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Abstract
I formally establish the existence of a mapping between a class of information design
games with multiple senders and a class of all-pay auctions. I fully characterize this
mapping and show how to use it to find equilibria in the information design game.
The mapping allows for a straightforward comparative statics analysis of equilibria
in the latter class of games. I use it to study the effect of the tie-breaking rule on the
distributions of posteriors and the receiver’s payoff.

Keywords All-pay auctions · Contests · Information design · Sender–receiver ·
Project selection

JEL Classification C72 · D80

1 Introduction

Games of information design typically involve an uninformed sender who chooses an
experiment structure that induces the receiver to behave in a manner that the sender
finds desirable. These games have received considerable attention in the theoretical lit-
erature in the past decade. Recent papers (Gentzkow and Kamenica 2016; Boleslavsky
and Cotton 2018; Au and Kawai 2019, 2020) have focused on modeling multiple
senders to be effectively competing for receivers’ attention. In this paper, I focus on
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the particular setup of Boleslavsky and Cotton (2018). They study two entrepreneurs
competing to persuade an investor to choose their project over a competitor’s one.
They characterize the equilibrium of this game and compare it to the outcome when
the investor has enough resources to fund both projects. They conclude that the investor
is better off under a limited amount of funds unless the prior qualities of projects are
very high. They also discuss the similarity between their competitive persuasion game,
all-pay auctions, and Colonel Blotto games. Using their model, in this paper, we for-
mally establish and characterize a mapping between a class of information design
games with multiple senders and a class of all-pay auctions.

Contests and all-pay auctions have been studied extensively. Baye et al. (1996)
fully characterize the equilibria in the all-pay auction with multiple bidders. Clark
and Riis (1998) study the case of multiple prizes. Siegel (2009) further develops our
understanding of such games by considering asymmetries between the players and
allowing for a general class of cost functions.

All-pay auctions have also been widely applied to study various competitive envi-
ronments. Examples include (i) lobbying and campaign spending (Hillman and Riley
1989; Baye et al. 1993; Che and Gale 1998; Sahuguet and Persico 2006), and (ii)
patent and R&D races (Moldovanu and Sela 2003; Che and Gale 2003). The current
understanding of all-pay auctions allows us to apply these games to study information
design problems.

In this paper, after establishing the mapping between the information design game
and the all-pay auction, summarized in Fig. 4, we employ the equilibria of the all-
pay auction to characterize the equilibrium behavior in the information design game.
Applying the equilibria of all-pay auctions instead of studying the original game
simplifies the analysis. It is particularly useful when solving the game under a gen-
eral tie-breaking rule and determining the effect that the tie-breaking rule has on
informativeness and players’ payoffs. This analysis also allows for determining the
receiver-preferred tie-breaking rule.

The approach used in this article, of first finding the correspondence between the
two classes of games and then using the results from contests to study information
design, could be applied to other similar games. In particular, the results from all-pay
auctions with multiple asymmetric bidders can be applied to study the generalization
of Boleslavsky and Cotton (2018) with three and more asymmetric quality projects.
Hence, there is potentially a significant scope for applying the results from all-pay
auctions and contests literature to current problems in information design.

2 Setup

Consider a model of two entrepreneurs (senders) competing for the funds of a single
investor (receiver). The investor has enough money to invest in one indivisible project
only. Each entrepreneur has one project idea, good or bad. The qualities of the two
projects are independent. Let the ex-ante probability that entrepreneur i has a good
project be αi,0 ∈ (0, 1).

A project requires an investment of r ∈ (0, 1). The good project brings a gross
return of 1 to the investor, and the bad project brings 0. If the investor chooses to
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Mapping an information design game into an all-pay auction

invest in the project of entrepreneur i , that entrepreneur gets a fixed payoff of w > 0;
otherwise, he gets 0. The investor may choose not to invest in any project.

The true qualities of the projects are unknown to any player. The information is
symmetric throughout the game. Before the investor chooses the project to invest in
(if any), the entrepreneurs simultaneously conduct informative experiments about the
qualities of their respective projects. The results of these experiments are public.

It is without loss of generality to formalize entrepreneur i’s choice of the experiment
as a choice of the distribution of posterior beliefs about the quality of i’s project,
Gi (α̂i ) ∈ �(�({good, bad})) such that

∫ 1
0 α̂i dGi (α̂i ) = α0,i , as in the setting of

Kamenica and Gentzkow (2011).
It is also important to discuss the tie-breaking rule. If α̂1 = α̂2 � r , we let the

investor break the tie in favor of the entrepreneur i with probability ρi ∈ [0, 1],
ρ1 + ρ2 = 1. It is suboptimal for the investor to award any contract if posteriors are
strictly below r and to choose ρ1 + ρ2 < 1. The tie-breaking rule is a part of the
equilibrium since it is the investor’s decision, whom to favor in case of a tie, and the
entrepreneurs have to form beliefs about the tie-breaking probabilities. An equilibrium
of this game with ρ1 = 1/2 has been characterized and analyzed in Boleslavsky and
Cotton (2018). Our approach will prove essential for generalizing the tie-breaking rule
and analyzing its effect on informativeness and the investor’s payoff.

3 Analysis

Our focus is to formally establish and characterize a mapping between the equilibria
of the information design game, as studied in Boleslavsky and Cotton (2018), and
the equilibria of all-pay auctions with a reserve price and a bid cap. This inter-game
mapping allows for an alternative way to solve for equilibria of the information design
game: our knowledge of outcomes in all-pay auctions transforms into the characteriza-
tion of the results in the information design game. Moreover, this approach simplifies
the comparative statics: changes in the exogenous variables of the information design
game affect the auxiliary valuations variables of the all-pay auction game (V1, V2), for
which we know the effect on the equilibrium. After we characterize the mapping, we
apply it to study the comparative statics with respect to the tie-breaking rule. Besides
serving as an application of our approach, tie-breaking rule analysis is important in
and of itself because we show that the receiver’s payoff is generally higher under
non-symmetric tie-breaking.

3.1 Characterizing themapping

Applying a technique similar to the one used in the appendix of Sahuguet and Persico
(2006), consider entrepreneur i’s decisionwhen choosing the distribution of posteriors,
Gi , and fix i’s opponent’s distribution of posteriors, Gk . Entrepreneur i’s optimized
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payoff at this stage is

W = max
Gi

∫ 1

0
w × (P{α̂k < x} + ρiP{α̂k = x})I{x�r}dGi (x) (ID)

s.t.
∫ 1

0
xdGi (x) = αi,0, and Gi is a CDF.

Writing down the Lagrangian that corresponds to this optimization problem, we have

L =
∫ 1

0
w × (P{α̂k < x} + ρiP{α̂k = x})I{x�r}dGi (x) + λi (αi,0 −

∫ 1

0
xdGi (x)).

(L)

After a series of transformations, we can also write the Lagrangian down as

L = λi

∫ 1

0

(
w

λi
× (P{α̂k < x} + ρiP{α̂k = x})I{1�x�r} − x

)

︸ ︷︷ ︸
I

dGi (x) + λiαi,0.

(L̃)

Consider the integrand I of the above expression and, in turn, rewrite it as an integral
with respect to the opponent’s CDF as a measure:

I = w

λi
× (P{α̂k < x} + ρiP{α̂k = x})I{1�x�r} − x

=
∫ 1

0

(
w

λi
(I{t<x} + ρi I{t=x}) − x

)

︸ ︷︷ ︸
vi

dGk(t).

Without using the indicator functions, write down the latter integrand as

vi (x, t) =

⎧
⎪⎨

⎪⎩

w
λi

− x, if x > t and x ∈ [r , 1]
ρi

w
λi

− x, if x = t and x ∈ [r , 1]
−x, if x < t or x /∈ [r , 1].

