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Abstract–Micro-computed tomography (lCT) is a fast and powerful technology for studying
textural, physical, and chemical properties of solid objects in three dimensions. While
regularly used for sample documentation and curation, it is often assumed that lCT
techniques are essentially nondestructive or at least very little destructive. However, there are
very few studies proving or rejecting the assumption of nondestructiveness. Here we study
whether X-ray tomographic imaging affects the noble gas budget of matrix samples from the
CV3 carbonaceous chondrite Allende. We irradiated powdered and homogenized matrix
samples in the Bruker SkyScan 1272 lCT instrument at three different X-ray tube
acceleration voltages of 30, 70, and 100 keV. By comparing the noble gas concentrations and
especially the elemental and isotopic ratios of the irradiated samples with data for two non-
irradiated aliquots, we found no significant differences. Our study therefore demonstrates that
X-ray tomographic imaging has no measurable effect on the noble gas budget and can
therefore safely be used for sample characterization prior to noble gas studies.

INTRODUCTION

Most studies of early solar system processes, planet
formation, and the dynamics of small bodies in the solar
system are based on meteorites and other rare materials
from sample-return missions. In recent years, the amount
of sample material available for scientific studies is
getting smaller, either due to more focused studies, for
example, the investigation of certain minerals, or due to
obvious limitations for materials from sample-return
missions. At the same time, however, there is a
requirement for performing as many studies as possible
on the same sample. In this context, obtaining detailed
physical and chemical information of the studied object,
that is, chondrules, calcium–aluminum-rich refractory
inclusions (CAIs), or other inclusions, before sample
preparation and analysis provides valuable information

not only on their origin and evolution, but it also helps
optimizing sample preparation procedures.

Earlier studies established micro-computed tomography
(lCT) techniques to investigate the overall petrography of
the two CV3 chondrites Allende and Mokoja with the
goal to better constrain their formation histories (Griffin
et al., 2012; Hezel et al., 2013). In another study, Beitz
et al. (2013) used lCT techniques to experimentally study
the formation of chondrule rims and very recently, Barosch
et al. (2020) discussed that chondrule classification based on
two-dimensional cuts is not reliable and can result in a
misclassification depending on where exactly the chondrule
has been cut. They propose that 3D images, like those
obtained by X-ray tomography, are better qualified for
chondrule classification. In addition to the petrographic and
mineralogical studies, there are also studies in which lCT
imaging is used to provide a quality assessment of the
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sample preparation procedure. For example, we recently
demonstrated that lCT studies are essential to demonstrate
that separated chondrules are free of rim contamination.
Even chondrules that have been treated in an abrasion
cell and that appear round are not necessarily free of
contamination and such contamination must be removed or
at least corrected for before doing precise isotope studies.
For example, Roth et al. (2016) and Roth and Leya (2018)
demonstrated that even small amounts of remaining rim
material or matrix contamination can seriously affect the
measured noble gas concentrations. The same is true for
stable isotope studies, such as for Cr, S, and Fe.

Whereas for petrographic and mineralogical studies,
X-ray tomographic imaging can be considered
nondestructive, the same is not yet proven for noble gas
and/or stable isotope studies. Using X-ray energies of 90
and 190 keV, Hanna and Ketcham (2017) studied whether
X-ray scanning can change the remnant magnetization of
the sample. They found no resolvable change in
the magnetic moment, indicating that there is no significant
magnetic contamination. Ebel et al. (2009) also investigated
the effects caused by X-ray scanning. In this study, by using
synchrotron tomographic imaging, the authors found
changes in the composition of polycyclic aromatic
hydrocarbon. By using higher X-ray energies and longer
irradiation times, Friedrich et al. (2016) tested for changes
in the amino acids from the CM2 chondrite Murchison and
found no changes. There are two studies demonstrating that
X-ray scanning significantly affects the thermoluminescence
characteristics of the studied sample (Sears et al., 2016,
2018). The authors stated that X-ray tomographic imaging
should not be referred to as nondestructive and that it
should not be performed without prior knowledge of any
detrimental effects. Actually, detrimental effects of X-ray
scanning are expected, because of the ionizing radiation
used, more so for organic than for non-organic material.
Here we study whether or not X-ray scanning can affect the
noble gas budget of the studied samples.

