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Active querying approach 
to epidemic source detection 
on contact networks
Martin Sterchi 1,2,3*, Lorenz Hilfiker 4, Rolf Grütter 3 & Abraham Bernstein 1

The problem of identifying the source of an epidemic (also called patient zero) given a network of 
contacts and a set of infected individuals has attracted interest from a broad range of research 
communities. The successful and timely identification of the source can prevent a lot of harm as the 
number of possible infection routes can be narrowed down and potentially infected individuals can 
be isolated. Previous research on this topic often assumes that it is possible to observe the state of a 
substantial fraction of individuals in the network before attempting to identify the source. We, on the 
contrary, assume that observing the state of individuals in the network is costly or difficult and, hence, 
only the state of one or few individuals is initially observed. Moreover, we presume that not only the 
source is unknown, but also the duration for which the epidemic has evolved. From this more general 
problem setting a need to query the state of other (so far unobserved) individuals arises. In analogy 
with active learning, this leads us to formulate the active querying problem. In the active querying 
problem, we alternate between a source inference step and a querying step. For the source inference 
step, we rely on existing work but take a Bayesian perspective by putting a prior on the duration of 
the epidemic. In the querying step, we aim to query the states of individuals that provide the most 
information about the source of the epidemic, and to this end, we propose strategies inspired by 
the active learning literature. Our results are strongly in favor of a querying strategy that selects 
individuals for whom the disagreement between individual predictions, made by all possible sources 
separately, and a consensus prediction is maximal. Our approach is flexible and, in particular, can be 
applied to static as well as temporal networks. To demonstrate our approach’s practical importance, 
we experiment with three empirical (temporal) contact networks: a network of pig movements, a 
network of sexual contacts, and a network of face-to-face contacts between residents of a village in 
Malawi. The results show that active querying strategies can lead to substantially improved source 
inference results as compared to baseline heuristics. In fact, querying only a small fraction of nodes in 
a network is often enough to achieve a source inference performance comparable to a situation where 
the infection states of all nodes are known.

The spread of infectious diseases is one of the main global threats to humans, animals, and the economy. The 
pandemic caused by the SARS-CoV-2 virus has painfully demonstrated what happens if a local outbreak of an 
infectious disease cannot be contained. However, the spread of infectious diseases is not limited to humans. It 
is, for example, also a common occurrence in networks of livestock holdings, where a pathogen is spread via 
livestock (e.g., pig) movements between  holdings1–4. From a scientific perspective, disease spread in livestock 
is of particular interest, since data on the underlying contact networks are often more readily available than for 
humans. Moreover, from a One Health5 perspective the monitoring of livestock movements makes sense, con-
sidering that animal and human health are closely interrelated.

The increased availability of contact network data, in general, has led to a variety of studies of spreading pro-
cesses on  networks6. One topic that has received a lot of attention and has prompted at least one survey  article7 is 
the identification of the source node of an epidemic (also called patient zero), or more generally of a propagation 
process. Being able to identify or detect the source of a local outbreak can play an important role in contact trac-
ing  efforts8. Once we know the source of an outbreak, it becomes easier to find all possible downstream contacts 
and take appropriate mitigation measures.
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Source inference. The source inference problem has been formally introduced in seminal work by Shah 
and  Zaman9 in the context of computer virus spreading on static networks. The authors show that for regular 
trees the likelihood of a node being the source is proportional to the number of infection sequences, originat-
ing from that source, that are consistent with a given infection tree. This number of infection sequences can be 
seen as a node centrality measure and the authors propose calling it rumor centrality. Another centrality-based 
approach that is worth mentioning is the Jordan centrality, where the most likely source is determined as the 
node that minimizes the maximum distance to other infectious  nodes10. A distance-based approach has also 
been suggested in the context of metapopulation  models11, where the authors estimate the most likely source 
as the node which renders the set of observed infected nodes most “concentric” with respect to an effective dis-
tance. Yet another purely topological approach estimates the source as the node which produces the (temporal) 
Steiner tree of lowest cost, where the cost is measured as the sum over the tree’s edge  weights12. Unlike many 
topological approaches, this method works both on static and temporal networks. Moreover, the last two meth-
ods are both agnostic with respect to the spreading dynamics.

A different, more probabilistic branch of  literature13,14 uses well-known epidemic propagation models to com-
pute individual node state probabilities, i.e., the probabilities that some node is in a given state (e.g., infectious) 
at some time, given a source node and a start time of the outbreak. The most likely source is then inferred by 
maximum likelihood (or Bayesian) estimation. Typically, a strong node independence assumption is employed 
both to make the computation of the node state probabilities tractable and to allow the computation of the source 
likelihood as a product of individual node state probabilities. In the context of computing the node state prob-
abilities, this simplification is known as individual-based approximation (IBA) and has been widely applied both 
on  static15–17 and temporal  networks14. Alternatively, the resulting approximation error can be avoided, at the 
cost of a higher computational expense, by computing the individual node state probabilities via Monte-Carlo 
simulations. This is the route that will be taken in the present paper, with the node independence assumption 
only being used to approximate the source likelihood as a product of the individual node state probabilities.