Recall that player i controls the distribution of x and player k—that of t . In the above
expression,we can re-interpret x as player i’s choice of a bid, bi , and t as his opponent’s
choice of a bid, bk . Note also that having a higher bid is necessary for winning the
prize of value w

λi
, that the bid always has to be paid, regardless of winning or losing,

and that one can only ever win by bidding above r but below 1. We can conclude that
this expression coincides with the payoff of a contestant in the all-pay auction with a
reserve price r , a bid cap of 1, a tie-breaking rule (ρi , ρk), and a valuation w

λi
.
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Mapping an information design game into an all-pay auction

Fig. 1 Equilibria across parameter zones, r = 2
5 , ρ1 = 3

8

Every equilibrium of the Information Design game includes the pair of CDFs of
posterior beliefs, G∗

1, G∗
2, such that one CDF, G∗

i , is the maximizer in the Information
Design problem (ID) stated above, taking the other CDF, G∗

k , and also the tie-breaking
rule, as given. To every pair (G∗

1, G∗
2) corresponds a pair of Lagrange Multipliers,

(λ∗
1, λ

∗
2). Besides, every such pair constitutes equilibrium CDFs of bids in the all-pay

auction with a reserve price r , a bid cap of 1, and a pair of valuations
(

w
λ∗
1
, w

λ∗
2

)
: for

both games, G∗
i maximizes the expected payoff given the opponent’s G∗

k .
Note that in the corresponding all-pay auction, the equilibrium pair of expected

bids equals (α1,0, α2,0). Let us characterize equilibria in the all-pay auction for all
pairs of valuations (V1, V2) that result in expected bids falling within the unit square,
(α1,0, α2,0) ∈ (0, 1)2. Doing so allows us to characterize the equilibria in the original
information design game. Setting the pair of equilibrium expected bids in the all-pay
auction game equal to the pair of prior probabilities in the original information design
game would then pinpoint the exact mapping.

3.2 Equilibrium bidding and expenditures

Denote player i’s valuation from winning the item as Vi . In a working paper, Muratov
(2022), I find and characterize the equilibria of the all-pay auction with the reserve
price and the bid cap.1 Figure1 shows the parameter regions with different equilibrium
regimes (note that there is a non-empty subregion with multiple equilibria, indicated
by labels C and D; the multiplicity of equilibria will be further addressed below).

Below is a brief description of the equilibrium behavior in each

1 I also provide this characterization in my thesis, Muratov (2019).
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Fig. 2 Equilibrium in zones A, A′

(A, A′) For the region V1 � V2 ∈ [r , 1), Fig. 2a shows the support of equilibrium
bidding strategies and the atoms. The dots indicate the atoms and the solid
lines indicate the support of continuous bidding.
Note that bidder 1 hasmultiple equilibrium strategies in zoneA′, as t ∈ [0, 1].
t is a free parameter, with t×r

V2
standing for the size of the atom that player 1

has at bidding r ; Fig. 2b plots a typical pair of CDFs for this case.
(B, B ′) Zones B and B ′ are defined as

B(V1, V2; ρ1, ρ2) =
{

ρ2
1V1 − ρ1 > ρ2

2V2 − ρ2, V2 ∈
[

1,
1 − ρ1r

1 − ρ1

)}

,

B ′(V1, V2; ρ1, ρ2) =
{

ρ2
1V1 − ρ1 = ρ2

2V2 − ρ2, V2 ∈
[

1,
1 − ρ1r

1 − ρ1

)}

.

Figure3a shows the equilibrium bidding in those regions.2 Figure3b shows
a pair of CDFs for a typical value of (V1, V2) in the region B.

2 On that figure, u1
.= ρ2−ρ1+ρ21V1−ρ22V2

ρ21
.
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Fig. 3 Equilibrium in zones B, B′

(C) If (V1, V2) ∈
[
1−ρ2r

ρ1
, 1

ρ1

)
×
[
1−ρ1r

ρ2
, 1

ρ2

)
in an equilibrium player 1 bids 0

and 1 with probabilities 1−ρ2V2
ρ1V2

and V2−1
ρ1V2

, respectively; player 2 bids 0 and

1 with probabilities 1−ρ1V1
ρ2V1

and V1−1
ρ2V1

, respectively.

(C’) If V1 = 1−ρ2r
ρ1

, V2 ∈
[
1−ρ1r

ρ2
, 1

ρ2

)
, in an equilibrium player 1 bids 0, r , and

1, with probabilities
(

t 1−ρ2V2
ρ1V2

, (1 − t) 1−ρ2V2
ρ1V2

, V2−1
ρ1V2

)
, respectively; player 2

bids 0 and 1 with probabilities ρ1r
1−ρ2r and 1−r

1−ρ2r , respectively.
3

(D) If (V1, V2) ∈
[
1−ρ2r

ρ1
,+∞

)
×
[
1−ρ1r

ρ2
, 1

ρ2

)
in an equilibrium player 1 bids r

and 1 with probabilities 1−ρ2V2
ρ1V2

and V2−1
ρ1V2

, respectively; player 2 bids 0 and

1 with probabilities ρ1V1−(1−r)
ρ1V1

and 1−r
ρ1V1

, respectively.

3 Here, t ∈ [0, 1] is again a free parameter.
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Fig. 4 Mapping of equilibria, r = 2
5 , ρ1 = 3

8

The remaining cases are either symmetric to the ones described or result in the expen-
ditures being on the boundary of the unit square ((α1,0, α2,0) ∈ [0, 1]2\(0, 1)2).

Recall that the prior expected qualities of projects in the information design game
correspond to the expected spending of the players in the all-pay auction. Figure4
shows the correspondence between geometric regions of different types of equilibria
in the space of prize valuations (V1, V2) and in the space of priors/expenses (α1,0, α2,0).

Several observations are worth pointing out. First, notice that zones A′ and B ′ are
line segments in the (V1, V2)-space; thus, corresponding equilibria occur in knife-edge
cases.However, in the (α1,0, α2,0)-space, the same zones have non-zeromeasures. This
phenomenon occurs precisely because of the multiplicity of equilibria in A′ and B ′ of
the all-pay auction game. Namely, various sizes of player 1’s atom at r lead to multiple
levels of α1,0 possible for a fixed value of α2,0.

Second, note that regions C and D have a non-empty intersection in the (V1, V2)-
space, while in the (α1,0, α2,0)-space, they only have a knife-edge intersection along
α2,0 = 1−r

1−rρ2
. This happens because C and D in the all-pay auction lead to different

equilibriumbidding and, as a result, different ranges of expenditures,which correspond
to non-overlapping (except for the line segment) C and D in the information design
game.

The expressions for the geometric regions of different equilibrium regimes in the
(α1,0, α2,0)–space are:

A(α1,0, α2,0) =
{

α1,0 ∈
[

r ,
1

2
(1 + r2)

)

, α2,0 ∈
[

0,
√

α2
1,0 − r2

)}

, (3.1)

A′(α1,0, α2,0) =
{

α1,0 ∈
[

α2,0,

√
α2
2,0 + r2

]

, α2,0 ∈
[

0,
1

2

(
1 − r2

)]}

,

(3.2)

B
(
α1,0, α2,0; ρ1, ρ2

) =
{
1

2
(1 + r2) � α1,0 <

1 − r + ρ2r2

1 − ρ1r
,

0 � α2,0 <
(1 − 2ρ1 + α1,0ρ

2
1 )ψ + ψ2

ρ2
2 (α1,0ρ

2
1 + ψ)

}

, (3.3)
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Mapping an information design game into an all-pay auction

where ψ = ρ1

√
2ρ1 + α1,0(2 − ρ1(4 − α1,0ρ1)) − 1 − r2ρ2

2 ;

B ′ (α1,0, α2,0; ρ1, ρ2
)

