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Abstract

Until now, next generation sequencing (NGS) data has not been incorporated into

any prognostic stratification of multiple myeloma (MM) and no therapeutic con-

siderations are based upon it. In this work, we correlated NGS data with (1) therapy

response and survival parameters in newly diagnosed multiple myeloma, treated by

VRd * and (2) MM disease stage: newly diagnosed multiple myeloma (ndMM) versus

relapsed and/or refractory (relapsed/refractory multiple myeloma). We analyzed

126 patients, with ndMM and relapsed refractory multiple myeloma (rrMM),

treated at the University Hospital of Bern (Inselspital). Next generation sequencing

was performed on bone marrow, as part of routine diagnostics. The NGS panel

comprised eight genes CCND1, DIS3, EGR1, FAM46C (TENT5C), FGFR3, PRDM1,

TP53, TRAF3 and seven hotspots in BRAF, IDH1, IDH2, IRF4, KRAS, NRAS. The pri-

mary endpoint was complete remission (CR) after VRd in ndMM, in correlation with

mutational profile. Mutational load was generally higher in rrMM, with more

frequently mutated TP53: 11/87 (13%) in ndMM versus 9/11 (81%) in rrMM (OR

0.0857, p = 0.0007). In ndMM, treated by VRd, mutations in MAPK‐pathway
members (NRAS, KRAS or BRAF) were associated with reduced probability of CR

(21/38, 55%), as compared with wild type NRAS, KRAS or BRAF (34/40, 85%; OR

0.2225, p = 0.006). NRAS c.181C > A (p.Q61K) as a single mutation event showed a

trend to reduced probability of achieving CR (OR 0.0912, p = 0.0247). Activation of

MAPK pathway via mutated NRAS, KRAS and BRAF genes seems to have a negative

impact on outcome in ndMM patients receiving VRd therapy. VRd* ‐ bortezomib
(Velcade®), lenalidomide (Revlimid®) and dexamethasone.
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1 | INTRODUCTION

Despite the development of highly efficient new treatment strategies

in multiple myeloma (MM), the disease remains incurable.1–3 New

therapeutic targets are urgently needed to further improve the

outcome.4–14 Before the introduction of daratumumab (anti‐CD38
antibody) into first line MM treatment, the proteasome inhibitor (PI)

and immunomodulatory imide drugs (IMiDs) based triplet VRd (bor-

tezomib (Velcade®), lenalidomide (Revlimid®) and dexamethasone),

followed by high dose chemotherapy and autologous stem cells

transplantation (autoHSCT) was standard of care in newly diagnosed

multiple myeloma (ndMM) for eligible patients.15–17 The addition of

daratumumab (DVRd regimen) increases the proportion of deeper

response (in terms of minimal residual disease persistence) and

eventually allows for better progression free survival (PFS).18,19

However, the benefit of overall survival (OS) for daratumomab in-

clusion has yet to be proven.20,21 Despite the efficacy of VRd and

especially DVRd combinations, the outcome in ndMM remains het-

erogeneous and most of patients will eventually relapse.22–25

Next‐generation sequencing (NGS) is a diagnostic tool for

detecting both somatic and germline mutations in MM.26 Some recent

translational NGS‐based studies already considered correlations be-

tween mutational landscape in MM and clinical outcome.4,13,27

However, due to heterogeneity of studied populations and different

therapy regimens, clear associations between mutational profile and

treatment outcome in MM have not been established. Therefore,

assessment of prognostic significance of diverse genomic lesions in

homogeneously treated MM patients is greatly needed.

We designed this study to correlate mutational profile with

therapy response and survival parameters in ndMM, treated by

standard PI/IMiDs ‐based combination, VRd regimen. We also

analyzed the difference in mutational landscape between ndMM and

relapsed refractory multiple myeloma (rrMM).

2 | MATERIAL AND METHOD

2.1 | Patients

We studied mutational profiles by NGS in bone marrow (BM) samples

from 126 patients with ndMM or rrMM who underwent routine BM

examination, complemented by NGS analysis at the University Hos-

pital of Bern (Inselspital) between August 2018 and November 2021.