One may wonder why the node independence assumption is necessary at all, seeing as it may be possible 
to directly simulate outbreaks and count the number of times the simulated outcome is equal to the observed 
outcome. However, a naive implementation of such an approach becomes infeasible as simulated outcomes are 
increasingly unlikely to match the observed outcome when the set of observed nodes grows. As a workaround, 
Antulov-Fantulin et al.18 propose to measure the similarity (as opposed to equality) between the observed out-
come and simulated outcomes from a given source. The higher the similarity for a given source, the more a simu-
lation outcome contributes to the likelihood of that source. An entirely different approach has been developed 
by Braunstein and  Ingrosso19, who use a form of belief propagation for a continuous-time epidemic model on 
temporal networks in order to model the likelihood. Although their approach does not rely on the node inde-
pendence assumption, it still constitutes only an approximation for all networks except for trees.

Active querying. All the studies mentioned in the previous paragraphs assume that the states (susceptible, 
infectious, recovered, etc.) of all individuals or a substantial fraction of individuals in the contact network are 
known, which, as the COVID pandemic has shown, is often not realistic. A number of  studies20–26 have looked 
at the problem of optimal selection of a limited number of observers for spreading processes on static networks. 
However, these studies assume the observers to be selected a priori before any observation has been made. 
Moreover, they rely on knowing the exact infection times, and in some cases even the infecting neighbors of the 
observers.

An ultimately more realistic assumption is the scenario in which, at first, only the state of one node is 
observed. This changes the problem drastically: should we just use the initially observed node to determine the 
most likely source? Or should we gather more information about the outbreak by querying the state of other 
nodes such that we can narrow down the set of likely sources? In this paper, we focus on the second question 
and we will define the active querying problem in the context of the well-known susceptible-infectious-recovered 
(SIR) spreading model. The active querying problem is concerned with the decision of which nodes to query 
about their state in order to learn as much as possible about the true source of the epidemic. Zejnilović et al.27 
consider a related problem of sequential observer selection in the context of a deterministic spreading process 
on static networks. Spinelli et al.25 also study sequential observer selection on static networks, but knowledge 
of infection times is crucial to their approach. A major drawback of both methods is that they do not apply to 
temporal networks.

In this paper, we propose an iterative two-step approach. First, we perform an inference step based on the 
state of the initially observed node, which yields a bivariate posterior distribution over possible source nodes 
and possible durations between the start of the epidemic and the time of the first detection. Second, we pick an 
unobserved node according to some selection strategy and query its state (susceptible, infectious, or recovered). 
The newly observed node will augment the evidence about the outbreak and may improve the inference about 
the true source node (and the true duration of the epidemic). We then iterate this inference-querying cycle 
until some maximal number of queries is reached. For the querying step, we propose different active querying 
strategies that are based on ideas borrowed from the active learning  literature28,29. These strategies are based 
entirely on the node state probabilities and therefore are flexible with respect to the type of underlying network. 
Importantly, they can be applied to directed networks and temporal networks. The active querying strategies 
will be compared to simple baseline strategies such as random querying.

Contributions. In summary, the contributions of this paper are as follows:
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• We revisit the well-known source inference problem where all node states are observed at some specified time 
and analyze the source detection performance at different stages of the epidemic outbreak. In our problem 
setting both the source and the starting time of the epidemic are unknown. The results of this analysis serve 
as a benchmark for the querying results.

• We introduce the active querying problem in the context of source inference and propose a set of active 
querying strategies which are inspired by the work on active learning.

• We evaluate our active querying approach on three real-world (timestamped) contact networks: a network of 
pig movements in Switzerland, a network of assumed sexual contacts between sex workers and their clients 
that was derived from an internet  community30,31, and a network of contacts between 86 residents of a village 
in  Malawi32. We demonstrate how our computational approach for the active querying problem can lead to 
swift and efficient containment of an epidemic if the outbreak is queried in a smart (active) way. In addition, 
the Supplementary Information provides results on well-known static network models.

Before we present and discuss the results of our work, we will provide some preliminary notions and formally 
introduce the inference-querying cycle we propose.

Preliminaries
In this section, we will formally present the notion of networks as well as the SIR spreading model that forms 
the basis of our work. We will then formulate the problem that our work aims to solve.

Contact networks. The spreading of an infectious disease occurs through (physical) contact between peo-
ple or animals. Such contacts can be conceptualized as a network with the individuals being nodes and the 
contacts being edges. We denote the network (or graph) as G(V, E), where V corresponds to the set of nodes (or 
vertices) of size N = |V | and E corresponds to the set of edges of size |E|. The study of propagation processes on 
networks has traditionally focused on static networks, where contacts between nodes persist over  time33. In this 
case, an (undirected) edge is simply defined as a tuple (v, u) ∈ E , where v, u ∈ V  and (v, u) = (u, v).