=
{

α1 � α1,0 � α1 + r2ρ2
2

α2,0ρ
2
2 + ρ2φ

,
1 − r2

2
< α2,0 � 1 − r

1 − rρ2

}

, (3.4)

where

α1(α2,0, ρ1, ρ2) =
(ρ1 − ρ2)

(
(ρ2 − ρ1) − ρ2φ + ρ2

1r2 + α2
2,0ρ

2
2

)

ρ2
1 (1 + 2α2,0(ρ1 − ρ2) − ρ1(2 − ρ1r2))

+α2,0(2 − φ − ρ1(8ρ2 − ρ1ρ
2
2r2 − (1 + 2ρ2)φ))

ρ2
1 (1 + 2α2,0(ρ1 − ρ2) − ρ1(2 − ρ1r2))

,

φ =
√

(ρ2 − ρ1)(1 − α2,0)2 + ρ2
1 (r

2 + α2
2,0); (3.5)

and

C(α1, α2; ρ1, ρ2) =
{

1 − r

1 − ρ1r
� α1,0 < 1,

1 − r

1 − ρ2r
� α2,0 < 1

}

, (3.6)

C ′(α1, α2; ρ1, ρ2) =
{

1 − r

1 − ρ1r
� α1,0 < 1, α2,0 = 1 − r

1 − ρ2r

}

, (3.7)

D
(
α1,0, α2,0; ρ1, ρ2

) =
{
1 − r + ρ2r2

1 − rρ1
� α1,0 < 1, 0 � α2,0 � 1 − r

1 − ρ2r

}

.

(3.8)

In the expressions above,ψ being properly defined is ensured by α1,0 � (1/2)(1+r2)

and φ – by α2,0 � 1−r2
2 .

It is also useful to define how the priors (α1,0, α2,0)map into the valuations in zones
with continuous bidding, i.e. A, A′, B, and B ′:

V A
2 = α1,0 +

√
α2
1,0 − r2, V A

1 = α1,0V A
2 − r2

α2,0
(3.9)

V A′
2 = α2,0 +

√
α2
2,0 + r2, V A′

1 = V A′
2 (3.10)

V B
2 = 1 − ρ1(2 − α1ρ1) + ψ

ρ2
2

, (3.11)

V B
1 = 1 − 2ρ1 + α1,0ρ

2
1

ρ2
1α2,0

V B
2 + ρ1(2 − ρ1r2) − 1

ρ2
1α2,0

,

V B′
2 =

α2,0ρ
2
2 +

√
ρ2
2 (ρ2 − ρ1 + r2ρ2

1 − 2α2,0(ρ2 − ρ1)) + (α2,0ρ
2
2 )

2

ρ2
2

,

V B′
1 = ρ2

2V B′
2 + (ρ1 − ρ2)

ρ2
1

. (3.12)
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We can now state the mapping result:

Proposition 1 There exists a unique mapping between equilibria in the information
design game and the all-pay auction. For every pair of priors in zones A–D of
(α1,0, α2,0)-space, this mapping defines a pair of valuations in a corresponding zone
of (V1, V2)-space. For each zone, the equilibrium distributions of posteriors in the
information design game are the same as the equilibrium distributions in the all-pay
auction. The mapping is defined by 3.1–3.8 and 3.9–3.12.

We derive the formulae for valuations and the correspondence between the geometric
regions of priors and valuations in “Appendix A”.

The algorithm to find the equilibrium in the information design game using the
mapping is the following. Given an exogenous pair of priors, (α1,0, α2,0), and fixing
the equilibrium strategy of the investor, summarized by the tie-breaking rule, (ρ1, ρ2),
we can determine in which region, A to D, the pair of priors fall. Then, depending
on the region, we know what type of equilibrium behavior the bidders follow. The
formulae provide the pairs of valuations (V1, V2) for each pair of priors. Having the
valuations, we can write down the expressions for the equilibrium CDFs.

Using this mapping, we can also perform the comparative statics exercise. Having
the auxiliary valuations variables is especially useful for that purpose. From the point
of view of the information design game, those variables are endogenous. However, in
the all-pay auction game, they are exogenous, and the way the distributions react to
changes in valuations is well understood.

Investor’s payoff The first–best investor’s payoff occurs under the perfectly informa-
tive experiment. In equilibrium, it occurs in zone C . The support of posteriors there
is {0, 1}2. In other regions, there are some informational losses.

It is important to notice that in regions A′ and B ′, if α1,0 increases, but the pair
of priors stay within the same region, it only results in entrepreneur 1 putting more
mass on the atom at r . Hence, such an increase in α1,0 does not lead to a higher
investor’s payoff. However, if both priors increase along the 45-degree line in A′ or
the α1(α2,0, ρ1, ρ2)-line in B ′, it leads to changes in the supports of posteriors and
increases the investor’s payoff. Moreover, along the 45-degree line in A′ and along the
α1-line in B ′, entrepreneur 1 does not have an atom at r but has an atom at 0. There
is also some continuously distributed mass above r but below 1. In zone B ′, as priors
approach zone C along the α1-line, the continuous parts of distributions shrink, and
the supports become increasingly closer to {0, 1}2, unlike in zones B and D, where
entrepreneur 1 always has an atom at r .

4 Tie-breaking rule analysis

In this section, we analyze the effect of varying the tie-breaking rule (ρ1, ρ2) in the
information design game. Here, we treat the valuations in the all-pay auction preimage
game (V1, V2) as endogenous and the prior beliefs in the information design game
(α1,0, α2,0) as exogenous.

In zones A and A′, the tie-breaking rule plays no role. In zones B, B ′, and D, the
tie-breaking rule has two effects: it shifts the borders of those regions, and it changes
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Fig. 5 Change of distributions in response to ρ1 increase in B

the equilibrium behavior of the entrepreneurs. The tie-breaking rule also affects the
borders of C .

In the series of lemmata below,wefirst characterize how the entrepreneurs’ behavior
changes with the tie-breaking rule within the zones, and then how the borders of the
zones change.

Let qρ = (qρ1, qρ2) and ρ̂ = (ρ̂1, ρ̂2) such that ρ̂1 > qρ1. Denote the distributions of
posterior beliefs in equilibrium under qρ by ( qG1, qG2), and under ρ̂—by (Ĝ1, Ĝ2).

Lemma 1 Choose two tie-breaking rules qρ, ρ̂, and priors (α1,0, α2,0) so that
(α1,0, α2,0) ∈ B under both tie-breaking rules and ρ̂1 > qρ1. Then, both Ĝ1 � qG1 and
Ĝ2 � qG2 in the sense of second-order stochastic dominance (hereafter, SOSD). The
investor prefers the equilibrium under qρ to that under ρ̂.

The proof of the lemma above is in “Appendix B.1”, where we apply the implicit
function theorem to the system

α1,0 = (ρ2 − ρ1)(V2 − 1)2 + ρ2
1 (r

2 + V 2
2 )

2V2ρ
2
1

, α2,0 = ρ2
2V 2

2 + ρ1(2 − ρ1r2) − 1

2V1ρ
2
1

to study the effect of change of ρ1 on V1 and V2.4 We show that V1 is decreasing in
ρ1, and V2 is increasing. After that, knowing how the CDFs depend on V1 and V2, we
can conclude the stochastic ordering stated in the lemma.

Recall also that experiment A is Blackwell more informative than experiment B if
the distribution of posteriors under B dominates that under A in the sense of SOSD.
Since both distributions of posteriors are dominated for the lower value of ρ1, they are
more informative, and the receiver prefers more informative outcomes.

We plot the change of distributions with respect to an increase of ρ1 in zone B in
Fig. 5.

We continue with the comparative statics with respect to ρ in zone B ′.