Seven patients were excluded from the analysis of primary outcome

because of missing clinical data. All patients signed an informed

consent form, agreeing to the use of their data for further studies.

Multiple myeloma was diagnosed according to the criteria of

International Myeloma Working Group (IMWG) and current

European Society for Medical Oncology guidelines (2021).15 Staging

and risk assessment were performed according to Multiple Myeloma

International Staging System or Revised International Staging System

systems, depending on whether initial cytogenetic data was

available.28,29

In patients with ndMM, VRd regimen with or without high dose

consolidation and autologous stem cell transplantation (autoHSCT)

was used as standard first line treatment.15 Remission was also

evaluated according to IMWG criteria.8,30

2.2 | NGS and gene panel design

For NGS analysis, plasma cells were separated from fresh BM aspi-

rates using CD138+ magnetic cell sorting with the autoMACS® Pro

Separator. DNA was extracted using the QIAamp DNA mini kit® by

Qiagen, as previously described.31

Next generation sequencing was performed using the Ion S5

platform, with the Torrent Suite software for variant calling. All

mutations were curated manually, using publicly available databases

as well as the annotation software Alamut™ Visual Plus. Because the

sequencing was done on DNA, extracted from selected CD138+
plasma cell compartment, the allele burden was generally high, with

many variants presenting variant allele frequency (VAF) close to 50%.

We excluded all known benign germline variants. Pathogenic variants

with a high germline probability were not either considered for this

study. Next generation sequencing analysis was routinely performed

for patients with a first diagnosis of MM. For patients with a relapse

or progression of the disease, the decision to perform NGS was based

on clinical decision by the physician team.

The NGS Panel was developed for routine diagnostic in patients

with MM at the University Hospital of Bern, as previously

described.31

The genes and hotspots were selected according to the fre-

quency of occurrence given in the literature, their prognostic impact,

and ‐ for some markers ‐ for their possible function as therapeutic

targets.27,32,33 The NGS panel comprised 15 genes including splice

sites or hotspots: BRAF (exons 11 and 15), CCND1, DIS3, EGR1,

FAM46C (TENT5C), FGFR3, IDH1 (exon 4), IDH2 (exon 4), IRF4 (exon

3), KRAS (exons 2 and 3), MYD88 (L265P mutation), NRAS (exons 2

and 3) PRDM1, TP53 and TRAF3.31

2.3 | Statistical analysis

We used R‐ software version 4.2.0 for the statistical analysis.

For the primary outcome, we assessed frequency tables for each

categorical risk factor against remission status “no” complete
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remission (CR) versus CR by Fisher's exact test for count data. This

analysis was performed only for the patients, diagnosed with ndMM

who received VRd regimen as first‐line therapy. We used Benjamini‐
Hochberg's (BH) method for false discovery rate correction (Type I

error).34 Adjusted p‐values were considered significant at the 5%

level and BH adjusted p‐value were considered significant at an alpha
level of 10%.

The secondary outcomes were PFS and OS. Progression free

survival and OS were calculated from the start of treatment in ndMM

and analyzed by Kaplan‐Meier and log‐rank methods. p‐value ≤0.05
was considered as significant. We also assessed PFS and OS by

restricted mean survival time difference, which is the difference in

average time of survival at a chosen truncation time. The chosen

truncation time “τ” (a right censoring) was based on the minimum of

the maximum follow‐up times available in each respective group (so

called minimax) which is the value that makes use of all follow‐up
information available.

3 | RESULTS

3.1 | Clinical data and patient outcome

We collected data from 126 patients. Patient characteristics are lis-

ted in Table 1. Eighty‐five patients (67%) presented with ndMM and

41 (33%) with rrMM. We excluded seven patients from the analysis

of primary outcome because of missing further clinical data. Eighty‐
six patients (68%) were males. The median age was 64 years. The

median follow‐up time was 7 months in ndMM and 17 months for the

rrMM. Ten patients out of 85 in the ndMM subgroup (12%), versus

16 out of 41 in the rrMM subgroup (39%) had died at the time of the

follow‐up.
The percentage of cases with high‐risk cytogenetic aberrations

was similar in ndMM and rrMM: 22/75 (29%) and 11/34 (32%),

respectively.