Recently, the study of temporal networks has received more  attention12,14,18,19, in part because such data have 
increasingly become available. In our work, a (temporal) edge is defined as a 3-tuple (v, u, t) ∈ E , where t ∈ N 
corresponds to a discrete timestamp defining the time when the nodes v and u were in contact. The propagation 
of the disease between nodes is constrained by the temporal sequence of contacts. For example, the existence of 
a spreading cascade between nodes A and C via B does not only depend on the existence of edges (A,B, t1) and 
(B,C, t2) but also on whether t1 < t2 . Note the strict inequality in the last expression as we assume that a node 
cannot get infected and further infect other nodes within a single time step.

SIR spreading model. The susceptible-infectious-recovered (SIR) model on a (static)  network17 assumes 
that at each point in time t, a node is in one of three possible states (often called compartments): susceptible (S), 
infectious (I), or recovered (R). The dynamic process that is described by SIR is irreversible with two possible 
state transitions: susceptible nodes becoming infectious ( S → I ) at rate kβ if k neighbors in the network are in 
the infectious state and infectious nodes becoming recovered ( I → R ) at rate µ (independently of the states of 
other nodes). For the analysis of the static networks (see Supplementary Information) we model the transmis-
sion and recovery events as Poisson processes with the rates β and µ being constant, thereby implicitly assuming 
that time is continuous. For the analysis of the empirical temporal contact networks, we will use a discrete-time 
version of the SIR model. Instead of rates, we will use state transition probabilities that describe the likelihood 
of transitioning to another state during one time step. Note that the aforementioned restriction that spreading 
cascades cannot occur within a single time step makes the SIR model effectively a susceptible-exposed-infectious-
recovered (SEIR) model with nodes being in the exposed state for a period shorter than the network’s resolu-
tion.34

Problem formulation. Suppose we are given a contact network G(V, E), where contacts are either static 
or temporal. Furthermore, we assume that a disease spreads according to a SIR model with known parameters 
β and µ . The spreading process initiates from one source node denoted as q0 at some time t0 and continues for 
a period of time T until the process is detected at time t0 + T . For the analysis of the static networks (see Sup-
plementary Information), we assume that only the true source q0 is unknown to us and that t0 is known. For the 
analysis of the empirical temporal contact networks, we relax this assumption and assume that both q0 and t0 
(and consequently T) are unknown. We model the source of the epidemic and the duration of the epidemic until 
the first observation as discrete random variables Q and T, respectively. The state space of Q consists of the set of 
all nodes V, and the state space of T is the set T = {0, . . . ,K} for some sufficiently large integer K.

At each point in time, every node v ∈ V  is in one of the three possible states of the SIR model. We denote the 
state of node v at any time t > t0 as a random variable Xv(t) that can take three possible values, Xv(t) ∈ {S, I ,R} . 
At some time t1 = t0 + T , we make an observation about the states of the nodes in the network. We will dis-
tinguish two cases of observations: (1) we observe the state of all nodes in the network, which corresponds to 
a problem that has been studied extensively in related  work14,18,19 and (2) we initially observe the state of only 
one infectious or recovered node and then observe the state of additional nodes one at a time. In both cases, we 
denote the set of observed nodes as Ot1 ⊆ V  and the corresponding evidence as Et1 = {(v, xv(t1)) : v ∈ Ot1 } . In 
the first case, we simply aim to infer the maximum a posteriori (MAP) node, after marginalizing the posterior 
over T. By contrast, in the second case, we alternate an inference and query step. Queried nodes and their states 
are incrementally added to Et1 until we eventually have enough nodes to confidently determine which node may 
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be the true source node q0 . Hence, the main problem that we attempt to solve is how to decide which unobserved 
nodes to query in order to find the true source node q0 (and the duration of the epidemic) in an efficient way, 
i.e., with as few queries as possible. We assume for simplicity that all queries are made at time t1 , but performed 
sequentially.

Inference and querying
In this section, we describe the three main components of our approach. First, we introduce the inference mecha-
nism. Second, we describe the method we use to compute individual node state probabilities given a source node 
and a starting time. Finally, we present three active querying strategies.

Inference. We assume that only the SIR parameters of the propagation process are known. Hence, our prob-
lem consists of inferring both the source node Q and the duration until the first observation T, given the evidence 
Et1 . Note that once we infer T, we can also infer the starting time with t1 − T . As a consequence, we attempt to 
calculate a joint posterior distribution P(Q,T |Et1) over all nodes in V and all durations T ∈ T . We suppress the 
dependence on the fixed SIR parameters β and µ in order to keep the notation uncluttered. Assuming a-priori 
independence between Q and T and a uniform prior over Q, the posterior distribution can be written as follows:

The problem with the inference expression above is that computing the likelihood P(Et1 |Q,T) , i.e., the probabil-
ity of observing Et1 given a possible source node Q and duration until first observation T, is not straightforward 
because the states of nodes are not independent of each other in a networked system. For a continuous-time 
SIR process on static networks of size N, the exact likelihood could be computed by modeling the problem as a 
continuous-time Markov chain (see Supplementary Information for an example). However, this would require 
3N − 1 master equations, which is not practical except for very small  networks17. Therefore, the likelihood is 
usually computed using simplifying assumptions or by resorting to Monte-Carlo simulations. One common 
simplification is to assume that node states are independent of each other, which, in the context of networks, 
is called the mean-field-like approximation13. It allows us to compute the likelihood simply as the product of 
individual node state probabilities. Although a strong assumption, it has been shown that inference based on 
this independence assumption generally leads to good estimates for the source of an epidemic process on  static13 
and on temporal  networks14.