4 This system defines the expenditures in region B.
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Fig. 6 Change of distributions in response to ρ1 increase in B′

Lemma 2 Choose two tie-breaking rules qρ, ρ̂ and priors (α1,0, α2,0) so that
(α1,0, α2,0) ∈ B ′ under both tie-breaking rules and ρ̂1 > qρ1. Then, both qG1 � Ĝ1

and qG2 � Ĝ2 SOSD. The investor prefers the equilibrium under ρ̂ to that under qρ.

The proof in “Appendix B.2” again relies on applying the implicit function theorem to
the system that defines expenditures in zone B ′ joint with the equation ρ2

1V1 − ρ1 =
ρ2
2V2 − ρ2.
Note that the increase of ρ1 has opposite effects on the investor’s payoff in zones

B and B ′: the payoff increases with ρ1 in B ′ but decreases in B (Fig. 6).
Besides the change of equilibrium behavior of entrepreneurs within the regions,

varying the tie-breaking rule also shifts the borders of the regions. The directions of
those shifts are stated below:

Lemma 3 With the increase of ρ1:

(i) The upper bound of B on α1,0 increases, and the upper bound on α2,0 decreases;
(ii) The upper bound of B ′ on α2,0 decreases, and both bounds on α1,0 increase;
(iii) The upper bound of D on α2,0 decreases, and the lower bound on α1,0 increases.

We prove this lemma in “Appendix B.3”. What Lemma 3 also says is that

α1(α2,0, ρ1, ρ2) andα1(α2,0, ρ1, ρ2)+ r2ρ2
2

α2,0ρ
2
2+ρ2φ

are increasing inρ1. Figure7 depicts

how zones shift with respect to an increase in ρ1.
It would also be helpful to study how C changes, varying the tie-breaking rule, and

find the range of priors that C can span. From the definition of C , it is easy to see that
with the increase of ρ1, the lower bound on α1,0 increases, while the lower bound on
α2,0 decreases. In order to determine the frontier of points spanned by C , consider the

point (α1,0, α2,0) =
(

1−r
1−ρ1r , 1−r

1−(1−ρ1)r

)
. It lies at the intersection ofC’s lower bounds

on α1,0 and α2,0. Note that for any such point, it holds that

dα1,0

dα2,0
= dα1,0/dρ1

dα2,0/dρ1
= − (1 − r)r/ (1 − ρ1r)2

(1 − r)r/ (1 − ρ2r)2
= −α2

1,0

α2
2,0

.
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Fig. 7 Shift of zones in response to ρ1 increase

Fig. 8 Shift of C in response to ρ1 increase

After solving the above differential equation with initial condition α1,0

(
2−2r
2−r

)
=

2−2r
2−r , we get the expression for the frontier:

α
f rontier
1,0 (α2,0) = (1 − r)α2,0

(2 − r)α2,0 − (1 − r)
.

We can now state the result regarding C :

Lemma 4 Zone C spans the region α1,0 � α2,0(1−r)

α2,0(2−r)−(1−r)
, α2,0 ∈ (1 − r , 1).

Figure8 depicts the effect of ρ1 on C together with the α
f rontier
1,0 .
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4.1 Investor-preferred tie-breaking rule

With the above comparative statics results at hand, let us analyze the tie-breaking rules
that maximize the investor’s expected payoff. In this section, we focus on the case of
α1,0 � α2,0.5

Recall that the tie-breaking rule is a part of the equilibrium. Before choosing the
experiments, entrepreneurs have to form the correct beliefs about the way the investor
will break any ties after the results of the experiments are realized. How can the
investor choose the tie-breaking probabilities? Without being too formal, we could
allow the investor to make announcements about the intended tie-breaking before
the entrepreneurs choose their experiments. Unlike the announcements in the form
of “only projects with posterior equal to 1 will be funded,” statements about tie-
breaking do not require the commitment to follow through. We can then focus on such
equilibria in which entrepreneurs believe the investor and the investor makes truthful
announcements.

Zone C allows for the investor’s first-best payoff. For priors exactly at the frontier
α

f rontier
1,0 (α2,0), there is a unique tie-breaking rule that induces the fully informative

equilibrium. For the priors strictly above, there are multiple such rules. In the corollary
below, we state the tie-breaking probabilities that implement full information and that
are closest to the “fair” probabilities (ρ1, ρ2) = (1/2, 1/2) (also note that for priors in

the square segment, (α1,0, α2,0) ∈
[
2(1−r)
2−r , 1

]2
the “fair” rule already implements the

fully informative equilibrium, so we do not specify a separate rule for that region):

Corollary 1 The region α1,0 � α2,0(1−r)

α2,0(2−r)−(1−r)
, α2,0 ∈ (1 − r , 1) allows for fully

informative equilibrium under some tie-breaking rule. For α1,0 � α2,0, (α1,0, α2,0) /∈
[
2(1−r)
2−r , 1

]2
, one such tie-breaking rule is (ρ1, ρ2) =

(
(1−r)(1−α2,0)

rα2,0
,

α2,0−(1−r)

rα2,0

)
.

Call the set of priors for which the first-best investor’s payoff is achievable C .
Let us now determine the preferred tie-breaking rule when the investor’s first-

best is not achievable. We will focus on the case of α1,0 � α2,0, with the
remainder being symmetric. We can further exclude from the analysis the region{
α1,0 � 1+r2

2 , α2,0 � 1−r2
2

}
, because the distributions of posteriors there do not

depend on ρ.
For the remaining zones, B(α1,0, α2,0; ρ1, ρ2), B ′(α1,0, α2,0; ρ1, ρ2), and

D(α1,0, α2,0; ρ1, ρ2), it is useful to define their respective “mirror” zones as:

B M (α1,0, α2,0; ρ1, ρ2) = B(α2,0, α1,0; ρ2, ρ1),

B ′M (α1,0, α2,0; ρ1, ρ2) = B ′(α2,0, α1,0; ρ2, ρ1),

DM (α1,0, α2,0; ρ1, ρ2) = D(α2,0, α1,0; ρ2, ρ1).

Figure9 depicts the zones together with their “mirror”—counterparts.
Regions B ′ and B ′M are adjacent to each other. The regions border along the line

α1 (as in 3.5). The investor’s payoff increases with ρ1 in B ′ but decreases in B ′M

5 The analysis also applies to the case of α1,0 < α2,0 if we switch the roles of ρ1 and ρ2.
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Fig. 9 Zones with mirrors, ρ1 = .39, r = .42

because ρ1 and ρ2 switch roles. Besides, line α1 is increasing in ρ1. Thus, for a fixed
prior (α1,0, α2,0) initially in region B ′, the payoff increases with ρ1 until the prior is
at line α1 and then decreases with ρ1 when the prior moves to region B ′M . For every

prior in
{
α1,0 � max{ 1−r2

2 , α2,0}, α2,0 � 1−r2
2

}
\C , define (ρ�

1, ρ
�
2) as a tie-breaking

rule, which places this prior on the border between B ′ and B ′M , i.e.

ρ�
1(α1,0, α2,0) = {ρ1|α1,0 = α1(α2,0, ρ1, 1 − ρ1)}.

Naturally, such a tie-breaking rule allows the investor to achieve a local maximum.
Figure10 depicts the behavior of ρ� as a function of α1,0 for various levels of α2,0.
The other two types of tie-breaking rules which can achieve local maxima are

ρ1 ∈
{[

0, α1,0−(1−r+r2)
r(α1,0−r)

]
, if α1,0 � 1 − r + r2

{0}, if α1,0 < 1 − r + r2.
(“rule 0”)

and

ρ1 ∈
{[

(1−α2,0)(1−r)

r(α2,0−r)
, 1
]
, if α2,0 � 1 − r + r2

{1}, if 1+r2
2 � α2,0 < 1 − r + r2.

