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Abstract. Efforts to understand the emergence of an event require our ability to measure and understand
the dynamics between time in a state (e.g., being alive or a behavior) and the outcome of the state. Studying
the main drivers that affect changes in state over time allows researchers to better understand population
dynamics and evolutionary processes. Event history analyses provide a range of theoretical and empirical
tools to explore the emergence of an event. Their use is still restricted in ecology; however, they are com-
monly used in human demography. Event history analysis is a powerful tool for measuring the probability
that an event occurs at time t. Here, we provide an introductory guide for ecologists who are interested in
exploring event history analyses in their research. In the first part of this article, we outline key concepts in
event history analyses and present a decision tree, statistical techniques, and their applications to ecological
questions. To introduce practical applications of event history analyses, we provide four detailed tutorials,
stemming from observational and longitudinal records of events in mammalian and avian species, along
with relevant R scripts. We then explain how to interpret and present results of such analyses. Our results
show that event history analyses are useful to quantify the effect of factors on the emergence of events. We
conclude by highlighting additional strengths, pitfalls, and limitations researchers should be aware of when
using such methods. We foresee the use of event history analyses for ecological studies.

Key words: censoring; Cox proportional hazard regression; ecological applications; frailty; Kaplan–Meier estimation;
mortality; parametric models; survival.

Received 7 January 2019; revised 29 November 2019; accepted 14 January 2020; final version received 9 July 2020.
Corresponding Editor: Judy Cushing.
Copyright: © 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
� E-mail: julie.landes@usherbrooke.ca

INTRODUCTION

Event history analyses, also known as survival
analyses and failure time analyses, investigate
the likelihood, also known as the risk or failure,
that an event will occur and model the probabil-
ity of a change in state over a time step (Klein
and Moeschberger 2003, Allison 2014). The types
of events that can be modeled are numerous and
include death, the failure of a nest, the emergence
of a disease, marriage, or machine breakage
(Klein and Moeschberger 2003). From the 17th
century to the 1950s, life tables were used to

study mortality in humans, the reliability of
equipment in industry, and the emergence of dis-
eases (Lee and Go 1997). In the 1950s, event his-
tory analyses were further developed (Kaplan
and Meier 1958, Armitage 1959), mainly for
biomedical purposes, and have since been
widely used in many disciplines including medi-
cal studies, demography, sociology, and engi-
neering. Behavioral ecologists have recently used
event history analyses to study mortality in gray
mouse lemurs, Microcebus murinus (Landes et al.
2017), and rhesus macaques, Macaca mulatta
(Brent et al. 2017), time to dispersal in the
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cooperatively breeding southern pied babblers,
Turdoides bicolor (Nelson-Flower et al. 2018),
latency to donate food to a conspecific in Nor-
way rats, Rattus norvegicus (Schweinfurth and
Taborsky 2017), and latency to eat a reward in a
novel object test in the cooperatively breeding
cichlid Neolamprologus pulcher (Bannier et al.
2017).

Event history analyses allow researchers to
consider censored and truncated data (see defini-
tions in Fig. 1 and Table 1), thereby reducing
sampling bias. These analyses also take into con-
sideration the emergence of the event over time,
avoiding averaging time across levels and
excluding records with missing information.
Excluding censored data not only decreases the
sample size but also inflates the estimated haz-
ard rate, which provides information about the
relative risk of changing states over a time period
(Griffin 1993, Klein and Moeschberger 2003). If

several individuals are still alive at the end of the
study period, ignoring them in the survival anal-
yses could negatively bias the survival estimate,
cause a negative temporal bias toward the end of
the study, or overrepresent individuals with a
greater likelihood of changing state over the
observed time (Griffin 1993, Klein and Moesch-
berger 2003, Allison 2014). Ecological studies will
often exclude cohorts with individuals who are
still alive at the end of study period (e.g., Bérubé
et al. 1999). For example, for long-lived species,
one may have to exclude the most recent cohorts.
However, applying event history analyses allows
for the inclusion of censored and truncated data,
which lowers potential problems with sampling
bias and increases statistical power compared to
likelihood analyses commonly used by ecologists
(Griffin 1993, Klein and Moeschberger 2003, Alli-
son 2014). Generalized linear models and gener-
alized linear mixed models with a Poisson
distribution can account for censoring and trun-
cation, such as hurdle models (left truncation
and right censoring; Jackman 2017) and Poisson
regression models for interval-censored count
data (Watson 2011); however, these models are
not the focus of this article.
The objective of this article is to introduce