Given this independence assumption, the likelihood P(Et1 |Q = q,T = d) can be written as the product over 
individual node state probabilities Pq,d(Xv(t)):=P(Xv(t) |Q = q,T = d) . This allows for efficient computation 
of the likelihood, provided the individual node state probabilities have been computed beforehand. In order to 
avoid numerical underflow, we apply the log-sum-exp trick to compute the posterior distribution in Eq. (1) (see 
Supplementary Information).

Once we have computed the posterior in Eq. (1), we can first marginalize out T and then determine the most 
likely source as the node q with the maximal marginal posterior probability, i.e.,

Note that the proposed inference mechanism is conceptually equivalent to the Naive Bayes classifier with priors 
on Q and T, where the feature vector consists of |Ot1 | categorical components and the target classes are the ele-
ments in V.

Node state probabilities. This subsection is concerned with estimating the individual node state prob-
abilities Pq,d(Xv(t)) , as they constitute the key component for computing the (approximate) likelihood. In 
our approach, we use Monte-Carlo simulations to compute the node state probabilities, given a source and a 
duration until the first observation. More specifically, we stochastically simulate a large number n of spread-
ing processes up to time t1 , originating from source Q = q and using a duration until the first observation 
T = d . If nv, I (t) describes the number of simulations for which node v is infectious at time t (i.e., Xv(t) = I ), 
then we can estimate the probability of node v being infectious at time t, given source q and duration d, as 
Pq,d(Xv(t) = I) = nv, I (t) / n . Analogously, we can compute the probabilities of node v being susceptible or 
recovered.

Research on epidemic simulation approaches has been an active field in recent  years34,35, and fast event-driven 
approaches have been implemented for static  networks36 and for temporal  networks34. These new implementa-
tions make it possible to run extensive Monte-Carlo simulations on realistic networks in a reasonable amount of 
time. In the context of source detection, Monte-Carlo methods have only been applied in the work of Antulov-
Fantulin et al.18, Dutta et al.37, and in the simple case of a deterministic SI-model where a mathematical trick yields 
a shortcut for the  simulations21. We use Holme’s implementation of an event-driven approach for temporal net-
works, which has a worst-case time complexity per simulation run of O(N · log N · log C) for sparse networks 
with C being the maximum number of contacts between the same pair of nodes.34 However, as  Holme34 notes, 
realistic networks, especially temporal ones, are typically fragmented, which, together with realistic epidemic 
parameters, often leads to rather small outbreaks. As a consequence, run times may be much faster in practice 
than the worst-case scenario suggests. As our approach requires running n simulations for each source-duration 
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pair, we can write the overall time complexity of the simulation approach as O(n · N2 · log N · log C) , ignor-
ing the durations since |T | is typically smaller than N. In the Supplementary Information, we review two other 
approaches to the task of computing node state probabilities and compare them to the Monte-Carlo approach 
we use here.

Active querying. Thus far, we have described the inference step and the computation of the node state 
probabilities. To conclude this section, we will now introduce five different strategies that help us decide which 
unobserved nodes to query. Crucially, the evidence Et1 will be extended every time an unobserved node is que-
ried and its state at t1 becomes known. After each query step, we can recompute the posterior distribution and the 
next querying step will then be based on the updated posterior. We will consider three active and two baseline 
querying strategies.

Uncertainty sampling: UCTY strategy. Intuitively, an active querying strategy should aim to query nodes whose 
states we are most uncertain about. This naturally leads to measuring the uncertainty about a node’s state with 
the help of entropy. For this, we define the overall node state probability for a node v as

This is a form of Bayesian model averaging where we use the posterior distribution to weigh the individual 
node state probabilities. With the expression in Eq. (3), we can compute each node’s entropy:

Finally, we query the (unobserved) node with the largest entropy, i.e.,

In the active learning community this is known as uncertainty  sampling28, which we refer to as the UCTY strategy.

Activated nodes sampling: MAXP strategy. The second active strategy that we propose attempts to query nodes 
that are infectious or recovered, i.e., activated nodes. The rationale is that querying an activated node is more 
informative than querying a susceptible node, especially in small outbreaks with few activated nodes. For this, 
we simply query the (unobserved) node with the largest overall probability of being infectious or recovered, i.e.,

We refer to this as the MAXP strategy.

