 88,
78–92. https://doi.org/10.1016/j.neuron.
2015.09.039.

43. Pouget, A., Drugowitsch, J., and Kepecs, A.
(2016). Confidence and certainty: Distinct
probabilistic quantities for different goals.
Nat. Neurosci. 19, 366–374. https://doi.org/
10.1038/nn.4240.

44. Fleming, S.M., and Daw, N.D. (2017). Self-
evaluation of decision-making: A general
bayesian framework for metacognitive
computation. Psychol. Rev. 124, 91–114.
https://doi.org/10.1037/rev0000045.

45. Yeung, N., Botvinick, M.M., and Cohen, J.D.
(2004). The neural basis of error detection:
Conflict monitoring and the error-related
negativity. Psychol. Rev. 111, 931–959. https://
doi.org/10.1037/0033-295X.111.4.931.

46. Yeung, N., and Summerfield, C. (2012).
Metacognition in human decision-making:
Confidenceanderrormonitoring. Philos.Trans.
R. Soc. Lond. B Biol. Sci. 367, 1310–1321.
https://doi.org/10.1098/rstb.2011.0416.

47. Ceylan, G., Herzog, M.H., and Pascucci, D.
(2021). Serial dependence does not originate
from low-level visual processing. Cognition
212, 104709. https://doi.org/10.1016/j.
cognition.2021.104709.

48. Zhang, H., and Alais, D. (2020). Individual
difference in serial dependence results from
opposite influences of perceptual choices
andmotor responses. J. Vis. 20, 2. https://doi.
org/10.1167/jov.20.8.2.

49. Bliss, D.P., Sun, J.J., and D’Esposito, M.
(2017). Serial dependence is absent at the
time of perception but increases in visual
working memory. Sci. Rep. 7, 14739. https://
doi.org/10.1038/s41598-017-15199-7.
50. Kim, S., Burr, D., Cicchini, G.M., and Alais, D.
(2020). Serial dependence in perception
requires conscious awareness. Curr. Biol. 30,
R257–R258. https://doi.org/10.1016/j.cub.
2020.02.008.

51. Berlemont, K., and Nadal, J.P. (2019).
Perceptual decision-making: Biases in post-
error reaction times explained by attractor
network dynamics. J. Neurosci. 39, 833–853.
https://doi.org/10.1523/JNEUROSCI.1015-
18.2018.

52. Fritsche, M., Mostert, P., and de Lange, F.P.
(2017). Opposite Effects of Recent History on
Perception and Decision. Curr. Biol. 27,
590–595. https://doi.org/10.1016/j.cub.2017.
01.006.

53. St. John-Saaltink, E., Kok, P., Lau, H.C., and
De Lange, F.P. (2016). Serial dependence in
perceptual decisions is reflected in activity
patterns in primary visual cortex. J. Neurosci.
36, 6186–6192. https://doi.org/10.1523/
JNEUROSCI.4390-15.2016.

54. Suárez-Pinilla, M., Seth, A.K., and Roseboom,
W. (2018). Serial dependence in the
perception of visual variance. J. Vis. 18, 1–24.
https://doi.org/10.1167/18.7.4.

55. Lak,A.,Hueske,E.,Hirokawa, J.,Masset, P.,Ott,
T., Urai, A.E., Donner, T.H., Carandini, M.,
Tonegawa, S., Uchida, N., and Kepecs, A.
(2020). Reinforcement biases subsequent
perceptual decisionswhen confidence is low: A
widespread behavioral phenomenon. Elife 9,
e49834. https://doi.org/10.7554/eLife.49834.

56. Heilbron, M., and Meyniel, F. (2019).
Confidence resets reveal hierarchical
adaptive learning in humans. PLoS Comput.
Biol. 15, e1006972. https://doi.org/10.1371/
journal.pcbi.1006972.

57. Norton, E.H., Acerbi, L., Ma, W.J., and Landy,
M.S. (2019). Human online adaptation to
changes in prior probability. PLoS Comput.
Biol. 15, 1–26. https://doi.org/10.1101/483842.

58. Christensen, R., Wesley, J., Branscum, A., and
Hanson, T.E. (2011). Bayesian Ideas and Data
Analysis-An Introduction for Scientists and
Statisticians. https://doi.org/10.1111/j.1467-
985X.2011.00725_2.x.

59. Gelman, A., Carlin, J., Stern, H., Dunson, D.,
Vehtari, A., and Rubin, D. (2013). Bayesian
Data Analysis Third edition (CRC Press).