The VRd regimen was given in 78/85 (92%) of ndMM.16 Most of

those patients 69/78 (88%) received a high dosis consolidation (HD)

followed by autoHSCT, and only 9/78 (12%) were not eligible for the

intensive treatment, Table 1. All patients, who received HD consoli-

dation, have reached at least a very good partial remission before the

autoHSCT. All patients with ndMM were treated by the year 2020

and no daratumumab was given as the first line treatment.

3.2 | NGS results

3.2.1 | General mutation frequency and type

In total 136 mutations were detected by NGS in 87 out of all 126

(69%) cases, Table 2. The median mutation count was one (standard

deviation 1.05), the highest number of mutations per sample was five

—in two out of the 41 rrMM cases (4.8%). We presented all detected

TAB L E 1 Clinical characteristics of patients.

Parameter

ndMM rrMM

n = 85 n = 41

Median age (years) 64 (σ11.11) 63.5 (σ11.12)

Females 26 (30.6%) 14 (34.1%)

Males 59 (69.4%) 27 (65.9%)

Cytogenetic riska

High risk 22 (25.9%) 11 (26.8%)

Low risk 53 (62.4%) 23 (56.1%)

R‐ISSb

I 18 (21.2%) 8 (19.5%)

II 45 (52.9%) 16 (39.0%)

III 15 (17.6%) 14 (34.1%)

CRAB criteriac

Yes 78 (91.8%) 33 (80.5%)

No 7 (8.2%) 5 (12.2%)

Bone marrow infiltration (histopathology)d

<10% 15 (17.6%) 7 (17.1%)

10%–30% 18 (21.2%) 13 (31.7%)

>30% 50 (58.8%) 20 (48.8%)

Type of paraprotein

IgA 8 (9.4%) 5 (12.2%)

IgG 56 (65.9%) 22 (53.7%)

IgM 0 2 (4.9%)

Type of light chain

Kappa 57 (67.1%) 21 (51.2%)

Lambda 28 (32.9%) 20 (48.8%)

Both (biclonal) 1 (1.2%) 0

Treatment

Proteasome based 78 (91.8%) 39 (95.1%)

Other 7 (8.2%) 2 (4.9%)

Median follow up time (month) 7 16

Mean follow up time (month) 12 15

Median survival time (month) 6.5e 15e

Note: Cytogenetic risk: (1) high‐risk: presence of any high risk mutation
(del(17p), t(4; 14) or t(14; 16). (2) absence of any high risk mutation.

CRAB criteria according to IMWG.

Abbreviation: R‐ISS, Revised International Staging System.
ainformation missing for 10 patients in ndMM group and 7 patients in

rrMM group.
binformation missing for 7 patients in ndMM group and 3 patients in

rrMM group.
cinformation missing for 3 patients in rrMM group.
dinformation missing for 2 patients in ndMM group and 1 patient in

rrMM group.
e10 out of 85 in the ndMM group died during the follow‐up time and 16
out of 41 in the ndMM group.
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mutations according to type, VAF and a possible effect on protein

function in the supplementary materials, Table S1.

Regarding the frequency, the most commonly mutated genes

across all 87 “NGS positives” cases were KRAS 35/87 (40%), NRAS 22/

87 (25%), DIS3 17/87 (20%), FAM46C 14/87 (16%), TP53 15 (17%),

TRAF3 11/87 (12%) and BRAF 10/87 (11%), Table 2. Mutations in

KRAS and NRAS were mutually exclusive (Figure 1).

In 56/87 (64%) cases, the mutation was a single event, which was

the most frequent for KRAS 19/56 (34%) and NRAS 13/56 (23%).