event history analyses to ecologists who are
interested in exploring the potential application
of these methods to their data. The ecological
questions that can be investigated using these
methods are numerous. For example, researchers
may want to quantify the effect of given factors
on mortality, the difference in the age at first
reproduction between groups of individuals, the
duration between birth intervals, the effect of
parental care on the age at fledging or weaning
of the offspring, or the time individuals take to
show a given behavior.
This article is organized in five sections. First,

we begin by outlining key concepts and theory
involved in models of event history analyses.
Second, we describe the parameters and main
functions of the event history analyses, explain
why these parameters and functions are of inter-
est to ecologists, and provide a guide for apply-
ing statistical models of event history analyses.
Third, we outline the steps to follow concerning
data collection, data exploration, discrete-time
analyses, and continuous-time analyses. Fourth,
we provide four tutorials stemming from

Fig. 1. Fictitious example of the monitoring of ten
individuals. Each individual is followed over the stud-
ied period (bounded by the two dotted lines). Filled
circles correspond to the event. Empty circles stand for
the times an individual exits the study before its end
without having experienced the event. Individual 1
experienced the event before the study began; the cor-
responding survival data is left-censored. Individuals
2, 5, 6, and 8 did not experience the event during the
study; these data are right-censored. Individual 9 was
only studied on repeated time intervals; the data is
interval-censored.
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observational and longitudinal records of events
in mammalian and avian species, R scripts, and
interpretations of different event history analyses
(e.g., non-parametric, semi-parametric, and para-
metric results). Finally, we discuss the most likely
pitfalls encountered in event history analyses. As
this article is intended as a primer for ecologists
who are interested in applying event history
analyses, we refer readers to the classical litera-
ture and propose that this guide acts as a useful
stepping stone to further explore event history
analyses.

THE BASICS OF EVENT HISTORY ANALYSES

Event history analyses aim to analyze the
time-to-event for individuals (e.g., death or any
other event of interest) over a given amount of
time, which does not necessarily correspond to
their lifespans. The original time is the date on
which the individuals enter the study, which
could be their birth date, the date of emergence
of a disease, or an arbitrary date of first

observation. The original time can differ for each
individual. The time at last observation can cor-
respond, for example, to the time at the event or
the time the individual exits the study without
having experienced the event. In the latter case,
the survival data are right-censored (Fig. 1,
Table 1). It is, for example, the case when indi-
viduals are still alive at the end of a study on sur-
vival, or when individuals disperse outside the
studied area and are not re-captured. Under such
circumstances, we are aware that the individuals
did not experience the event until a known time.
In the case that individuals experienced the event
prior to entering in the study, the data are left-
censored (Fig. 1, Table 1). It is, for example, the
case when individuals already reproduced
before entering a study on the age at first repro-
duction. This gives the information that the event
occurred before a known time (the original time).
Finally, in the case the event is known to occur
within a time interval, the data are interval-cen-
sored (Fig. 1, Table 1). The change of status is
known to occur between two times (e.g., during

Table 1. Glossary of terms used in event history analyses.

Term Definition

Event Change of state, also known as failure, for which time-to-occurrence is analyzed. It is not
necessarily death.

Truncation Data are truncated when individuals who experience the event outside of the study period are
excluded from the analysis. Left truncation occurs when all individuals enter the study before
experiencing the event. Right truncation occurs when all individuals experience the event during
the monitored period (and thus before it ends).

Censoring Data are censored when the event is not observed during the study period, but happens before an
individual enters (left censoring) or after he/she exits the study (right censoring). In the case an
event is known to happen during a time interval, the data are interval-censored.

Absolute risk The difference between the proportion of individuals in one group that experienced the event and
the proportion of individuals in another group that experienced the event. See Appendix S1.

Hazard ratio The ratio of the hazard rates of individuals with different values for a given variable relative to
the baseline hazard function at any particular point in time. For individual i, the hazard ratio is a
function of Euler’s number to the power of a product of a vector of covariate values for the
individual i and a vector composed of one coefficient per covariate.

Relative risk The ratio of one minus the baseline survival function of the treatment group compared to one
minus the baseline survival function of the control group. See Appendix S1.

Odds ratio Within each group, the odds are calculated as the number of occurrences of the event divided by
the number of non-occurrences of the event. The odds ratio is the quotient of the odds of the
event occurring in both groups. See Appendix S1.

Remaining life expectancy Remaining life expectancy at time t is the average time remaining before the event for individuals
that have not met the event at t. See Appendix S1.