(“rule 1”)

“Rule 0” either moves a prior into zone D (for α1,0 � 1 − r + r2) or into zone B
with ρ1 = 0 (for α1,0 < 1 − r + r2). In zone B, the investor’s payoff decreases with
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Fig. 10 ρ�
1(α1,0, .) for various levels of α2,0

ρ1, so setting it as low as possible within zone B is desirable. In “Appendix C”, we
characterize an equilibrium in B under ρ1 = 0. In zone D, the investor’s payoff is at
the locally optimal level of α1,0 + α2,0 − α1,0α2,0 − r .

Adopting the “rule 1” allows the investor to achieve the same payoff of α1,0+α2,0−
α1,0α2,0 − r when the prior can move to zones B M or DM (i.e. when α2,0 � 1+r2

2 ).
We summarize these observations in the proposition belowwith the formal analysis

in “Appendix D”.

Proposition 2 Consider the priors α1,0 � α2,0 outside of zones A(α1,0, α2,0),
A′(α1,0, α2,0), and C. If α1,0 �= α2,0, the investor benefits from a non-symmetric
tie-breaking rule, (ρ1, ρ2) �= (1/2, 1/2).

– If α2,0 < 1−r2
2 , the optimal tie-breaking rule is “rule 0”,

ρ1 ∈ [0,max{0, α1,0−(1−r+r2)
r(α2,0−r)

}];
– If (α1,0, α2,0) ∈

[
1−r2
2 , 1+r2

2

]2
, the optimal tie-breaking rule is ρ�

1(α1,0, α2,0);

– If (α1,0, α2,0) > ( 1+r2
2 , 1−r2

2 ), or (α1,0, α2,0) > ( 1−r2
2 , 1+r2

2 ), ρ�
1 and “rule 0”

achieve local maxima; which of them is globally optimal, depends on parameters;
– Moreover, if α2,0 > (1 + r2)/2, “rule 1” also achieves a local maximum.

We illustrate the results of Proposition 2 on Fig. 11 graphically, where we plot
the investor’s profit normalized by the respective optimal level of profit. There, in
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Fig. 11 Investor’s payoff from ρ1 under various parameters

panel (a), for the blue solid line, parameters are in region
[
1+r2
2 , 1

)
×
(
0, 1−r2

2

]
;

and for the red dashed line—in region
[
1−r2
2 , 1+r2

2

]2
; in panel (b), parameters are in

region
[
1+r2
2 , 1

)
×
[
1−r2
2 , 1+r2

2

]
; and in panels (c)—in region

[
1+r2
2 , 1

)
×
[
1+r2
2 , 1

)
.

Furthermore, Fig. 12 shows which of the tie-breaking rules achieve local maximum
depending on the parameter region.

Finally, let us establish the conditions for which the investor prefers the internal tie-
breaking ruleρ� to either of the “corner” rules. For every pair of priors in [ 1−r2

2 , 1)2\C ,
there is ρ� that places the prior on the border between B ′ and B ′M . Note also that
under ρ�, both entrepreneurs have atoms at {0} ∪ {1}, continuously distributed mass
of posteriors in (r , α), but no atoms at r . If we fix an initial prior (α1,0, α2,0) and
corresponding ρ�(α1,0, α2,0), there exists a path along α1(α2,0, ρ

�
1, 1 − ρ�

1) towards
the first-best region C . Along that path, the distributions of posteriors are ordered
in the sense of First Order Stochastic Dominance: as α2,0 increases, the equilibrium
distributions increase. As priors get sufficiently close to C , the continuous parts of
both distributions shrink, and the distributions approach the perfectly informative
distributions,
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Fig. 12 Zones with respect to optimal rules

α̂i =
{
1, w.p. αi,0,

0, w.p. 1 − αi,0,

and the investor’s payoff approaches the first-best payoff (α1,0+α2,0−α1,0α2,0)(1−r).
On the other hand, for priors we consider under “0 rule” and “1 rule”, the payoff

remains fixed at α1,0 + α2,0 − α1,0α2,0 − r . The latter payoff is strictly lower than the
first-best payoff. There exist priors sufficiently close to C , such that the distributions
of posteriors under (ρ�

1, 1 − ρ�
1) are sufficiently close to the perfectly informative

distributions, and thus, the investor’s profit is sufficiently close to the first-best payoff
and is also higher than α1,0 + α2,0 − α1,0α2,0 − r . We can conclude that for priors
close to C , the investor prefers the internal tie-breaking rule (ρ�

1, 1 − ρ�
1).

Corollary 2 If the pair of priors is close enough to C, the investor prefers the tie-
breaking rule (ρ�

1, 1 − ρ�
1) to the corner “0 rule”.

It is worthwhile to mention that the investor might prefer the corner “0 rule” for
robustness reasons: unlike the ρ�-rule, “0 rule” does not require the exact knowl-
edge of priors, but only that priors are in a certain range, α1,0 � max{ 1+r2

2 , α2,0},
(α1,0, α2,0) /∈ C . The “0 rule” might also be more attractive from the fairness perspec-
tive: it discriminates against the initially stronger entrepreneur 1, whereas the ρ�-rule
discriminates against the weaker entrepreneur 2.

One more interesting observation is that the symmetry of priors does not imply the
global optimality of the symmetric tie-breaking rule. To see this, consider a numeric
example: if α1,0 = α2,0 = 0.6, r = 0.3, the profit from the “0”-rule is 0.54 while
the profit from the fair tie-breaking is 0.536. Notice also that if we increase the priors
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to α1,0 = α2,0 = 0.7, the order switches, and the profits become 0.61 and 0.617,
respectively.

5 Discussion

The approach studied in this paper allows characterizing equilibria with arbitrary
tie-breaking rules, which is a generalization of the analysis in Boleslavsky and Cot-
ton (2018). There, they study an equilibrium with the symmetric tie-breaking rule
only. Leveraging the generality of the analysis, we also extend the analysis to find
the investor-preferred tie-breaking rule. Using the methods from Boleslavsky and
Cotton (2018) to study a general tie-breaking rule would reduce tractability. To see
this, note that with a symmetric tie-breaking rule, the expressions in Subsection 3.2.
significantly simplify. Under ρ1 = ρ2 = 1/2, the bounds of B ′ on α1,0 become

α1,0 ∈
[
α2,0,

√
α2
2,0 + r2

]
, coinciding with the bounds on α1,0 in A′. Similarly, the

bounds of B on α2,0 reduce to α2,0 ∈
(
0,
√

α2
1,0 − r2

)
, as in zone A. Moreover, the

expressions for values (V1, V2) in zones B and B ′ become equal to those in zones A
and A′, respectively. Hence, it is a manageable task to write down equilibrium distri-
butions in terms of priors in zones B and B ′ in the case of ρ1 = 1/2 (unlike in the
case of general ρ1 ∈ (0, 1)).

The equilibrium analysis under the symmetric tie-breaking rule, ρ1 = ρ2 = 1/2 in
Boleslavsky and Cotton (2018), relies on the direct analysis of the Lagrangian as in
expressions (L)–(L̃). After proving some general properties of equilibrium distribu-
tions (uniformly distributed continuous part and atoms only at 0, r , and 1), the analysis
there proceeds with establishing the supports of strategies and zones where different
types of equilibria hold. A set of conditions necessary for equilibrium are used to iden-
tify the latter. In the case of symmetric tie-breaking, the expressions that pin down
the supports and equilibrium regimes are tractable. However, allowing for a general
tie-breaking would require working with algebraically more complex expressions,
especially in the zones where there are atoms at the posterior 1.

Another complexity that our approach simplifies is the comparative statics of dis-
tributions. With general tie-breaking, the expressions of equilibrium CDFs in terms of
priors and (ρ1, ρ2) feature many non-linear terms. They do not allow making unam-
biguous conclusions about the effect of parameters’ changes.