Disagreement sampling: AKLD strategy. The third active querying strategy we propose is, yet again, motivated 
by ideas from the active learning literature, in particular the query-by-committee  literature28,38. The general idea 
is to query a node v for which the different source-duration pairs (q, d) have strongly differing “opinions” about 
v’s state. We define a source-duration pair’s opinion about some node v as the individual node state probability 
Pq,d(Xv(t1)) . Thus, we aim to query controversial nodes. For a given (unobserved) node v and each possible 
source q ∈ V  and duration d ∈ T , we can compute the Kullback-Leibler (KL) divergence between the node state 
distribution given q and d and the overall node state distribution as computed in Eq. (3), i.e.,

Hence, the KL-divergence corresponds to the difference between the cross-entropy Hv(Pq,d , P) (for the two 
distributions Pq,d and P) and the entropy Hv(Pq,d) for the individual node state distribution Pq,d . We then select 
the unobserved node with the maximum average KL-divergence:

We refer to this as the AKLD strategy.
In Algorithm (1), we provide pseudo-code for the AKLD strategy. It is easy to see that AKLD has a (worst-

case) complexity of O(N2) (provided that the overall probability distributions P(Xv(t1)) have been computed 
beforehand). By contrast, UCTY and MAXP simply have a complexity of O(N).
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Baseline strategies: RANDOM and ONE-HOP. As a benchmark for the active querying strategies, we will con-
sider two simple baseline strategies. The first baseline strategy, RANDOM, samples the next node to be queried 
uniformly at random from the set of all unobserved nodes that can be reached by any of the possible sources 
at the earliest possible starting time. The second baseline strategy, ONE-HOP, selects nodes to be queried uni-
formly at random among the direct neighbours of observed, activated nodes. Only neighbors with contact times 
between the earliest possible starting time and the inference time are considered. Note that, for all five strategies, 
we break ties by picking a node at random.

Results
This section has been divided into four parts. First, we present the three networks used to evaluate our approach. 
Second, we illustrate with an example how our approach works for a network of animal transports. Third, we 
present the results for the source inference problem where the states of all nodes in the network are observed. 
These results will serve as a benchmark for the querying results, as observing all node states corresponds to the 
maximum amount of information that can be obtained. Finally, in the fourth part, we present the active querying 
results as compared to the fully observed inference performance. A good querying strategy is one that approaches 
the full inference performance after a few queries.

Data. We evaluate our approach on three empirical temporal networks. The first network represents reported 
pig movements in Switzerland, and we abbreviate it as PIG. We assume that a disease can only spread from the 
holding of origin to the holding of arrival and not the other way around and hence the network is directed. We 
consider a time period from January 1, 2015 to December 31, 2017 and the resulting network contains 8176 
nodes and 149, 960 timestamped edges with a daily time resolution.

The second network represents sexual contacts between sex workers and their clients and was introduced by 
Rocha et al.30,31. We abbreviate it as the ESCORT network. It is an undirected and bipartite network with a daily 
time resolution and, as in previous  research18,31, we discard the first 1000 days of the data. The resulting network 
has 14,783 nodes and 43,906 timestamped edges and spans over 1, 232 days (roughly 3.4 years).

The third network represents face-to-face contacts, measured by proximity sensors, between 86 residents of a 
village in Malawi and has been introduced by Ozella et al.32. We abbreviate this network as the MALAWI network. 
The original data has a time resolution of 20 s, which is too granular for our purposes. Hence, we aggregated the 
data to get an hourly time resolution. An edge between two residents exists if they had at least two encounters 
(measured in 20 s increments) during a given hour. The resulting (undirected) network has 86 nodes and 5, 854 
timestamped edges and spans over 321 h (roughly 13 days).

Example. Figure 1 shows how our approach, more specifically the AKLD querying strategy, applies to one 
outbreak on the PIG network. Panel  (c) shows that after initially observing node 2 as infected the marginal 
source posterior deems node 2 the most likely source. AKLD then decides to query the very central node 1 as 
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the possible sources seem to disagree most about its state. Node 1 turns out to be infected and becomes the most 
likely source (Panel (d)). Note how this renders node 29 an impossible source with a zero posterior probability. 
This is due to node 29 only having one (static) path to the infected node 1 via node 2 . However, it is not a time-
respecting path (not shown in the Figure) and thus not a possible transmission pathway. AKLD next queries 
the true source node 0 which leaves only two possible sources, the nodes 0 and 4 (Panel (e)). Note how in this 
example two queries are enough to become very confident about determining the source node. In fact, the final 
posterior after observing all nodes’ states in the network (Panel (f)) is not substantially different from the poste-
rior after two queried nodes.