Continuous variable Numeric variable that has an infinite number of possible values.
Discrete variable Variable that can only have a limited number of values.
Time-varying covariate Covariate values vary over the individual’s life. The survival data of each individual are

fractioned to allow the covariate to take different values on different age intervals.
Stratification Splitting the variable into multiple levels (see decision tree for more information).
Clustering Individuals with recurrent event and/or observations are divided into groups based on correlated

common features.

Note: Some definitions were taken or adapted from Klein and Moeschberger (2003) and Moore (2016).
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the monitored or un-monitored period), but the
time-to-event is not precisely known within the
time period. It is also possible that individuals
experiencing the event outside the observed
time period are not considered. In this case, the
data are truncated (Table 1). Left truncation
refers to individuals that did not experience the
event prior to their entrance in the study, and
only those individuals will be taken into
account. For example, data are left-truncated in
a study of survival when all considered individ-
uals are alive at the beginning of the study. On
the contrary, right truncation refers to the case
when only individuals who experienced the
event during the studied period (after the start
and prior to the end of the study) are taken
into account. Left and right censoring and trun-
cation are rarely accounted for in ecological
studies. The structure of the survival data (trun-
cation, censoring) must be considered when
choosing which method to use.

Three functions are at the core of event history
analyses. The first is the survival function
(Box 1). The survival function is the probability
of an individual not experiencing the event
(death or any other event of interest) beyond
time t (Klein and Moeschberger 2003). This
monotonic function is equal to one at the begin-
ning of the study and declines over time toward
zero. This measure is often used to compare pat-
terns of failure (i.e., emergence of the event). The
remaining life expectancy at time x (i.e., the mean
time before experiencing the event for an indi-
vidual at time t; see Appendix S1) is estimated
from the survival function. The second function,
the probability density function, reflects the
probability that the event will occur at time t
(Box 1; Klein and Moeschberger 2003). The prob-
ability density is the negative of the derivative of
the survival function. The third and last function,
the hazard function, is the most frequently
reported and the most useful (Table 1 and Box 1).
There are several terms used to refer to the haz-
ard function, such as the hazard rate or the force
of mortality, and it is most often represented as h
(t) (Table 1 and Box 1; Klein and Moeschberger
2003). The hazard function is the instantaneous
risk, that is, the ratio of the probability density
function and the survival function, that an indi-
vidual at time t will experience the event (Klein
and Moeschberger 2003). The hazard function

cannot be negative and can take different shapes
(Klein and Moeschberger 2003). For a categorical
variable with more than two states, separate haz-
ard functions are calculated. The hazard ratio
compares the hazard rates of an individual with
a covariate value to the baseline hazard function
(Table 1; Appendix S1). For example, if there are
two or more levels in a categorical variable, the

Box 1.

Event history analyses main functions

The survival function is the probability that an indi-
vidual will remain in a state until time t. The survival
function has an interval spanning from 0 to 1. At time
0, the function takes the value of 1, and the value of
the survival function decreases monotonically over
time toward zero.

SðtÞ¼PrðT>tÞ, 0<t<∞

where T is the time at which the event occurs.
The cumulative distribution function, also known as

the cumulative risk function in event history analysis,
is the complement of the survival function.

FðtÞ¼PrðT≤ tÞ, 0<t<∞

The probability density function is the rate of change
of the cumulative distribution function. Alternatively,
it can be calculated as the negative rate of change of
the survival function.

f ðtÞ¼ d
dt
FðtÞ¼� d

dt
SðtÞ

The mortality hazard function (also known as age-
specific failure rate, force of mortality, hazard rate, or
risk function) is a measure of the propensity that an
individual experiences the event at a given time.
More precisely, it is the rate of experiencing the event
between t and t + Δt (i.e., in the time interval Δt)
knowing that the individual did not experience it
until age t:

hðtÞ¼ lim
Δt!0

1
Δt

Pðt≤T<tþΔtjT≥ tÞ, 0<t<∞

The cumulative mortality hazard is the integral of the
mortality hazard:

HðtÞ¼
Z t

0
hðuÞdu

The cumulative mortality hazard is directly linked
to the survival function:

SðtÞ¼ e�HðtÞ
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baseline hazard function represents the hazard
rate for the reference level. The hazard ratio is
often reported as a relative reduction in risk (i.e.,
probability that an event occurs in the next
instant; Table 1), and the reduction in risk is cal-
culated as one minus the hazard ratio. For exam-
ple, a hazard ratio of 0.7 is equal to a 30%
reduction in risk. A hazard ratio of one means
that the hazard ratio is equal between levels of a
categorical covariable or across the values of a
continuous covariate. For a categorical covariate

(e.g., two groups of individuals), a hazard ratio
of two would mean that twice as many individu-
als in one group will experience the event com-
pared to individuals in the other group during
the next unit of time. For a continuous covariate,
the hazard ratio is exponentiated by the units of
increase (e.g., a hazard ratio of two over a 10-unit
increase would be 210), which represents the mul-
tiplicative model structure. The hazard ratio only
applies to individuals during a specific time
frame.

