Asynchronous Federated Learning for Personalized Healthcare

UNIVERSITÄT BERN

Lucas Pacheco¹ Torsten Braun¹

¹Communication and Distributed Systems, Institute of Computer Science, University of Bern

Motivation

- Personalized healthcare is essential for tailored treatments and improved patient outcomes
- Increasing health data and machine learning techniques enable disease prediction, treatment optimization, and improved patient care
- Data privacy and security concerns arise due to sharing sensitive health data among institutions
- Federated learning is a promising approach to maintain data privacy, but it faces several challenges

Experiments

- COVID-19 Chest X-ray and CT Scans dataset used for evaluation [5]
- PPAFL assessed for learning performance, privacy preservation, communication efficiency, and scalability
- Comparison with centralized and non-federated approaches
- Evaluation of adaptive learning strategy and computer networking techniques for reducing communication overhead and latency

Experimental Results

Objectives

- Develop a novel privacy-preserving federated learning algorithm tailored for personalized healthcare applications
- Integrate advancements in machine learning and computer networking to address data privacy and communication overhead challenges

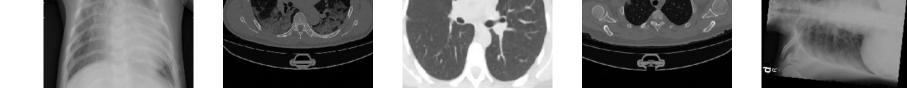
• Evaluate the algorithm's effectiveness and scalability using real-world health datasets

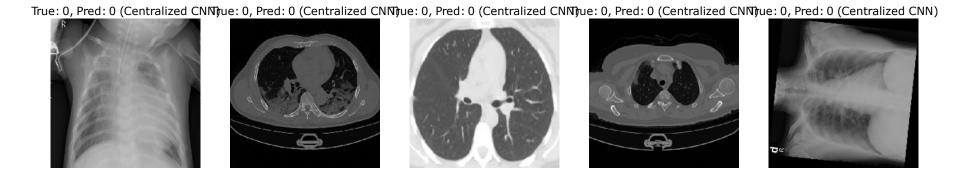
Literature review

- Personalized healthcare: importance in recent years for tailored treatments and interventions
- Rapid advancements: genomic sequencing, medical imaging, and electronic health records
- Machine learning: successful in utilizing health data for disease prediction, treatment optimization, and improved patient care [4]
- Data privacy and security challenges: increasing with volume and complexity of health data
- Sharing health data: raises privacy concerns due to potential data breaches and misuse [2]
- Federated learning: promising approach to address privacy concerns [3]
- Federated learning process: institutions train local models, share updates, and aggregate for global model without exchanging raw patient data
- Benefits: accurate and generalizable models while maintaining data privacy
- Challenges: efficient, privacy-preserving algorithms for heterogeneous, distributed healthcare data [1]
- Existing algorithms: communication overhead, inadequate data privacy protection during model aggregation

Research gaps

- Existing federated learning algorithms may not provide adequate data privacy protection during model aggregation, leaving sensitive health data potentially exposed.
- Current approaches often have high communication overhead, limiting their efficiency and practicality in real-world healthcare settings.
- Heterogeneous health data and varying client capabilities require tailored solutions, which are