c. Posterior after first observed node 2 a. (Static) sample of the network 

d. Posterior after first query (node 1)

e. Posterior after second query (node 0)b. Prior on T

f. Posterior after all nodes being observed
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Figure 1.  Example of our inference-querying cycle applied to one outbreak on the PIG network. (a) Static 
sample of the PIG network showing all infected nodes (in red) and all nodes with incoming and/or outgoing 
edges to infected nodes (in blue). The node labels of the infected nodes represent the order in which the nodes 
were infected. Thus, node 0 is the true source of this outbreak it first infects node 1 . (b) Truncated geometric 
prior distribution on the duration until first observation T. (c) Marginal posterior distributions for T and 
sources Q after the initial observation of node 2 . The true source and true T are shown in darker red. (d) 
Marginal posterior distributions for T and Q after the first query decided by AKLD (node 1 ). (e) Marginal 
posterior distributions for T and sources Q after the second query (node 0 ). (f) Marginal posterior distributions 
for T and sources Q after all nodes in the network have been observed.
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Source inference with fully observed set of nodes. The first set of results is concerned with inferring 
the source of an epidemic spread based on the fully observed set of nodes Ot1 = V  . For this, we conducted dif-
ferent sets of 500 experiments for the three empirical networks introduced above, involving different durations 
until the first observation T and different epidemic settings. Each experiment consists of (1) a simulation of a 
ground truth outbreak starting from a source node and starting time picked uniformly at random and restricted 
to have a final outbreak size of at least 10 nodes at the time of inference t0 + T , and (2) source inference based on 
the fully observed set of nodes. For the PIG and MALAWI network, we set the epidemic parameters β and µ such 
that R0 ≈ 1.5 and R0 ≈ 2 . For the ESCORT network, we replicate the experimental setup in Antulov-Fantulin 
et al.18 and set β = 0.3 and µ = 0.01.

For the PIG and MALAWI network we use a geometric prior on T with mean equal to the true value of 
T, truncated at twice the value of the true T. For the ESCORT network, we again keep with Antulov-Fantulin 
et al.18 and put a uniform prior on possible starting times in the interval [t0 − 25, t0 + 25] . The first step of our 
approach consists of computing the individual node state probabilities based on simulating outbreak scenarios 
from each possible source Q and each T. We use n = 10,000 simulations for each (Q, T) pair. The average CPU 
time consumed by this simulation process is shown in Supplementary Fig. S16.

The key output of our inference approach is the bivariate posterior in Eq. (1) that we can marginalize to get 
the marginal source posterior. We use this marginal posterior distribution to compute three different measures 
that allow us to evaluate the source inference performance. First of all, we compute the rank of the true source 
q0 in the sorted and ranked source posterior distribution. We then average the ranks of the true source over all 
experiments to get the average rank. Second, we compute the precision which is simply the fraction of experi-
ments for which the true source has rank 1. Finally, we compute the 95% credible set size (CSS)26,39, which, in our 
case, is simply the size of the smallest set of nodes that have a cumulative posterior probability of at least 95%.

The results are shown in Fig. 2. Unsurprisingly, all three performance measures indicate that source inference 
becomes harder for larger T. In other words, the longer an outbreak has time to evolve, the harder it becomes to 
infer which node started the outbreak. Moreover, it is substantially easier to infer the true source node on the 
PIG network as compared to the ESCORT and, in particular, the MALAWI network. A closer look at the results 
for the PIG network ( R0 = 1.5 ) reveals that at T = 20 , 77.4% of the experiments have only one source node left 
as a possible source after all node states are observed (not shown in Figure). This fraction decreases to 48.4% at 
T = 180 . It becomes evident that it is fairly easy to infer the true source when all nodes can be observed. This can 
be partially explained by the PIG network being directed, which leads to strong topological constraints on pos-
sible transmission pathways. Furthermore, a comparison of the (static) densities of the networks reveals that the 
density of the MALAWI network (0.08) is two orders of magnitudes larger than the density of the PIG (0.0007) 
and the ESCORT (0.0003) network. In the Supplementary Information, we provide further source inference 
results of our approach when applied to well-known static network models and show that higher densities lead 
to a substantially worse source inference performance.

A somewhat counterintuitive result is that it seems to be easier to infer the source on the PIG network for 
R0 = 2 as compared to R0 = 1.5 . A possible explanation for this is that outbreaks on the PIG network do not 
evolve past a relatively small and local scale. From Fig. 2, we can for example see that an outbreak size larger 
than 30 is unlikely, which is extremely small compared to the size of the network. At this scale, it may actu-
ally be beneficial for source inference to observe more infected nodes. This finding is consistent with that of 
Antulov-Fantulin et al.18, who show that on 4-connected lattice graphs, source detectability is higher for large 
transmission probabilities.

Active querying. Having established the full inference results as a benchmark, we now present the active 
querying results. The experimental setup is similar to the previous section. After generating a ground truth 
outbreak with the same specifications as above, we conduct the inference and querying process at time t1 . The 
process starts with picking one node uniformly at random, as the first observed node, from all activated nodes. 
Then, the inference and querying are performed iteratively up to a specified number of queries. For the PIG and 
ESCORT networks, we perform 30 queries in each experiment, while for the MALAWI network, we continue the 
querying until each node is observed (85 queries). Again, we use the average rank, the precision, and the average 
CSS to measure the source inference performance at each step of the querying process. The average CPU time 
consumed by the different querying strategies is shown in Supplementary Fig. S16. It is evident that the simula-
tion process is substantially more expensive than the querying and inference process. Moreover, AKLD is one 
order of magnitude more expensive than the other querying strategies.