Box 2.

Frailty

In a population, individuals of the same age can have different chances of experiencing an event depending on
intrinsic properties (Vaupel et al. 1979; Fig. 2). Frailty can be used in two ways: (1) as a random effect, or (2) as an
adjustment for overdispersion in univariate analysis and represents the influence of unmeasured or unobserved
covariates. Frailty is most commonly an unobservable random effect shared by individuals within the same sub-
group, and it has a multiplicative effect on the hazard rates of all subgroup members (Hougaard 2000, Klein and
Moeschberger 2003). For example, individuals that share a high frailty value will tend to experience the event ear-
lier (e.g., they have more risks of experiencing the event) than individuals that share a distinctly lower frailty value.
Shared frailty assumes that individuals from the same subgroup share the same frailty. If the frailty variance is
equal to 0, model evaluation is reduced to a fixed effect model, which implies the absence of group-level hetero-
geneity (Klein and Moeschberger 2003). Frailty is commonly assumed to have a gamma distribution. However,
there are other distributions (e.g., inverse Gaussian), and estimates can vary based on which distribution is selected
(Hougaard 1995, 2000). Failing to account for heterogeneity could cause the estimation of coefficients, standard
errors (SE), and the change in the hazard rate over time to be misleading, and negative duration dependency could
occur (i.e., a negative association between time and the hazard rate caused by two subpopulations with distinct fail-
ure rates; Blossfeld and Rohwer 2002).

Fig. 2. Mortality hazard and distribution of the times to event for a population that can be divided in two
sub-groups according to their frailty. The frail individuals (dashed line) die sooner than the robust individuals
(dotted line). The plain line represents the entire population. Figure from Samuel Pavard.
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If a model does not account for all sources of
variation that influence the hazard rate and ratio,
there could be unobserved heterogeneity (i.e.,
frailty, such as random effects; see Box 2). This
occurs when model specificity is poor, such as
when not all relevant covariates are included in
the model, or when there is structure in the data
such as distinct frailty groups experiencing dif-
ferent hazard rates. The hazard rate may not be
constant over time, which could suggest unob-
served heterogeneity. Alternatively, a changing
hazard rate may represent the difference
between the frailest individuals (i.e., they have a
higher probability of experiencing the event) and
the more robust individuals (i.e., they have a
lower probability of experiencing the event,
Box 2). The hazard may be increasing as time
progresses because the frailest individuals expe-
rience the event early, while the robust individu-
als experience it much later (Vaupel et al. 1979).
It is possible to include frailty into mixed models
(i.e., models including fixed and random effects)
to account for this possible inherent structure in
the data, while controlling for pseudoreplication
and temporal auto-correlation (Aubry et al.
2011).

EVENT HISTORY ANALYSES

In event history analyses, non-parametric,
semi-parametric, and parametric models are
available. Non-parametric models can neither
estimate the effects of covariates nor account for
time-varying covariates (Table 1), but they can be
useful to visualize raw data (Klein and Moesch-
berger 2003). Thus, in this article, we only pre-
sent non-parametric models as a tool for
preliminary explorations of the survival function
and to compare the distribution of the raw data
to the estimated distributions of the survival
function by semi-parametric and parametric
models. Non-parametric models are less applica-
ble to ecological studies (Klein and Moeschber-
ger 2003), and, consequently, this article mainly
focuses on semi-parametric and parametric mod-
els. R packages for each method are presented in
Appendix S2.

Non-parametric models
The Kaplan–Meier (KM) estimation of the sur-

vival function is non-parametric and is fitted to

the raw data (Kaplan and Meier 1958, Sedgwick
2014). For each time interval, the KM survival
function returns the probability of remaining in a
state (e.g., alive), which is calculated as the num-
ber of individuals remaining in the state divided
by the number of individuals at risk, under the
assumption that the instantaneous risk of a
change in state remains constant across intervals.
An additional assumption is that remaining in a
state until time t implies not changing state at
time t. Drops in the KM survival function only
occur at event times, and the survival function
does not drop at times when only censoring
occurs. If an individual survived until the end of
the study, the KM survival function will not go
to zero. The interpretation and extrapolation of
the survival of an individual or the cumulative
survival probability (i.e., life expectancy) should
not be performed beyond the end of the study.
The median survival of survival functions, in the
case of a variable with multiple levels, can be cal-
culated if both survival functions cross the 50th
percentile mark. Advantages of the non-paramet-
ric models are that they represent the real,
observed data without assuming a distribution
for the baseline, and the KM survival function
helps researchers visualize preliminary compar-
isons of survival functions for different levels of
categorical variables. Comparisons of survival
functions for different levels of a categorical vari-
able can be performed with a log rank test, which
returns a χ2 test statistic and P value.