Isolated mutations were also the most common disruption event for

both genes 19 of all 35 KRAS mutants (54%) and 13/22 for NRAS

(59%).

3.2.2 | Mutations frequency and distribution among
ndMM and rrMM

In ndMM, absence of mutations was documented in 28/85 (33%)

cases, a single mutational event was found in 43/85 (51%) cases and

>1/sample mutation was detected in 14/85 (16%) patients (1.0 me-

dian mutation in ndMM, standard deviation 1.05).

In rrMM, no mutation was found in 11/41 (27%) cases, a single

mutation in 13/41 (32%) of cases and more than one mutation in 17/

41 (41%) patients (1.0 median mutation in rrMM, standard deviation

1.05). Tested by Wilcox‐test and t‐test, the number of mutations

differ significantly between ndMM and rrMM. As expected, the cases

of rrMM showed a greater mutational load, as compared to ndMM,

with a higher maximum of mutations per sample—five versus three

(p‐value <0.05) (Figure 2).
Concerning the distribution across ndMM and rrMM cases, the

proportion of mutants was similar for KRAS 21/85 (25%) in ndMM

versus 11/41 (27%) in rrMM; NRAS 15/85 (18%) in ndMM versus 7/

41 (17%) in rrMM and DIS3 9/85 (11%) in ndMM and 5/41 (12%) in

rrMM.

The frequency of TP53 mutations in rrMM was higher as

compared to ndMM nine out of 41 (22%), against 2/85 in ndMM

(p < 0.05), which is in line with previous publications.35

In addition, TP53 was significantly more often mutated in

rrMM: nine out of 41 (22%), against two out of 85 in ndMM (p‐value
<0.05). Interestingly, one case presented five different mutations in

TP53.

Thirteen mutations were found in FAM46C, of those, 7/13 (54%)

in ndMM and 6/13 (46%) in rrMM, without statistically significant

difference (p‐value 0.35).
The isolated NRAS mutations were most common for ndMM 11/

13 (85%) with only 2/13 (15%) being found in rrMM. The most shared

was Gly change at position 61 (Q61), found in 16/22 (72%). Among

these, the substitution c.181C > A (p.Q61K) was the most frequent 9/

22, or 41% of all NRAS mutants. Of those, six were found in ndMM

(67%) and three in rrMM (33%). Mutation p.Q61K in NRAS was also

the most frequent among all cases with single mutational event 6/56

(11%).

In KRAS, mutations were the most frequently found also in the

residue Q61, 16/35 (45%) of all KRAS mutations: five in rrMM and

nine in ndMM, two patients with unknown data.

Among 14 cases with DIS3 mutations from patients with known

clinical data, 9/14 were found in ndMM (64%) and 5/14 in rrMM

(36%). Interestingly, isolated mutations in DIS3 were only found in

ndMM ‐ 2/14 (14%).

BRAF mutations were found in 10 cases in total. Nine of 10

mutants BRAF with known data were almost equally distributed in

ndMM 5/9 (56%) and 4/9 rrMM (44%). Six out of those nine were

single mutations (67%), of which 5/6 cases were in ndMM and one in

the rrMM group.

Among other mutations, those within TRAF3 were more common

in ndMM 6/9 (67%).

The two IDH1 mutations were found only in ndMM, being

probably of subclonal origin, considering their low VAF, Table 2.

3.3 | Primary outcome

We investigated the impact of different mutations on treatment

outcomes in patients with ndMM receiving VRd in a cohort of 78

patients. In this group, 38 patients out of 78 (49%) had a mutation in

MAPK pathway (NRAS, KRAS or BRAF). Remarkably, only 21 of these

38 patients (55%) achieved a CR; while patients with wild type of

NRAS, KRAS or BRAF showed higher CR rate—34/40 or 85% (OR 0.22,

95%CI [confidence interval] 0.06149–0.7082, p = 0.006), as shown in

Figure 3.

TAB L E 2 Mutation distribution in patients with diagnosed
multiple myeloma (MM).