EXPERIMENTAL

Sample Preparation

Chondrules and refractory inclusions were separated
from a ~2 g fragment of the CV3.6 carbonaceous
chondrite Allende. Remaining matrix material was
inspected carefully for chondrule fragments and coarser
objects and was purified using a binocular microscope and
dental tools. The extracted matrix material was further
powdered using an agate mortar, sieved using a nylon
mesh, and the grain size fraction smaller than 33 lm was
selected. We decided to use a very fine-grained fraction for
this study because we expect that any losses of noble gases
are more pronounced for smaller grain sizes than for

bigger ones. In other words, if there are no measurable
effects observed for the small grain sizes, there are no
effects expected for bigger objects like chondrules, CAIs,
and/or other inclusions that are usually studied using lCT.
Thus, the prepared powdered matrix sample was separated
into five aliquots, each with a weight of ~70 mg.

X-Ray Scanning

Three of the five prepared aliquots were selected for
irradiation treatment using a SkyScan 1272 lCT system
(Bruker microCT, Kontich, Belgium) located at the
Institute of Anatomy, University of Bern. The X-ray
source is a (non-serviceable and non-openable) microfocus
source from Hamamatsu (Type: L11871_20) with tungsten
as the target material. One sample was irradiated for 13 h
with a X-ray acceleration voltage of 100 kV, one was
irradiated for 14 h with an acceleration voltage of 70 kV,
and one was irradiated for 14 h with an acceleration
voltage of 30 kV (see Table 1). Note that the given energy
is the acceleration voltage of the X-ray source, which is not
equivalent to the peak energy in the X-ray spectrum. For
example, with an acceleration voltage in the range of
10 kV, the Bremsstrahlung spectrum has an intensity
maximum at ~6 keV. In this respect, classical X-ray
sources are different to synchrotron sources, for which a
given energy of, for example, 30 keV corresponds to the
peak energy in the spectrum.

The exposure times are in line with exposure
durations typically used for other lCT scans, especially if
one aims for low voxel sizes or high-resolution scans of
dense materials. However, the exposure durations are
slightly longer than typical irradiation durations for, for
example, chondrules, which are in the range of 10 h.

For calculating the irradiation dose, we followed the
procedure described by Friedrich et al. (2016). Briefly, we
calculated the photon spectrum using the program
SpekCalc (Polundniowski et al., 2009; Polundniowski &
Evans, 2007a, 2007b) by giving the peak energy, a
thickness of 0.5 mm for the used Al filter, and assuming a
distance of 2 cm between the X-ray tube and our samples.
The program then gives the number of photons per keV,
per cm2, and per mAs as a function of photon energy.
Multiplying the number in each energy bin with the beam
current and the irradiation duration gives the number of
photons per cm2. Assuming a sample cross-section of
~1 cm2 and ~70% absorption gives the energy delivered in
each energy bin. Integrating now over all energies gives the
total energy (in keV) absorbed by the sample. By changing
the energy unit from keV to Joule and considering the
sample mass (~70 mg for each aliquot), we can calculate
the deposited energy in J kg�1, which corresponds to the
unit Gray (Gy). Thus, the calculated irradiation doses
range between ~1.3 and ~3.1 Gy (Table 1).
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Can we bring these values into context? With an
ionization energy in the range of ~1000 kJ mol�1 for
silicon, we calculate that the 100 kV irradiation
(D ~ 61 J kg�1) can fully ionize ~87 lg of silicon. In
addition to ionization effects, there might also be effects
due to sample heating. Assuming a specific heat capacity
in the range of 1000 J kg�1 K�1, we estimate a
temperature increase of the order 0.003 K, which would
be negligible for noble gas release.

Noble Gas Measurements

From the irradiated and non-irradiated samples,
aliquots with masses in the range of 2–3 mg were taken
for noble gas studies (weights are given in Table 1). The
fine-grained powders were gently pressed into the sample
holder to avoid material loss during ablation. Each
sample holder can contain nine samples. The sample
holder is made of aluminum, its high thermal
conductivity helps to avoid heating neighbored samples
while one sample is laser irradiated. Samples were
degassed at a temperature of ~2000°C using an infrared
diode laser with a continuous wavelength of 808 nm and
a maximum power of 75 W (Type LM808, Dr.
Mergenthaler, Germany). The laser is connected to a
two-color pyrometer. The laser power is slowly increased
until the sample is completely molten.