Semi-parametric models
The effects of covariates on the response vari-

able and the patterns of the main functions
(Box 1) can be assessed with semi-parametric
Cox proportional hazard models, also known as
Cox’s model, which estimate the hazard func-
tion without making assumptions about the dis-
tribution of the baseline hazard rate. Cox’s
models have no intercept and estimate covariate
regression coefficients and the main functions,
whereas parametric models have an intercept
and estimate covariate regression coefficients,
the main functions, and the change in the distri-
bution of the baseline hazard over time, hence
the term semi-parametric (Griffin 1993, Klein
and Moeschberger 2003, Allison 2014). Cox’s
models assume proportionality of covariate
effects over time (i.e., proportional hazard
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assumption): for individuals with unique values
for a covariate, the ratio of their hazard rates is
constant (i.e., proportional) over the observed
time (Klein and Moeschberger 2003, Allison
2014). Thus, the effect of a covariate would
remain the same over time. For example, if sex
has an effect on mortality, the amount of this
effect will be the same all over the individuals’
life. Violation of proportional hazard assump-
tion implies an interaction between the covariate
and time. If some variables do not satisfy the
proportional hazard assumption, the variable
could be stratified (Klein and Moeschberger
2003, Allison 2014) or parametric models should
be performed. The mortality hazard function for
a Cox’s model is defined as:

hðtjxÞ¼ h0ðtÞeβx

where h0(t) is the baseline mortality hazard, for
which the distribution is unknown, t is the time
at the event or censoring, and the parameter β
quantifies the association between covariate x
and the time to the event.

Parametric models
Parametric models assume that the baseline

hazard follows a distribution. This distribution
can be monotonic (Gompertz and Weibull distri-
butions), or non-monotonic (lognormal and loglo-
gistic distributions; Klein and Moeschberger
2003). These different possible distributions
describe the mortality distributions of several
mammals (Ricklefs and Scheuerlein 2001, Gaillard
et al. 2004, Bronikowski et al. 2011). Parametric
models estimate the distribution’s parameters (for
further information on the distribution formulas
and parameters, see Klein and Moeschberger
2003). The effects of the covariates on the hazard
function can be proportional (proportional hazard
models; PH; the parametric version of the semi-
parametric model) and can vary over time (accel-
erated failure time models; AFT; the probability of
changing state increases with time), or in the same
model, some covariates can have proportional
effects and others AFT effects (PH-AFT models;
described in Landes et al. 2017). Parametric mod-
els are less flexible and powerful compared to
semi-parametric models. Further, there can be
convergence problems and difficulties characteriz-
ing the distribution of the hazard function with

parametric models. For example, if the chosen dis-
tribution of the mortality hazard baseline is the
Gompertz distribution (aeb.t), the model will be:

hðtjzÞ¼ aebteα
0z

in the case of a PH model and

hðtjxÞ¼ eβ
0xaebte

β0x

in the case of an AFT model
where a and b are the shape and scale parameters
of the Gompertz distribution, t is the time at the
event or censoring, and α0z and β0x are the
parameters of the PH and AFT models, respec-
tively, with α and β the coefficients correspond-
ing to the covariates z and x.

EVENT HISTORY ANALYSES DECISION TREE

To introduce readers to event history analyses,
we provide an overview of the different steps,
procedures and recommendations to consider in
the form of a decision tree (adapted from Griffin
1993; Fig. 3). We refer readers to the classical lit-
erature to further explore event history analyses,
as this decision tree is not exhaustive and acts as
an introduction.

Step 1: Data collection
The data collection method used can influence

the type of analyses performed (Fig. 3). The col-
lection of continuous-time data is more flexible
in the types of analyses that can be performed
than with discrete-time data. With continuous-
time data, researchers can conduct continuous-
time or discrete-time analyses, and the interval of
interest can be adjusted, depending on the
research question. Discrete-time data limit the
type of analyses that can be performed to dis-
crete-time analyses (Griffin 1993, Allison 2014).