Mutations

Overall ndMM rrMM

n = 126 n = 85 n = 41

No mutation 39 (31%) 28 (22%) 11 (9%)

1 mutation 56 (44%) 43 (34%) 13 (10%)

>1 mutations 31 (25%) 14 (11%) 17 (13%)

KRAS 35 (27%) 21 (17%) 11 (9%)

NRAS 22 (17%) 15 (12%) 7 (6%)

DIS3 17 (13%) 9 (7%) 5 (4%)

TP53 15 (12%) 2 (2%) 9 (7%)

FAM46C 14 (11%) 7 (6%) 6 (5%)

TRAF3 11 (9%) 6 (5%) 3 (2%)

BRAF 10 (8%) 5 (4%) 4 (3%)

FGRF3 4 (3%) 1 (1%) 3 (2%)

IRF4 3 (2%) 0 3 (2%)

IDH1 2 (1.5%) 2 (2%) 0

EGR1 2 (1.5%) No data No data

PRDM1 1 (1%) 1 (1%) 0

Abbreviations: ndMM, newly diagnosed multiple myeloma; rrMM,

relapsed multiple myeloma.
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Concerning effect of a specific mutation, NRAS p.Q61K mutant

was associated with reduced probability to obtain CR in ndMM, as

compared to other mutations (OR 0.0912, 95%CI 0.0018–0.9948,

p‐value 0.02).
None of the other analyzed mutations was found to significantly

impact the CR rate in this study.

3.4 | Secondary outcome

As secondary outcome, we focus our attention on patients with

ndMM, homogeneously treated by VRd. The correlation of mu-

tational analysis with treatment outcome showed a negative in-

fluence of mutation in MAPK pathway –members NRAS, KRAS

and BRAF on the probability to obtain CR in newly diag-

nosed myeloma as shown in Figure 3 (OR 0.22, p = 0.006). The

negative influence of these mutations is also seen in the analysis

of PFS, with a significantly shorter median PFS of 33.9 weeks

compared to those without any of these mutations (p < 0.0001,

Figure 3).

A similar negative impact of these mutations was found on OS.

The presence of any mutation in NRAS, KRAS or BRAF genes was

associated on average with a loss of 13.5 weeks of life (95%CI −26 to
−1.04 weeks, p = 0.03).

4 | DISCUSSION

With the rapidly evolving methods of molecular analysis in the last

decade, the use of NGS becomes more and more accessible for the

routine diagnostic workup of patients with MM.31

The pattern of genomic lesions, found in our MM sample's cohort

is in line with previously published NGS based studies, where the

majority of alterations were detected in members of MAPK pathways

(KRAS, NRAS and BRAF), DIS3, FAM46C and TP53 genes.3–5,13,14,36,37

As expected, the comparison between mutational status of

ndMM and rrMM showed a greater mutational load in rrMM versus

ndMM and significantly higher frequency of TP53 mutations. These

results highlight again the importance of TP53 disruption for MM

relapse and progression MM.35,38

F I GUR E 1 Number of mutations, their frequency and overlap in multiple myeloma (MM) samples.

916 - PERROUD ET AL.
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Concerning the correlation between VRd –outcome and genomic

lesions in ndMM, mutations in NRAS, KRAS and BRAF genes were

found to be associated with lower probability of obtaining CR.

Moreover, as shown in the results, mutations in these MAPK‐path-
way's members seem to shorten PFS, Figure 3.

The oncogenic potential of MAPK‐pathway's activation via mu-

tation in KRAS, NRAS and BRAF has already been described in solid

tumors, including melanoma, colorectal and pancreatic cancer39–43

In MM, prognostic and therapeutic significance of mutations in

MAPK pathway members, as well as the timing of their appearance

during disease progression have also been assessed.