First, we are interested in comparing the performance of the five querying strategies. Figure 3 shows the 
querying curves for all five strategies for small values of T. In order to relate the querying results to the full infer-
ence performance, we always indicate the full inference performance with horizontal dashed lines. It is apparent 
from this Figure that AKLD is the dominant strategy, rarely performing worse than the other strategies. On the 
contrary, AKLD often leads to a substantial improvement even when compared to the other two active strategies 
MAXP and UCTY. Therefore, we will focus on the AKLD strategy in the remainder of this section. The results 
for all five strategies are shown in Supplementary Figs. S13–S15.

Second, we conduct an extensive comparison of AKLD with the two baseline strategies ONE-HOP and RAN-
DOM for all three networks. Figure 4 presents the results for the PIG network. The results show a remarkable 
difference between AKLD and the baseline methods, even for large T. There are two other interesting effects. 
First, the relatively small and sparse outbreaks seem to favor the ONE-HOP baseline over the RANDOM strategy. 
Second, while the two baseline strategies seem to deteriorate over time (curves increasingly end further from 
the full inference performance), AKLD does not seem to suffer strongly from this effect and still gets close to 
the full inference performance at T = 180 after only 30 queries.
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Figure 5 presents the results for the ESCORT network. Here too, the AKLD strategy can lead to substantial 
improvements as compared to the baselines, especially when the precision is considered. Note that the precision 
is considerably more robust to outliers than the average rank. That is why the precision curves still approach 
the full inference performance while the average rank curves are far from the full inference performance for 
later T. It can also be seen that the curves for the RANDOM strategy are almost flat, especially for later T. The 
reason for this is that on this network there are many experiments with a large number of possible sources and 
therefore the RANDOM strategy typically samples from a large pool of nodes, of which many are not especially 
informative. Finally, we see that for later T we would need to query more than 30 nodes for all three strategies 
to reach the full inference performance.

Figure 2.  The source (mean-field-like) inference results for different durations until the first observation T 
if the states of all nodes are observed. (a) Source inference results on the PIG network for two different sets of 
experiments, one with a basic reproduction number R0 = 1.5 and one with R0 = 2 . (b) Source inference results 
on the ESCORT network for infection parameters β = 0.3 and µ = 0.01 , analogous to the setup in Antulov-
Fantulin et al.18. (c) Source inference results on the MALAWI network for two different sets of experiments, 
one with a basic reproduction number R0 = 1.5 and one with R0 = 2 . For all three networks, we measure the 
inference performance with three different measures, namely the average rank, the precision, and the average 
credible set size (CSS). In addition, we show the average outbreak size. Every point on a curve represents an 
average of 500 experiments. Error bars represent ± one standard error (s.e.m.), but errors are, in some cases, 
small and hardly discernible.
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Figure 6 presents the results for the MALAWI network. First of all, we note that source inference is substan-
tially harder than in the other two cases, a result we already observed and discussed in the previous section. 
Second, while AKLD still seems to be the best strategy overall, its benefit as compared to the other strategies, 
especially ONE-HOP, is marginal. Finally, while we proceed here with the querying until all nodes have been 
queried and observed, it is evident from the Figure that querying roughly a third of all nodes is in most cases 
enough to reach the full inference performance.

We provide further results in the Supplementary Information. First of all, a comparison of the AKLD query-
ing curves for R0 = 1.5 with those for R0 = 2 can be found in Supplementary Figs. S17 and S18. As in the full 
inference results, a higher R0 leads to better querying results for the PIG network. By contrast, a higher R0 leads 
to a slight deterioration of the querying results on the MALAWI network. Second, we test the effect of T being 
uncertain as compared to T being known for the PIG network. As expected, knowing the true value of T leads 
to slightly improved source inference results as compared to T being unknown (see Supplementary Fig. S19). 
Finally, the Supplementary Information also provides an extensive evaluation of the querying approach on static 
network models.
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Discussion
The main objective of this paper is to pose and study an active learning problem in the context of source infer-
ence in epidemics on contact networks, namely the active querying problem. The idea is to query the state of 
unobserved nodes, starting from a set of one or only a few observed nodes, in such a way as to learn as much 
as possible about the source of the outbreak with as few queries as possible. We propose three active querying 
strategies, two of them based on information-theoretic principles, and compare them to simple baseline querying 
strategies. The most striking result to emerge from the analysis is that the AKLD strategy, which selects the node 
with the maximum average KL-divergence between individual node state predictions and the consensus predic-
tion, is overall the dominant strategy and shows promising results on two out of the three empirical networks 
we analyzed. The AKLD strategy can be interpreted as a query-by-committee learning  strategy28, where the com-
mittee is the set of possible source-duration pairs. Effectively, the strategy queries controversial nodes and may 
thus be able to narrow down the search for the true source more quickly, on average, than the other strategies.