Step 2: Data exploration
Data exploration should be performed prior to

event history analyses (Fig. 3). Researchers
should examine the distribution of durations to
events over the observed time, the number of
failures (i.e., change of state), the number of cen-
sored data, the sample size, and the number of
ties (when two or more times to events have the
same duration) per interval (Griffin 1993, Klein
and Moeschberger 2003, Allison 2014). As a rule
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of thumb, there should be a minimum of 10 fail-
ures per covariate. The number of ties is not the
total number of ties throughout the study, rather
it is the number of failures relative to the number
at risk per time interval (Griffin 1993). The
asymptotic properties of the estimators of the
hazard rate assume that the probability for ties is
zero (Griffin 1993, Klein and Moeschberger
2003). There are methods to correct for ties (e.g.,
Breslow and Efron approximations, Hougaard
2000, Klein and Moeschberger 2003).

Step 3: Discrete-time analyses
Logistic regression with a logit or cloglog link

function is commonly used for discrete-time
analyses (Allison 2014). Relative risk can be inter-
preted directly from the cloglog model output,
whereas the log odds must be converted. For

discrete-time analyses, the data need to be reor-
ganized. The number of records equals the num-
ber of time units spent in a state (Griffin 1993,
Allison 2014). For example, if the time from
hatchling to fledgling was recorded with time
intervals equal to each day and offspring A
became a fledgling after 30 d, the data set for off-
spring A would include 29 rows with the out-
come equal to 0 (non-occurrence of event) and 1
row with the outcome equal to 1 (occurrence of
event).

Step 4: Continuous-time analyses
If the effect of covariates on the hazard rate is

of interest, independent of both the distribution
of the data and the change in the hazard rate
over the observation period, a semi-parametric
model should be conducted (Griffin 1993, Klein

Fig. 3. Event history analyses decision tree (adapted from Griffin 1993; see methods for explanations). If the
assumption of covariate proportionality is met (yes), a Cox’s model can be performed. If the assumption of
covariate proportionality is not met (no), either the variable is stratified and a Cox’s model is performed or a
parametric model should be performed.
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and Moeschberger 2003, Allison 2014). The semi-
parametric model makes no assumption about
the distribution of the baseline hazard rate, and
it assumes a proportional hazard rate over time
(Griffin 1993, Klein and Moeschberger 2003, Alli-
son 2014). Each covariate should be tested for
proportionality, and violation of the proportional
hazard assumption implies an interaction
between the covariate and time. If a covariate is
non-proportional, an interaction between time
and the covariate can be included in the model
before re-testing for proportionality: if the inter-
action is significant, the variable can be stratified
(Klein and Moeschberger 2003). The stratification
—splitting the variable into multiple levels—of a
non-proportional covariate fits a different base-
line hazard for each stratum (i.e., for each level of
the stratified covariate), and stratification
assumes that the proportional hazard assump-
tion is met for the other covariates within each
stratum (Klein and Moeschberger 2003). Alterna-
tively, a parametric model could be performed.

If the change in the hazard rate over the obser-
vation period (duration dependency) is of inter-
est, a parametric model, with a distribution fitted
to the baseline hazard rate, should be conducted
(Griffin 1993, Klein and Moeschberger 2003, Alli-
son 2014). To assess which distribution to use,
AIC model selection and plotting methods are
used.

TUTORIALS

We provide four tutorials to help readers learn
how to perform event history analyses (see
Appendix S3 for tutorials 2, 3, and 4;
Appendix S4 for scripts; and Data S1 for data
sets).

Tutorial 1: Monitoring data of ducks
Event history analyses can be performed on

short-term (e.g., over a reproductive season) or
long-term individual-level observations. The
data set is published in a book (Everitt 2002; see
data in Data S1). The survival of 31 hatch-year
(young) and 19 after hatch-year (old) ducks (spe-
cies unspecified) were monitored from the begin-
ning of the study to the end of the follow-up.
Event history analyses were conducted to assess
the effect of the age group (young vs. old) on the
time to death of the ducks. Some of the data are

right-censored because of individuals who exited
the study before the end of the study.
First, we estimate the KM survival function.