60. Audacity Team (2019). Audacity: Free Audio
Editor and Recorder.

61. Peirce, J., Gray, J.R., Simpson, S., MacAskill,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and analyzed behavioral data This paper https://doi.org/10.5281/zenodo.8007314

Original vestibular data Klaus et al.39 https://osf.io/dhtq8/

Original visual data Braun et al.8 https://doi.org/10.6084/m9.figshare.5726845.v1

Software and algorithms

R 4.2.3 R Core Team https://cran.r-project.org/

RStudio RStudio Team https://posit.co/

Python 3.7.3 Python Core Team https://python.org/

PsychoPy The PsychoPy Team https://psychopy.org

Audacity Audacity Team https://audacityteam.org
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact Daniel Schlunegger (daniel.schlunegger@unibe.ch).
Materials availability

Besides data and R codes, this study did not generate any new reagents or materials.

Data and code availability

d All data have been deposited at GitHub and are publicly available. The DOI is listed in the key resources

table. In addition, this paper analyzes existing, publicly available data. Accession number and the DOI for

the datasets are listed in the key resources table.

d All original code has been deposited at GitHub and is publicly available. The DOI is listed in the key re-

sources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants of experiment 1

Eighty participants (46 women, 34 men,Mage = 27.4 years, SDage = 10.1 years, age range: 18 - 58 years) took

part in the experiment. All participants reported normal hearing and none of them reported any history of

dysfunctions or ear infections. They were naive to the purpose of the study. The study was approved by the

local ethics committee and participants provided written informed consent prior to participating. Five par-

ticipants were excluded from the analysis due to incomplete data sets.
Participants of experiment 2

In the study from Klaus et al.39 30 participants (18 women, 12 men, (age range: 21–38 years) took part in the

experiment. In the present study, data from 20 participants were analyzed.
Participants of experiment 3

In Experiment 2 from Braun et al.,8 26 participants (15 women, 11 men, Mage = 26 years, age range: 20 - 36

years) took part in the experiment. In both the original and present study, data from 22 participants were

analyzed.
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METHOD DETAILS

Observer models

We used learning models (i.e. observer models) similar to those used by Meyniel et al.30 and Maheu et al.27

These models, known as fixed belief models, assume that there is no change point in the transition prob-

abilities of the generative process. Instead, the non-stationarity of the transition matrix is implemented

through leaky integration, which weights observations according to their recency. Binary responses are

labeled as either A=0 or B=1. Here, we provide details for the TP model. The IF and AF models follow

the same logic but are simpler in nature. To estimate transition probabilities, we track two statistics simul-

taneously and apply one of them depending on the preceding response (for example, qB|A = 1 - qA|A). This is

done by counting the transition types and updating the model after each observation using Bayes’ rule:

p
�
qBjAju1:k

�
=

p
�
u1:k

��qBjA�$p�qBjA�
p
�
u1:k

��qBjA�$p�qBjA�+p�u1:k

��qAjA�$p�qAjA�
where u represents the binary sequence and k the k-th trial in the sequence.

For simplicity, we assume that the first response is random. This allows us to compute analytical posterior

values. In the case of binary responses and the conjugate prior, the posterior distribution is proportional to

a beta distribution58,59:
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�
Themean of the distribution corresponds to the predictive likelihood that the next response will be B given

that the previous response was A58,59:
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!

To enable the model to be flexible and adapt to the recent history of events, we implemented a leak factor.

Observations are weighted according to their recency. The leak factor u is the only free parameter in this

model and determines the strength of decay and thus integration over time. A smaller value for u corre-

sponds to a more local integration, which means that the more recent responses are weighted more

strongly in the inference process.

NBjA
u =

Xn
k = 1

un� k$exp

�� k

u

�

Note that this inference must also be performed for qB|B = 1 - qA|B. The final step in creating the predictor for

the analysis is to extract the value that applies to the current response, which depends exclusively on the

previous response.
Method details of experiment 1

Apparatus and stimuli

Stimuli consisted of two syllables: /ka/ (labelled as A) and /to/ (labelled as B). The syllables were normalized

and adjusted to 300 milliseconds length using Audacity (2.3.2).60 For each syllable, six stimuli were created

by adding white noise, resulting in six different signal-to- noise ratios (SNR): -18, -16, -12, 0, 10, 14 dB which

are hereafter labeled as stimulus intensities: 1, 2, 3, 4, 5, and 6. After re-normalizing all stimuli, linear fade-in,

and fade-out of 30 milliseconds was applied. Prior to the main experiment, stimuli were tested at different

SNRs to find the appropriate range of psychophysical performance, with the intention that stimulus inten-

sities 4, 5, and 6 would result in perfect or near-perfect performance. Stimuli were presented in stereo

sound via over-ear headphones with a sampling rate of 44100 Hz via Psychopy (3.1.2)61 running on Python

(3.7.3).62

Experimental procedure

Participants performed a one-interval 2AFC auditory discrimination task (Figure 1A) on a standard laptop.