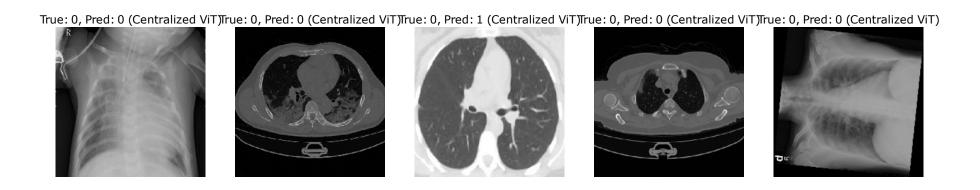


Figure 3. Sample Predictions generated from the model

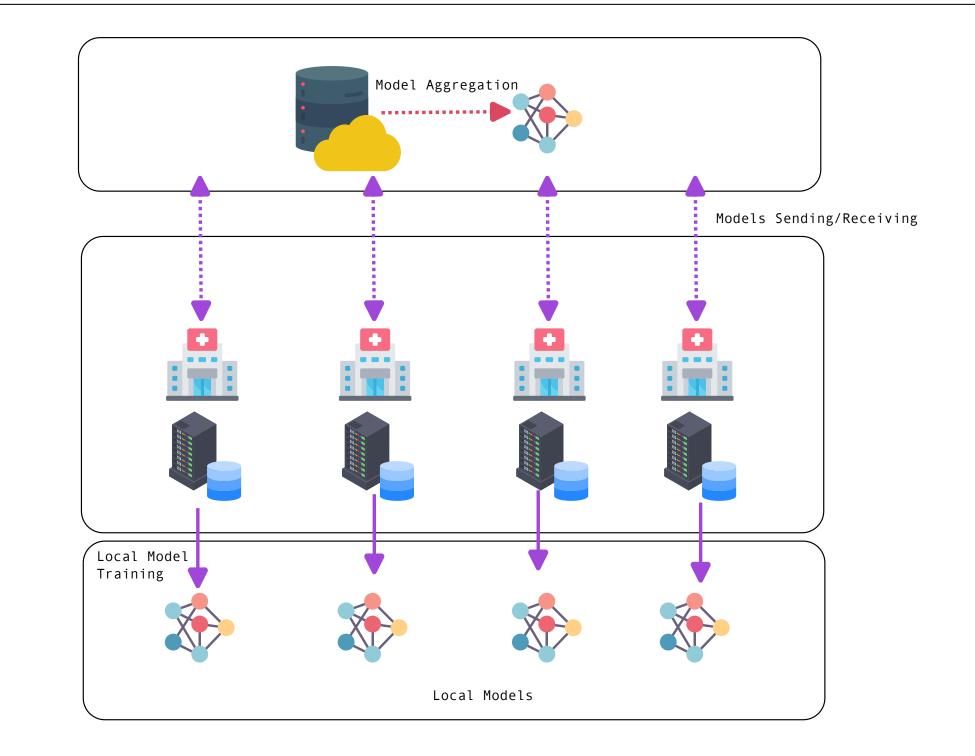
Conclusions

PPAFL has significant implications for personalized healthcare applications

not yet fully addressed by existing algorithms.

Contributions

- Privacy-Preserving Asynchronous Federated Learning Algorithm (PPAFL) for collaboration among healthcare institutions while preserving data privacy
- Adaptive learning strategy for accommodating heterogeneous health data and varying client capabilities
- Comprehensive evaluation methodology, including benchmarking against existing techniques, to demonstrate the algorithm's effectiveness and scalability



- Bridges machine learning and computer networking to enable effective collaboration, data privacy preservation, and accommodation of personalized healthcare requirements
- Potential to revolutionize data-driven decision-making in healthcare, leading to improved patient outcomes and quality of care

Future Works

- Develop more advanced privacy-preserving techniques to further enhance data security during model aggregation in federated learning.
- Investigate new communication-efficient algorithms that reduce the overhead and latency of federated learning in healthcare applications.
- Design adaptive learning strategies that can better accommodate diverse health data and varying client capabilities, leading to more accurate and personalized models.
- Evaluate the proposed federated learning algorithms on a broader range of healthcare applications and datasets to validate their generalizability and effectiveness.
- Explore the integration of additional privacy-preserving techniques, such as homomorphic encryption and secure hardware, to strengthen the overall security of the federated learning framework.

References

- T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschal idis, and W. Shi.
 Federated learning of predictive models from federated electronic health records.
 International Journal of Medical Informatics, 112:59–67, 2018.
- [2] C. Dwork and A. Roth. The algorithmic foundations of differential privacy.

Figure 1. Caption

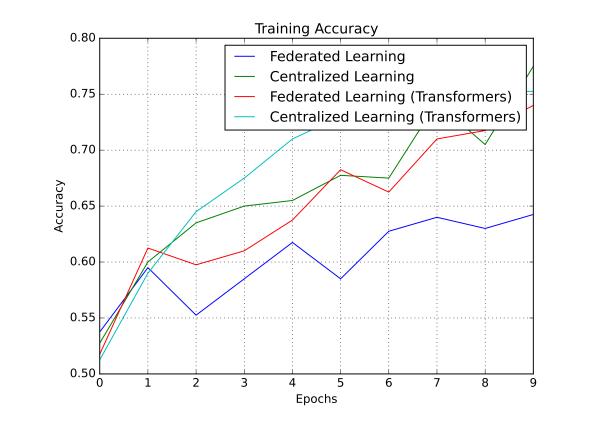


Figure 2. Training Accuracy for the different models experimented.

Foundations and Trends \mathbb{R} in Theoretical Computer Science, 9(3–4):211–407, 2014.

[3] H. B. McMahan, E. Moore, D. Ramage, and S. Hampson. Communication-efficient learning of deep networks from decentralized data.

In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), pages 1273–1282, 2017.

[4] Z. Obermeyer and E. J. Emanuel.

Predicting the future - big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13):1216–1219, 2016.

[5] E. Soares, P. Angelov, S. Biaso, M. Higa Froes, and D. Kanda Abe. Sars-cov-2 ct-scan dataset: A large dataset of real patients ct scans for sars-cov-2 identification.

medRxiv, 2020.

Bern Data Science Day 2023

{lucas.pacheco, torsten.braun}@unibe.ch