However, writing the expressions in terms of auxiliary values is straightforward
and allows for tractable analysis.

Our approach can also be applied to the information design problem with three
senders. In Muratov (2022), we characterize equilibria in the three-player all-pay
auction with a reserve and a bid cap (being set at 1), building on the work of Baye
et al. (1996). We show that there exists a non-degenerate region of valuations V1 �
V2 = V3 > 1, in which the supports of the three players’ strategies take the following
form: player 1: {0} ∪ [r , b) ∪ {1} (with mass at 0 only if V1 = V2 = V3); player 2:
{0}∪(r , b)∪{1}; player 3: {0}∪(b, b)∪{1}. Here, b ∈ (r , 1) and the identities of players
with equal valuations are up to a permutation. If three players are actively bidding
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between r and 1, the third player can join the continuous bidding anywhere between
r and b. If there is continuous bidding, distributions are such that any single active
player faces a uniform distribution of the maximum of competitors’ bids. Knowledge
of this equilibrium structure can be used to characterize corresponding equilibria in
the three–sender information design game.

In a related paper, Szech (2015) studies the role of tie-breaking rules in the all-pay
auction with bid caps, which generalizes the analysis of Che and Gale (1998). After
establishing the equilibrium under the general bid cap and tie-breaking rule, Szech
(2015) studies the principal’s design problem, whose goal is to maximize the expected
sum of bids. She concludes that it is optimal to favor the weaker bidder and, if the
choice is among the simple tie-breaking rules, to do so deterministically. That is, to
always award the prize to the weak player in case of a tie. Our analysis focuses on
tie-breaking rules in the information design environment, where the principal prefers
higher informativeness under fixed average total expenditures. Similarly to Szech
(2015), always breaking the tie in favor of the weaker player can be optimal, but not
generally. Moreover, breaking the tie in favor of the stronger player with a higher
probability can outperform the latter rule.

For some intuition why favoring a stronger player can sometimes be beneficial,
consider a numeric example. Let r = 0.3, α1,0 = 0.89, α2,0 = 0.81. Under fair
tie-breaking, the priors are in zone D. In equilibrium, player 1’s realized posterior is
0.3 with probability 11/70 and 1 with probability 59/70, while player 2 chooses full
information (1 w.p. 0.81, 0 w.p. 0.19). Switching to full information for player 1 has
a gain of a higher chance of a unit posterior and a loss from not having a posterior
realization of r = 0.3. Player 1 does not want to risk switching to full information
because the gain from it will be diluted by the fact that the prize will be fairly shared
with player 2 in case of a tie. Tomotivate this switch for player 1, he has to be promised
a higher chance of obtaining the prize in case of a tie at posterior 1. Thus, tie-breaking
probabilities (ρ1, ρ2) = (0.55, 0.45), for instance, support the full information by
both players. Similar reasoning applies in zone B ′.

In this article, we employ the knowledge of contests to better understand an infor-
mation design game. A growing literature also combines the two disciplines, focusing
on applying information design in contests. For example, there are studies of opti-
mal principal’s disclosure policy in Tullock contests (Zhang and Zhou 2016), all-pay
auctions (Chen et al. 2017), and binary action contests (Ponce 2018). Besides the
player ability-types, articles also study disclosing information about the number of
contestants (Feng and Lu 2016) and Tullock discrimination parameter (Feng 2020).

6 Conclusion

In this paper we have formally established and characterized the mapping between a
class of information design games and a class of all-pay auctions. We have shown that
solving for the equilibria in the all-pay auction is helpful for finding the equilibria in
the information design game. Building on the work of Boleslavsky and Cotton (2018),
our approach allows for a tractable generalization to an arbitrary tie-breaking rule.
Our approach also allows for straightforward comparative statics. We apply it to study

123



Mapping an information design game into an all-pay auction

the effects of tie-breaking rule on equilibrium informativeness and to determine the
principal-preferred tie-breaking rule. With the help of our approach, we can conclude
that the investor benefits from a non-symmetric tie-breaking rule. We further find that
there can be up to three distinct types of tie-breaking rules that are locally optimal.
Under some circumstances, breaking the tie in favor of the weaker sender can be
optimal. However, favoring the stronger sender can also be optimal in some other
cases.

In general, the approach we suggest in this paper can potentially be extended to
studymappings between other classes of information design games and corresponding
contests. Characterizing these mappings would be useful to study both types of games,
and we leave that for future research.
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A Deriving the correspondences

As we go through the regions of valuations (V1, V2) outlined in 3.2, we state the
distributions, find the expressions for averages, and then derive the mappings from
averages of expenditures to valuations, inverting the expressions.

Region A Following the derivations inMuratov (2022), in region A, bids are distributed
according to the CDFs:

G1(x) =

⎧
⎪⎨

⎪⎩

0, if x < r
x

V2
, if x ∈ [r , V2)

1, if x � V2;
G2(x) =

⎧
⎪⎨

⎪⎩

r+V1−V2
V1

, if x < r
x+V1−V2

V1
, if x ∈ [r , V2)

1, if x � V2.

The pair of expenditures is then

α1,0 = r2

V2
+
∫ V2

r

x

V2
dx = r2 + V 2

2

2V2
, α2,0 = V 2

2 − r2

2V1
.

Solving for the valuations (V1, V2) and selecting the solution such that V1 � 0 yields
the expressions in 3.9. Using the fact that in the region A, V2 ∈ [r , 1) and V1 ∈
(V2,+∞), and the expressions above, we can translate the boundaries of region A in
terms of valuations into the terms of expenditures, obtaining the expression in 3.1.

Region A′ For the case V2 = V1 � 1, there are two classes of equilibria: those where
player 1 can have an atom at r , and those where player 2 can have an atom at r . In
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every equilibrium the bids are distributed according to the CDFs:

G1(x) =

⎧
⎪⎨

⎪⎩

r(1−t)
V2

, if x < r
x

V2
, if x ∈ [r , V2)

1, if x � V2;
G2(x) =

⎧
⎪⎨

⎪⎩

r(1−q)
V2

, if x < r
x

V2
, if x ∈ [r , V2)

1, if x � V2;

where t (q) is a parameter such that t×r
V2

(
q×r
V2

)
is the size of the atom that player 1

(2) has at r , and t ∈ [0, 1], q ∈ [0, 1], t × q = 0. Throughout the work we focus on
equilibria with q = 0, since we only need to describe the outcomes with expenditures
of player 1 being above the expenditures of player 2, with the remainder of cases being
symmetric.

The expenditures under q = 0 are:

α1,0 = r2 × t

V2
+
∫ V2

r

x

V2
dx = V 2

2 − r2(1 − 2t)

2V2
, α2,0 = V 2

2 − r2

2V2
.

Solving for V2 in terms ofα2,0 and also in terms of (α1,0, t), and selecting such solution
that V2 > 0, we have

V2 = α2,0 +
√

α2
2,0 + r2 = α1,0 +

√
α1,0 + r2(1 − 2t).

Varying V2 from r to 1, and t from 0 to 1, we obtain the expression 3.2.

Region B If 1 < V2 � 1−ρ1r
ρ2

, ρ2
2V2 − ρ2 < ρ2

1V1 − ρ1, in the unique equilibrium of
the all-pay auction game, the players’ bids are distributed according to the CDFs:

G1(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if x < r
x

V2
, if x ∈ [r , x̃)

1−ρ2V2
ρ1V2

, if x ∈ [x̃, 1)

1, if x � 1;

G2(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r+U �

V1
, if x < r

x+U �

V1
, if x ∈ [r , x̃)

1−ρ2V2+ρ1U �

ρ1V1
if x ∈ [x̃, 1)

1, if x � 1,

where x̃ = 1
ρ1

− ρ2
ρ1

V2 andU � = ρ2−ρ1+ρ2
1V1−ρ2

2V2

ρ2
1

> 0 (corresponds to the equilibrium

payoff of player 1 in the all-pay auction game).