Survival times for older and younger birds do
not differ (χ2 = 0.10, P = 0.77). In Fig. 4A, the
KM survival probability of experiencing death at
some time after 63 d was approximately 0.58 for
the younger birds and approximately 0.62 for the
older birds. The KM survival probability does
not reach 0 at the end of the follow-up time
(Fig. 4A), because the longest observed survival
time is right-censored at the end of the follow-up
time. If none of the observations were censored,
the KM survival probabilities would have been
absolute probabilities, and they would have rep-
resented the proportion of birds in each age
group that did not experience death by the end
of the study (Sedgwick 2014). However, KM sur-
vival probabilities with censored data represent
conditional probabilities of experiencing death
after the duration of the study (Sedgwick 2014).
The median survival is not reached in both
groups (Fig. 4A), such that we cannot interpret
the median survival or the difference in median
survival.
To estimate the effects of the variables, we con-

duct a semi-parametric Cox proportional hazard
model. The proportional hazard assumption is
not violated (ρ = −0.43, χ2 = 2.92, P = 0.09). No
problem in the functional distribution of the cen-
sored and uncensored data is detected (Fig. 4B).
We estimate the model’s predicted survival prob-
abilities (Fig. 4C), predicted cumulative hazard
function (Fig. 4E) and predicted hazard function
(Fig. 4D) for young and old birds. The smoothing
spline with 6 degrees of freedom fits the cumula-
tive hazard function better than the smoothing
splines with 3, 4, or 5 degrees of freedom (Fig. 4
E). Young and old birds experience the highest
instantaneous risk of death (hazard function)
32 d within the follow-up time. The predicted
hazard function values are below 0 from 54 d to
the end of the study for both young and old
birds; however, hazard function values cannot be
negative, so values from 54 d on are equal to 0
(Fig. 4D). The life expectancies of young and old
birds are 46.69 and 44.98 d after the beginning of
the study. At any particular time, mortality rates
are the same in both age groups such that the
age of birds does not influence the probability of
mortality (β � SE = 0.14 � 0.50, P = 0.78;
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Fig. 4. (A) Kaplan–Meier survival plot representing the estimated probability of survival of ducks over time
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hazard ratio [HR] = 1.15; 95% confidence inter-
val [CI] of HR = 0.43–3.08).

DISCUSSION

Event history analyses have great potential to
enlighten ecological studies. They provide a pow-
erful tool to study the time to an event of interest
and can be applied to most ecological domains.
Their main strengths are that they allow research-
ers to account for time-to-event (e.g., baseline
hazard) and for censored and truncated data,
which highly decreases the risk of bias. Generally,
semi-parametric models are to be favored to
investigate research questions; however, there
are research questions that can only be answered
using parametric models. For example, if the aim
of the study is to describe the distribution of the
mortality, parametric models must be used (Vau-
pel et al. 1998). Additionally, event history analy-
ses are not limited to binary states (e.g., alive/
dead), and multistate modeling is available and
can include intermediate states (Klein and
Moeschberger 2003, Jackson 2011, Moore 2016).
Competing risks occur when individuals may
experience a change in state due to more than
one cause and the causes preclude each other,
which can be incorporated in event history analy-
ses to estimate cause-specific hazards (Klein and
Moeschberger 2003, Congdon 2007, Moore 2016).
There are many different sorts of event history
analyses beyond the scope of this article (Cong-
don 2007, Boonekamp et al. 2014).

Pitfalls
We would like to acknowledge methodologi-

cal limitations and pitfalls of the previously

discussed methods. One common source of bias
is data selection. In the case that left truncation
is due to individuals who have already experi-
enced the event but are not included in the data,
the interpretation of the results should account
for this (Klein and Moeschberger 2003, Cain
et al. 2011). When the event of interest is known
to happen during a time interval, the precise
date of the event is unknown, and the data must
be considered and analyzed as interval-censored
data. To simplify the analyses, it could be tempt-
ing to artificially transform these data into right-
censored data by assigning arbitrary times at the
event (such as the middle or the end of the time
interval). This could bias the data, especially in
the case of long-lasting time intervals. If there
are some missing data (e.g., 30% of observations
with unknown date of death of offspring who
are confirmed dead), an alternative to conduct-
ing interval-censored modeling is to estimate the
date of death by randomly assigning the missing
data along the estimated function based on the
non-missing data. When a parametric model
with frailty and time-varying covariates should
be performed with data that are interval-cen-
sored, the parameters of the distribution and the
coefficient values for the covariates should be
optimized for the highest likelihood value (or
lowest negative log-likelihood value), whereas
the frailty and CIs should be estimated by boot-
strapping.
Biological interpretations of time-to-event

analyses can be challenging, especially when first
using these methods. Some examples of output
interpretations are given in this article to help
understand the results (see Tutorial 1, Fig. 4, and
Appendix S3). The output of semi-parametric

for both age groups (older, dotted line; younger, dashed line). The survival functions are represented as down-
ward step functions, and each downward step in the survival functions represents the death of a bird in the cor-
responding age group. Each plus sign represents a right-censored observation in the corresponding age group.
Censored observations were included when calculating survival probabilities; however, the censored observa-
tions influenced the survival probability at the next known (i.e., exact) death. (B) Diagnostic plot of model fit with
Martingale residuals with smoothed lines for uncensored (solid line) and censored (dotted line) observations. (C)
Predicted survival probabilities for young (dashed line) and old ducks (dotted line) from the beginning of the
study to the end of the follow-up period. (D) Predicted hazard function for young (dashed line and solid circles)
and old ducks (dotted line and empty circles). (E) Cumulative hazard function and smoothing splines with the
degrees of freedom for each smoothing splines for old (left) and young (right) ducks.