The experiment was set up as a standard auditory discrimination task and participants were asked to

respond as accurately as possible. In each trial, participants were to indicate their response for stimulus

A via button ‘‘F’’ and their response for stimulus B via button ‘‘J’’ on the keyboard. Upon stimulus onset,
iScience 26, 107123, July 21, 2023 13
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a fixation cross appeared in the middle of the screen. The fixation cross and the auditory stimulus were pre-

sented for 300 milliseconds. The next trial started 550 milliseconds after the previous response. Impor-

tantly, participants received no feedback about the correctness of their choice. The experiment was

divided into four blocks of 300 stimuli each; each block corresponded to one of four different experimental

conditions. As suggested inMaheu et al.27, conditions consisted of orthogonal variations in the two-dimen-

sional space of transition probabilities: 1) fully stochastic (i.e., the same number of A’s and B’s and the same

number of repetitions and alternations), 2) frequency-biased (i.e., one of the stimuli was presented more

frequently, 3/4 vs. 1/4), 3) repetition-biased (i.e., 3/4 repetitions and 1/4 alternations), and 4) alternation-

biased (i.e., 3/4 alternations and 1/4 repetitions). We validated each sequence by fitting a Markov chain

to the first 50 stimuli and to the remaining 250 stimuli of each sequence, ensuring that the sequences truly

represented the transition probabilities they were drawn from. Our goal is to understand how the brain in-

tegrates sequence knowledge when sensory information is ambiguous. Therefore, we took the following

measures: During the first 10 trials, only stimulus intensities from 4 to 6 occurred; during trials 11 to 50,

only stimulus intensities from 3 to 6 occurred; during trials 51 to 100, only stimulus intensities from 2 to 6

occurred; and during trials 101 to 300, all stimulus intensities occurred. In addition, stimulus intensities 1

and 2 were not allowed to occur consecutively. Because participants were not informed of the differences

in the underlying generative transition probabilities, these measures were taken to implicitly provide par-

ticipants with information about this experimental manipulation and to ensure that participants generated

response sequences that actually reflected the underlying bias. For each condition, we created five se-

quences that were counterbalanced across participants; the order of conditions was fully randomized.

Each participant completed 1200 trials, resulting in 90000 trials in total for the final analysis.
Method details of experiment 2

Complete details about Experiment 2 are available in the original article from Klaus et al.39 In short, 30 par-

ticipants participated in a self-motion discrimination experiment. The training group (n=10) received a self-

motion discrimination training, as well as pre- and post-test measurements to determine their self-motion

perception thresholds. The control group (n=20) received no training but participated in the same pre- and

post-test measurements. All participants were screened for vestibular disorders. The motion stimuli were

applied using a 6-degree-of-freedom motion platform and consisted of single cycles of sinusoidal accel-

eration motion with a frequency of 0.2 Hz or 1 Hz. During the training, the participants in the training group

experienced roll tilts about an earth horizontal axis with a frequency of 0.2 Hz. The peak velocity of the stim-

uli was determined individually for each participant based on their performance in the pre-test measure-

ment. The pre- and post-test measurements for the experimental group also included roll motion at

1 Hz, pitch motion at 0.2 Hz, and y-translation motion at 0.2 Hz. The control group completed the pre-

and post-test measurements in the roll 0.2 Hz and roll 1 Hz conditions, with half of the group also

completing pitch and y-translation measurements at 0.2 Hz and the other half completing pitch measure-

ments at 1 Hz. The post-test took place on the ninth day after the pre-test session and the participants

received 24 practice trials before the measurement started. The motion stimuli were presented to the par-

ticipants in random order and the participants were asked to indicate the direction of the motion. The

threshold for each motion condition was determined using a 2AFC task and a maximum likelihood

estimate.

We had to choose a subset of the original data set because not all participants completed all experimental

conditions. For reasons of comparability, we chose the subset of the data in such a way, that the overlap of

completed conditions and the number of trials to analyze is maximized. This resulted in a data set of 20

participants and a total of 22280 trials, all from the pre- and post and not from the training conditions. Con-

ditions included roll motion at 1 Hz, roll motion at 0.2 Hz, pitch motion at 0.2 Hz, and y-translation motion

at 0.2 Hz.
Method details of experiment 3

Complete details about Experiment 3 are available in the original article from Braun et al.8 In short, in