KRAS, NRAS and BRAF‐mutant are the most frequent in MM and

are the first to appear in monoclonal gammopathy of unknown sig-

nificance (MGUS).5,36,44,32,33,37,45–47 The high frequency of involve-

ment and early timing of appearance of MAPK pathway activation

points to its essential function for malignant plasma cell clone sur-

vival and expansion.36,48

However, there seem to be some discrepancies regarding impact

of outcome of mutations in NRAS and KRAS. While earlier works

studying the influence of mutations in RAS –family members (NRAS

and KRAS) on PFS and OS in MM, suggested a negative prognostic

significance of KRAS mutations, a more recent study of a small cohort

of patients suggested that rather mutant NRAS, but not KRAS could

diminish the sensitivity to proteasome inhibitors (PI) based treatment

in MM.46,49,50 A Laganà1,2 et al., have additionally shown in a large

integrative analysis in a waste MM cases series, that mutant NRAS

could rather be consider as a favorable prognostic biomarker.38

These studies present obviously several limitations, including low

sample numbers mostly from single institutions, mixed analysis

of both ndMM and rrMM patients and lack of longitudinal observa-

tion. Furthermore, patients were treated according to currently

outdated chemotherapy regimens or received single agent treat-

ment.49–51

A group from MD Anderson Cancer Center recently showed that

activated MAPK signaling could enhance proteasome capacity in

neoplastic plasma cells, thus inducing and hence a resistance to PI

based treatment.52 Based on the findings of Shirazi and co‐authors,
there could be a greater rationale for targeting MAPK‐activated MM

with BRAF or MEK inhibitors.

Another recent publication defined an activating interaction

between mutated KRAS and NRAS and mammalian target of rapa-

mycin (MTOR)‐signaling in MM.53 Therefore, the addition of MTOR

inhibitors to PI‐backbone regimens may be another possible option

to overcome MAPK‐driven resistance to standart triplets in MM.52

Concerning specific mutations and treatment outcome, NRAS

Q61 hot‐spot mutations seems in our cohort to be associated with

worse outcome in VRd treatment. NRAS Q61 hot‐spot involvement,
mostly the Q61R, but also Q61K have already been described

F I GUR E 2 Types of mutations, sorted by frequencies and clinical data such as Revised International Staging System (R‐ISS), cytogenetic
risk and first diagnosis (newly diagnosed multiple myeloma (nMM)) versus relapse (relapsed/refractory multiple myeloma (rMM)) (set).
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in different neoplasms, including other lymphoid malignancies, mel-

anoma, central nervous system tumors and colon cancer in associa-

tion with worst outcome, metastatic potential and treatment

resistance.54–65 Regarding its role in myeloma genesis, Wen et al.

have recently shown that expression of NRAS Q61R mutant and MYC

in germinal center B‐ cells in a VQ murine model, leads to higher

proliferation of plasma cells in MM.66

Concerning a putative mechanism of tumor resistance induced

by mutations in Q61 in NRAS, it seems that mutations located in

Q61 codon could impair more severely RAS‐intrinsic GTPase

function, than affecting the G12 codon.67 In addition, an important

interaction between NRAS Q61 mutations and p16INK4a inactiva-

tion in NRAS Q61K transgenic mice has been shown.68 Therefore, it

seems that Q61 NRAS‐mutant shows a stronger oncogenic activity.

F I GUR E 3 Influence of MAPK pathway activation via NRAS, KRAS and BRAF mutations on progression free survival (PFS) (upper curves)
and treatment outcome (bottom part) in newly diagnosed multiple myeloma (nMM) patients, receiving PI‐based regimens.
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In conclusion, activation of MAPK pathway via mutations in

NRAS, KRAS and BRAF genes seems to have a negative impact on

outcome in patients with ndMM treated by standard PI/IMiDs ‐
based triplets, like VRd. Furthermore, NRAS Q61K ‐mutant ap-

pears to be associated with worst outcome in this setting. Our

findings look especially relevant in context of increasing number

of therapeutic MAPK‐pathway inhibitors in development (BRAF

and MEK‐ inhibitors) which could be added to PI/IMiDs‐back-
bones. Larger prospective studies are needed to confirm our

results.
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