(Fig. 4. Continued)
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and parametric models returns the effects of the
covariates on the mortality hazard, and not sur-
vival. If the event is death, a positive effect of a
covariate increases the individuals’mortality and
thus decreases their survival. If the event is the
fledging of offspring from the nest, a positive
effect of a covariate corresponds to an earlier
fledging. The hazard ratio is often reported as a
reduction of risk (1 − hazard ratio × 100), and it
is sometimes misinterpreted. The hazard ratio
should not be confused with the relative risk,
and hazard ratios should not be reported as rela-
tive risks (Sutradhar and Austin 2018). The haz-
ard ratio can only be interpreted during a
specified period of time, and the outcome should
not be inferred beyond the follow-up time. For
example, a hazard ratio of 0.60 comparing two
levels of a categorical variable can be reported as
a 40% reduction in risk. This hazard ratio of 0.60
should not be misinterpreted as individuals in a
group progressing to the event at 0.60 the rate as
those in the other group. It could be interpreted
as individuals in one group changing state at
0.60 the rate of those in the other group, and that
individuals who have not experienced the event
by a specific time have 0.60 the chance of experi-
encing the event by the next time point com-
pared to individuals in the other group.

Other potential interpretation problems are
common to all modeling methods: coefficient
estimations and significance interpretations, cor-
rect checks of the model fits, and respect of the
assumptions. A particular pitfall to avoid is the
violation of the proportional hazard assumption
of semi-parametric models. It is incorrect to dis-
regard this assumption and run a semi-paramet-
ric Cox non-proportional hazard model, because
the estimates would be meaningless. If this
assumption is not met, a categorical variable that
does not meet the assumption can be stratified
(Fig. 3). An interaction between the variable,
which does not meet the assumption, and time
can be added to test whether there is a duration-
dependent effect (Fig. 3). If some, but not all, of
the covariates have a duration-dependent effect
and an AFT parametric model is conducted,
researchers should be aware that all covariates
are considered as duration dependent (Fig. 3). To
avoid this problem, an AFT-PH parametric
model should be performed (Landes et al. 2017;
Fig. 3).

Researchers should report the predicted func-
tion values based on model predictions rather
than solely reporting the KM estimates, which
are estimates fitted to raw data and do not
account for time-dependent covariates or frailty.
To obtain the hazard function from the cumula-
tive hazard function, we can refer researchers to
two methods. First, if the time interval between
two estimates of the cumulative hazard function
tends to zero, we can consider that the hazard
function is the difference between the cumulative
hazard at the end and start of the time interval
(taking into account the lengths of the time inter-
vals; Landes et al. 2017). Second, the estimation
of the predicted hazard function can be achieved
by smoothing the cumulative hazard function
using a spline and returning the derivative of the
predicted smoothing (Roshani and Ghaderi 2016;
T. Therneau, personal communication). Researchers
are faced with the difficult question of how much
smoothing to apply, and, unfortunately, there is a
lack of theory about this. The steps that we fol-
lowed in tutorial examples 1, 3, and 4 were as fol-
lows: (1) estimate the cumulative hazard
function and (2) apply a smoothing spline of the
cumulative hazard function over time, compar-
ing results across a range of 3–6 degrees of free-
dom. If too many degrees of freedom are used,
the smoothing spline may not be monotonic, and
(3) predict the values of the derivative of the
smoothing spline (T. Therneau, personal communi-
cation).

CONCLUSION

Event history analyses are powerful methods
that can be used to assess many ecological
questions. These methods have long been exclu-
sively used by medical, demographic, and
industrial studies, but ecologists have only
recently started to explore the potential of these
methods in their field (Aubry et al. 2011, Lan-
des et al. 2017). These methods are flexible,
powerful, and reduce the influence of various
biases usually encountered in ecological studies,
such as sampling biases. Semi- and fully para-
metric models are available, and different met-
rics can be estimated to describe the time of
emergence of the event of interest. We expect
an increasing number of studies using event
history analyses in the future.
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