Experiment 2 of Braun et al.,8 26 participants were presented with a random-dot motion discrimination

task in blocks of 60 trials. Four participants were excluded from the analysis. Data from 22 participants

was analyzed, where each participant completed six sessions. Experimental conditions were similar to

the ones used in the auditory data set: Neutral (i.e., fully stochastic), repetitive (repetition-biased), alter-

nating (alternation-biased), with a slightly stronger bias in the biased conditions (i.e., 0.8 vs. 0.75). Crucially
14 iScience 26, 107123, July 21, 2023
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and in contrast to our experiments, participants were informed that generative transition probabilities

changed from session to session but stayed constant within each session.
QUANTIFICATION AND STATISTICAL ANALYSIS

Observer models

Data analysis was implemented in R 4.2.3.63 In order to create the predictors (predictive likelihood of IF,

AF, tdeand TP) for our analyses, we ran the observer models on all trials. In the case of IF, the observer starts

counting with a uniform prior on qB. In the case of AF, the observer starts counting with a uniform prior on

qrepetition, and in the case of TP, the observer starts counting from zero with a uniform prior on qB|A and qB|B

for each participant and condition separately (i.e. sequences of 300 responses/stimuli in the auditory data

set, sequences of 140 responses/stimuli in the vestibular data set, and sequences of 60 responses/stimuli in

the visual data set). Note that in the case of AF and TP, the predictor has to be transformed before it enters

the analyses. The predictor has to be transformed so that response = 1 is predicted on each trial.
Log-likelihood analysis

We assessed the quality of fit of the probabilistic models using a log-likelihood approach:

log p
�
response

��model
�
=
Xn
k = 1

�
responsek,log p

�
responsek

��model
��

+

�
1 � responsek

�
,log

�
1 � p

�
responsek

��model
���

where responsek is the binary choice (either 0 or 1) for the k-th trial in a sequence of length n, and p(respon-

sek|model) is the inferred probability of response k given the predictions of the learning model. The first

term in the summation corresponds to the log-likelihood when responsek = 1, and the second term corre-

sponds to the log-likelihood when responsek = 0. To implement the stimulus-only model using the log-like-

lihood approach, we replaced the binary stimulus identities (coded as 0 and 1) with extremely low and high

probabilities (i.e., 0.001 and 0.999, respectively).
Easy vs. difficult trials

The log-likelihood analysis was performed for easy and difficult trials separately. We choose the cutoff be-

tween easy and difficult trials at the stimulus intensity level. This means that in terms of number of trials, all

participants contributed equally to the easy and difficult data subsets. To determine which stimulus inten-

sities were to classify as easy or difficult trials, we first computed the accuracy per participant, stimulus, and

stimulus intensity. In each modality, a cutoff for easy vs. difficult trials was chosen at 0.75, which refers to the

median accuracy per stimulus and stimulus intensity across participants (Figure S1).
Generalized Linear Models

We used Generalized Linear Models (GLMs) with probit link function to complement the log-likelihood

analysis and report the results in the supplemental information (Figures S3 and S4). We predict participants’

binary responses in all trials (except the first trial at the beginning of a block). For all modalities and learning

models, this was done using the predictive likelihood that was based on the responses (i.e., response-

based models).

P
�
response = 1

�
= F½a+ bðstimulusÞ+

Xn� 1

i = 1

bi+1ðintensityiÞ+ bn+1ðmodelÞ+

Xn� 1

i = 1

bi+n+1ðintensityi 3modelÞ�

where n represents the number of intensity levels (levels of the ordered factor). Including an ordered factor

in the analysis will fit polynomial functions up to the n-1-th order, which means linear, quadratic, cubic, 4th

order polynomials for example, depending on the number of levels. In this equation, model refers to either

one of the three learningmodels or additionally to a model that includes a simple preference for repetition.

The probability of repeating the preceding response was set to 0.6. Like AF and TP, the predictor needs to

be transformed so that response = 1 is predicted on each trial.
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Estimating psychometric curves

To estimate psychometric curves for the auditory and visual data set, we employed Generalized Linear

Models with logit link function. They were applied to each participant and experimental condition

separately.

log

 
p
�
NB
�

p
�
NA
�
!

= a+ biðintensityÞ

whereNB andNA represent the number of times response B and Awere pressed, respectively. Note thatNA

is implicitly the complement of NB (i.e., NA = 1 � NB). We separated the trials from all experimental con-

ditions into four subsets based on the two preceding choices from the two preceding trials. Psychometric

curves were fitted separately to the observed proportion of response B in each of these four subsets.
Statistical tests

We used nonparametric two-sided Wilcoxon signed rank tests for all statistical tests against zero or pair-

wise comparisons. This choice was motivated by the fact that, in many instances, the Shapiro- Wilk

normality test yielded statistically significant results (p < 0.05), indicating that the assumption of normality

was not met.
16 iScience 26, 107123, July 21, 2023
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