After extraction, gases were cleaned using various
getters and cold traps in a dedicated low-volume low-blank
extraction line connected to a MAP 215-50 magnetic sector
field mass spectrometer with an improved detecting system.
Helium and Ne isotope concentrations were measured in all
five matrix aliquots together with signals from possible
interferences, that is, 20H2O

+ and 40Ar++ on 20Ne and
44CO2

++ on 22Ne. After each sample, re-extractions at
slightly higher laser powers were performed. Corrections
from re-extractions, blanks, and interferences are <2% for
3He and 4He and <1% for 21Ne.

RESULTS: STATISTICAL INTERPRETATION OF

THE DATA

We focus the following discussion on the (raw)
3He/21Ne and 3He/4He ratios because they are the most

sensitive data for studying noble gas losses. The ratios
given in Table 2 are not corrected for mass fractionation
and counting efficiency, that is, the 3He/21Ne ratios are
simply the ion counts for 3He divided by the ion counts for
21Ne (unit Hz/Hz). The 3He/4He ratios are given in the unit
(Hz/V), they are simply the readings for the ion counter
divided by the readings on the DVM for the Faraday
detector. Doing the data interpretation this way avoids
being limited by uncertainties due to counting efficiencies
and fractionation, which affect all data the same way. The
given uncertainties comprise the uncertainties from the
counting statistics and from the extrapolation of the time-
dependent noble gas readings to the time of gas inlet. The
statistical interpretation of the data has been done using
the statistical software package R.

The average 3He/21Ne ratio (raw) for the two non-
irradiated samples is 0.945 � 0.020. The uncertainty is
the 1r-standard deviation of the mean, which is larger
than the internal uncertainty. For the irradiated samples,
the average is 0.950 � 0.021 (1r-standard deviation). An
independent t-test gives a p-value of 0.8082 (t = 0.265,
df = 3), indicating that the two mean values are not
significantly different.

The (raw) 3He/4He ratios for the irradiated and the
non-irradiated samples are 1.153 9 105 � 1.756 9 103

and 1.139 9 105 � 2.030 9 103, respectively. The given
uncertainties are the standard deviations. Performing the
same t-test for the 3He/4He ratio gives p = 0.488,

TABLE 1. Sample parameters, irradiation conditions, and radiation doses.

Sample
Weight
(mg)

Irradiation energy
(kV)

Source current
(lA)

Irradiation
time (h)

Radiation
dose (Gy)

1 2.66 No irradiation

2 2.82 No irradiation
3 2.57 100 100 13 3.1
4 2.57 70 142 14 1.8

5 2.49 30 210 14 0.6

TABLE 2. Noble gas isotope ratios for irradiated and
non-irradiated samples.

Sample

Weight

(mg)

Dose

(Gy) 3He/21Ne 3He/4He

1 2.66 0 0.964 � 0.005 117,006 � 727
2 2.82 0 0.925 � 0.010 113,494 � 1471

Average 0.945 � 0.020 115,250 � 2030

3 2.57 3.1 0.953 � 0.004 114,923 � 778
4 2.57 1.8 0.974 � 0.006 115,773 � 888
5 2.49 0.6 0.922 � 0.007 111,104 � 894

Average 0.950 � 0.021 113,933 � 2030

Note: The noble gas data are not corrected for spectrometer

sensitivities. For 3He/21Ne, the data give the ratios of the counter

readings in (Hz/Hz) and for 3He/4He the data give the counter

readings divided by the Faraday readings (Hz/V).

Is lCT irradiation nondestructive? 899
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t = 0.789, df = 3. The p-value indicates that the two mean
values are not significantly different.

The statistical interpretation of the noble gas data
indicates that the 3He/4He and 3He/21Ne ratios for the
irradiated and the non-irradiated samples are
indistinguishable. If any differences, the 3He/4He and
3He/21Ne ratios in the irradiated samples are even slightly
(but not significantly) higher than the same ratios in the
non-irradiated samples, the opposite to what is expected
if there would be noble gas losses. From this finding, it is
safe to conclude that 3D X-ray imaging, even when using
irradiation doses, that is, energy, current, and time,
higher than in typical micro-CT studies and for samples
prone to noble gas loses due to their small grain size, can
be considered “nondestructive” in terms of the noble gas
budget.

CONCLUSIONS AND REMARKS

We demonstrated in a systematic study by using
irradiation doses higher than usually applied in lCT
studies and with samples of extremely small grain sizes
(<33 lm) that there are no noble gases losses; the
3He/4He and 3He/21Ne ratios of irradiated and non-
irradiated samples are indistinguishable. Therefore, 3D
X-ray tomographic imaging can safely be considered
nondestructive for noble gas studies.
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