The average expenditures are α1,0 = r2
V2

+ ∫ x̃
r

x
V2

dx +
(
1 − 1−ρ2V2

ρ1V2

)
, α2,0 =

∫ x̃
r

x
V1

dx +
(
1 − 1−ρ2V2+ρ1U �

ρ1V1

)
, or

α1,0 = (ρ2 − ρ1)(V2 − 1)2 + ρ2
1 (r

2 + V 2
2 )

2ρ2
1V2

, (A.1)

α2,0 =
(
ρ2
2V 2

2 − 1
)+ ρ1(2 − ρ1r2)

2ρ2
1V1

. (A.2)

123



Mapping an information design game into an all-pay auction

Solving for valuations in terms of expenditures, and selecting the solution such that
1 � V2 � 1−ρ1r

ρ2
, yields the expressions in 3.11. Varying V2 from 1 to 1−ρ1r

ρ2
and V1

from
ρ2
2V2−ρ2+ρ1

ρ2
1

to plus infinity we get that in terms of expenditures, the region is

translated into B(α1,0, α2,0; ρ1, ρ2), as in 3.3.

Region B ′ If 1 < V2 � 1−ρ1r
ρ2

, ρ2
2V2 − ρ2 = ρ2

1V1 − ρ1, there are multiple equilibria
in the all-pay auction. In every equilibrium the players’ bids are distributed according
to the CDFs:

G1(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r(1−t)
V2

, if x < r
x

V2
, if x ∈ [r , x̃)

1−ρ2V2
ρ1V2

, if x ∈ [x̃, 1)

1, if x � 1;

G2(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r(1−q)
V1

, if x < r
x

V1
, if x ∈ [r , x̃)

1−ρ2V2
ρ1V1

if x ∈ [x̃, 1)

1, if x � 1,

where x̃ = 1
ρ1

− ρ2
ρ1

V2, and r ∈ [0, 1], q ∈ [0, 1], t × q = 0. Again, we focus on
q = 0.

The pair of expenditures is then

α1,0 = (V2 − 1)2(ρ2 − ρ1) + ρ2
1 (r

2(2t − 1) + V 2
2 )

2V2ρ
2
1

, (A.3)

α2,0 = ρ2
2V 2

2 + ρ1(2 − r2ρ1) − 1

2(ρ2
2V2 + ρ1 − ρ2)

. (A.4)

Solving for V2 and selecting the solution that falls within the proper range for V2, we
get two expressions for V2, in terms of (α1,0, t) and α2,0:

V2 =
ρ1(α1,0ρ1 − 2) +

√
ρ2
2 (ρ1 − ρ2 + r2ρ2

1 (1 − 2t)) + (1 − 2ρ1 + α1,0ρ
2
1 )

2

ρ2
2

=
α2,0ρ

2
2 +

√
ρ2
2 (ρ2 − ρ1 + r2ρ2

1 − 2α2,0(ρ2 − ρ1)) + (α2,0ρ
2
2 )

2

ρ2
2

.

Varying V2 from 1 to 1−ρ1r
1−ρ1

, and t from 0 to 1, we obtain the expressions 3.4 and 3.5.

Region C If (V1, V2) ∈
[
1−rρ2

ρ1
, 1

ρ1

]
×
[
1−rρ1

ρ2
, 1

ρ2

]
, there is an equilibrium in which

the players bid according to

bid1 =
⎧
⎨

⎩

0, with probability 1−ρ2V2
ρ1V2

,

1, with probability V2−1
ρ1V2

;
bid2 =

⎧
⎨

⎩

0, with probability 1−ρ1V1
ρ2V1

,

1, with probability V1−1
ρ2V1

;
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Then the average expenditures are α1,0 = (V2 − 1)/(ρ1V2), α2,0 = (V1 − 1)/(ρ2V1),
and the valuations in terms of expenditures are V2 = 1

1−ρ1α1,0
, V1 = 1

1−ρ2α2,0
. Varying

V1 from
1−rρ2

ρ1
to 1

ρ1
and V2 from

1−rρ1
ρ2

to 1
ρ2
, we get expression 3.6.

Region C ′ If (V1, V2) ∈
{
1−ρ2r

ρ1

}
×
[
1−rρ1

ρ2
, 1

ρ2

)
, there is a class of equilibria in which

the players bid according to

bid1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, with probability (1−t)(1−ρ2V2)
ρ1V2

,

r , with probability t(1−ρ2V2)
ρ1V2

,

1, with probability V2−1
ρ1V2

;
bid2 =

⎧
⎨

⎩

0, with probability 1−ρ1V1
ρ2V1

1, with probability V1−1
ρ2V1

;

where t ∈ [0, 1] is a free parameter. This translates into expenditures

α1,0 = V2 − 1 − r × t (ρ2V2 − 1)

ρ1V2
, α2,0 = V1 − 1

ρ2V1
,

and valuations in terms of priors

V2 = 1 − r × t

1 − ρ2r × t − ρ1α1,0
, V1 = 1

1 − ρ2α2,0
.

Since V1 = 1−ρ2r
ρ1

and varying V2 from
1−rρ1

ρ2
to 1

ρ2
and t from 0 to 1, we get expression

3.7.
Region D If (V1, V2) ∈

[
1−ρ2r

ρ1
,∞

)
×
[
1−ρ1r

ρ2
, 1

ρ2

]
, (regionD), there is an equilibrium,

in which the players bid according to

bid1 =
⎧
⎨

⎩

r , with probability 1−ρ2V2
ρ1V2

,

1, with probability V2−1
ρ1V2

;
bid2 =

⎧
⎨

⎩

0, with probability V1ρ1−(1−r)
V1ρ1

,

1, with probability 1−r
ρ1V1

.

The expenditures are α1,0 = V2(1−ρ2r)−(1−r)
ρ1V2

, α2,0 = 1−r
ρ1V1

, and valuations in terms of

priors are V2 = 1−r
1−ρ1α1,0−ρ2r , V1 = 1−r

ρ1α2,0
.Aswe vary V1 and V2, we obtain expression

3.8.

B Comparative statics

B.1 Proof of Lemma 1

Proof Consider the system of Eqs. A.1–A.2 that defines the expenditures in region B,
and transform it to

2α1,0V2ρ
2
1 − (1 − 2ρ1)(V2 − 1)2 − ρ2

1 (r
2 + V 2

2 ) = 0

2α2,0V1ρ
2
1 − (1 − ρ1)

2V 2
2 − ρ1(2 − ρ1r2) + 1 = 0,
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where we also use the fact that ρ1 = 1 − ρ2. Call this system 			. Keeping the pair of
expected bids/priors fixed, we treat V1 and V2 as implicit functions of ρ1, that follow
from			. We are interested in the signs of dV1

dρ1
and dV2

dρ1
. Denote the matrix of derivatives

of			 with respect to VVV = (V1, V2)
T as J . Then, we have

J =
(

∂	1
∂V1

∂	1
∂V2

∂	2
∂V1

∂	2
∂V2

)

=
(

0 2
(
1 − V2(1 − ρ1)

2 − ρ1(2 − α1,0ρ1)
)

2α2,0ρ
2
1 −2(1 − ρ1)

2V2

)

.

Keeping in mind that dρ2 = −dρ1, the vector of derivatives of			 with respect to ρ1 is

(
∂	1
∂ρ1
∂	2
∂ρ1

)

=
(
2
(
(V2 − 1)2 − ρ1(r2 + V 2

2 ) + 2V2α1,0ρ1
)

2
(
V 2
2 (1 − ρ1) + r2ρ1 + 2V1α2ρ1 − 1

)
)

.