The active querying problem setting we define, as well as the approach we propose to solve the active querying 
problem, attempt to be as general as possible and close to a practical application. First of all, we assume that we do 
not have access to full snapshots of the epidemic states of a substantial fraction (or all) of the nodes, an assump-
tion often made by related  work14,18. We also do not assume that infection times are observed or that the starting 
time of the outbreak is known. Second, our approach is general enough to be applied to either static or temporal, 
as well as undirected or directed contact networks. Further generalizations, for example to weighted networks, 
are relatively straightforward. While the main text focuses on the application to temporal contact networks, 
we also provide extensive results on static network models in the Supplementary Material. Third, we present a 
Bayesian inference mechanism where non-trivial prior distributions can be used to model prior knowledge about 
possible sources and the duration of the epidemic. To make the inference tractable, we use a node independence 
assumption similar to the independence assumption made by Naive Bayes. This independence assumption is 
common in the source inference literature and has been shown to work well for source  detection13,14. Key to both 
our inference and the querying procedure is the ability to compute individual node state probabilities given a 
source and duration. Here, we make use of efficient event-driven large-scale Monte-Carlo simulations instead of 
deterministic message-passing algorithms to avoid biased probability estimates due to the node independence 
assumption used for such deterministic  approaches13,14. The Monte-Carlo procedure, even though computa-
tionally much more expensive than deterministic methods, can often be run in a reasonable time for practical 
purposes. A convenient side effect of this is that Monte-Carlo simulations are model-agnostic and, thus, any 
propagation model that can be simulated efficiently could be used. Both the simulation approach and AKLD 
have a time complexity containing a factor that is quadratic in N. Hence, our approach may be impractical for 
really large networks. In this case, parallelizing the simulation procedure is straightforward or, as an alternative, 
we could use a deterministic approach such as IBA for temporal  networks14 with a substantially smaller overall 
time complexity ( O(N · C) ) than Monte-Carlo simulations. For the querying, we can resort to the UCTY or 
MAXP strategy which have a time complexity that is linear in N.

A number of limitations to this study are worth pointing out. One weakness, apart from the mean-field-like 
independence assumption in modeling the likelihood, is that we assume the epidemic model and its parameters 
to be known. Further work is required to establish solutions that deal with a fully uncertain setting, be it model-
agnostic approaches or a Bayesian solution that puts a prior on a broad range of possible epidemic models. One 
promising avenue could be to pair our querying idea with Approximate Bayesian Computation (ABC), in which 
the likelihood for all unknown parameters would be estimated by means of a rejection sampling process that 
rejects all samples that are too dissimilar to the observed data, and which has already been applied in an epidemic 
context on static  networks37. An additional limitation is our focus on outbreaks caused by a single source node 
instead of possibly multiple sources. As has been noted by Lokhov et al.13, future research could investigate 
Monte-Carlo search procedures to find likely sets of source nodes. Finally, the active querying problem that we 
have introduced deserves closer investigation from a theoretical point of view, with the aim of better under-
standing the theoretical limits of active querying and why and under what conditions certain active querying 
strategies work well. It could also be interesting to further investigate the topological properties of nodes that 
are queried early on by active strategies.

The findings of this study have a number of practical implications. Unsurprisingly, the identification of patient 
zero works best in the early stages of an epidemic and on sparse networks, such as the PIG network, where the 
topology, especially the directed nature of the network, puts many constraints on possible transmission pathways. 
Our study demonstrates how contact networks can be used in conjunction with appropriately gauged parametric 
spreading models to make more informed decisions in a contact tracing process by recommending which nodes 
to query. The proposed AKLD query strategy in some cases leads to a dramatic improvement in the inference 
performance as compared to other strategies and often allows us to infer the source node after just a few queries 
and with the same confidence as if all nodes had been observed.

Recent events have shown that tracing the source of infections and possible nodes at risk is an important ele-
ment for understanding (and possibly containing) epidemics. Given that in practice ascertaining the infection 
status of a given node is costly—be it in terms of finding the individual at a given time, running a test, or soci-
etally due to privacy considerations—testing all nodes seems impractical. Hence, we believe that active querying 
approaches could pave the way for a more practical and cost-efficient approach to identifying the source of an 
epidemic that allocates the tracing resources to the most informative nodes.

Data availability
The Swiss pig movement data are collected by Identitas AG. For research purposes, a data request can be sent 
to Identitas AG, Stauffacherstrasse 130A, 3014 Bern, Switzerland (https:// www. ident itas. ch/). The network of 

https://www.identitas.ch/
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sexual contacts between sex workers and their clients can be downloaded from the Supporting Information of 
the article by Rocha et al.31. Finally, the network of contacts between residents of a village in Malawi is described 
in Ozella et al.32 and can be downloaded from SocioPatterns (http:// www. socio patte rns. org/ datas ets/).
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