By Implicit Function Theorem, d VVV
d ρ1

= −J−1 × ∂ 			
∂ ρ1

. After plugging in the values for
(α1,0, α2,0) from (A.1)–(A.2) and some simplifications, we get that

dV1

dρ1
= 2ρ2V1(V2 − 1)

(
(1 + V2)(1 − ρ1(2 − r2ρ1)) − ρ2

2V 2
2 (3 − V2)

)

ρ1
(
V 2
2 ρ2

2 + ρ1
(
2 − r2ρ1

)− 1
)2 ,

dV2

dρ1
= 2(V2 − 1)2V2ρ2

ρ1
(
ρ2
2V 2

2 + ρ1(2 − r2ρ1) − 1
) .

To determine the sign of dV1
dρ1

first, note that the denominator is always positive. Second,
the numerator is always non-positive, since the term γ (V2)

.= (1 + V2)(1 − ρ1(2 −
r2ρ1)) − ρ2

2V 2
2 (3 − V2) is negative: as a function of V2 it achieves a local maximum

(minimum) at V2 = 1 −
√

2−ρ1(4−ρ1(3−r2))√
3ρ2

< 1 (V2 = 1 +
√

2−ρ1(4−ρ1(3−r2))√
3ρ2

> 1).

Plugging the two extreme values (V2 ∈ {1, 1−ρ1r
1−ρ1

}) results in both values of γ (V2)

being negative. It shows that γ (V2) is indeed negative. Overall, dV1
dρ1

is negative in B
and strictly so for V2 > 1.

As for the sign of dV2
dρ1

, its numerator is always positive. The denominator is increas-

ing in V2 and attains the smallest value of (1− r2)ρ2
1 > 0 at V2 = 1. Hence, dV2

dρ1
� 0

in the B–zone.
We can now make conclusions about the stochastic ordering of distributions of

posteriors with respect to the tie-breaking rule. The slope of G1
(
α̂
)
in the increasing

part is 1/V2. With an increase of ρ1, V2 increases and the slope of G1
(
α̂
)
decreases.

Let
(
qG1(), qG2(), qV1, qV2

)
correspond to the equilibrium in zone B under ( qρ1, qρ2)

and
(
Ĝ1(), Ĝ2(), V̂1, V̂2

)
—under (ρ̂1, ρ̂2), such that ρ̂1 > qρ1. Note that qG1(α̂) =

Ĝ1(α̂) = 0 for α̂ ∈ [0, r) and qG1(α̂) > Ĝ1(α̂) for α̂ ∈
[
r ,

1−qρ2 qV2
qρ1

)
. Ĝ1 and qG1

intersect exactly once in (r , 1), since they have equal expectations, α1,0. Thus, the

supremum of continuous support corresponding to Ĝ1 must be higher, 1−qρ2 qV2
qρ1

>
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1−ρ̂2 V̂2
ρ̂1

. Therefore ∃!α† ∈ (r , 1) such that for α̂ < α†, Ĝ1(α̂) � qG1(α̂); and for

α̂ > α†, Ĝ1(α̂) � qG1(α̂). Thus,
∫ α̂

0
qG1(x)dx �

∫ α̂

0 Ĝ1(x)dx,∀α̂ ∈ [0, 1], and
strictly so for α̂ ∈ (r , 1). Therefore, Ĝ1 �SO SD qG1, and the increase of ρ1 in B
increases 1’s distribution in the SOSD-sense.

The slope of G2 in the increasing part is 1/V1. Since ρ̂1 > qρ1, V̂1 < qV1 and Ĝ2 is
steeper than qG2 when both are continuously increasing. Ĝ2 is increasing on a broader

range than qG2, since
(

r ,
1−ρ̂2 V̂2

ρ̂1

)
⊃
(

r ,
1−qρ2 qV2

qρ1

)
. For Ĝ2 and qG2 to intersect exactly

once in (r , 1), it must hold that Ĝ2(x) < qG2(x) if x < r . Hence, û1+r
V̂1

< qu1+r
qV1

,

where r+u1
V1

= r+(ρ2−ρ1+ρ2
1V1−ρ2

2V2)/(ρ
2
1 )

V1
is the value of G2(x) in x ∈ [0, r). Again,

we conclude that there exists a unique α‡ ∈ (r , 1): Ĝ2(x) < qG2(x)∀x ∈ (0, α‡);

Ĝ2(x) > qG2(x)∀x ∈ (α‡, 1); and
∫ α̂

0
qG2(x)dx �

∫ α̂

0 Ĝ2(x)dx,∀α̂ ∈ [0, 1], with
strict inequality for all α̂ ∈ (r , 1), i.e. Ĝ2 �SO SD qG2.

Consider now the preferences of the investor. For a fixed realization of posteriors,(
α̂1, α̂2

) = (x, y), the payoff of the investor is vP (x, y) = [max{x, y} − r ]+, where
[.]+ denotes the positive part. The ex-ante expected payoff is, then,

EvP = E
[
max

{
α̂1, α̂2

}− r
]
+ =

∫ 1

0

(∫ 1

0
[max{x, y} − r ]+ dG1(x)

)

dG2(y).

Note that vP (x, y) is a convex function of x for any y, while Eα̂1v
P (α̂1, y) is a

convex function of y. Thus, using the fact that risk-loving agents prefer second-order
dominated lotteries, we have

∫ 1

0

∫ 1

0
[max{x, y} − r ]+ d qG1(x)d qG2(y) �

∫ 1

0

∫ 1

0
[max{x, y} − r ]+ dĜ1(x)d qG2(y) �

∫ 1

0

∫ 1

0
[max{x, y} − r ]+ dĜ1(x)dĜ2(y) �

∫ 1

0

∫ 1

0
[max{x, y} − r ]+ dĜ1(x)dĜ2(y).

We conclude that the investor prefers the equilibrium under qρ to that under ρ̂.
Moreover, it can be shown that the preference is strict because the expression∫ 1
0 [max{x, y} − r ]+ dG1(x) is strictly convex for a non-zero measure of y and
∫ y
0

qG2(x)dx >
∫ y
0 Ĝ2(x)dx for all y ∈ (0, 1). �

B.2 Proof of Lemma 2

Proof Consider the system (A.3)–(A.4) which defines relation between expendi-
tures/priors and values in zone B ′:
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Transform it and include the equation that defines B ′, ρ2
1V1 −ρ1 −ρ2

2V2 +ρ2 = 0,
to have

2ρ2
1α1,0V2 − 2ρ1(V2 − 1) − ρ2

1r2(2t − 1) − (ρ2V2 − 1)2 = 0, (B.1)

2ρ2
1α2,0V1 − 2ρ1(V2ρ2 − 1) − ρ2

1 (2V1 − r2) − (ρ2V2 − 1)2 = 0, (B.2)

ρ2
1V1 − ρ1 − ρ2

2V2 + ρ2 = 0, (B.3)

a system, which we will denoted as 	′. As in the previous proof, use the implicit
function approach to determine the signs of dV1

dρ1
and dV2

dρ1
that follow from the system

above. Treat the variables (V1, V2, t) as endogenous, and ρ1 and ρ2 = 1 − ρ1 as
exogenous. The matrix of derivatives of the system above with respect to (V1, V2, t)T

is

J ′ =
⎛

⎝
0 2

(
ρ2 − ρ1(1 − α1,0ρ1) − ρ2

2V2
) −2ρ2

1r2

−2(1 − α2,0)ρ
2
1 −2ρ2 (ρ1 + ρ2V2 − 1) 0

ρ2
1 −ρ2

2 0

⎞

⎠ .

The derivative of system	′ with respect to ρ1 (again, keeping in mind that dρ2−dρ1)
is

∂	′

∂ρ1
=
⎛

⎝
2
(
1 + ρ1r2(1 − 2t) + V2(ρ2V2 − 2(1 − ρ1α1,0))

)

2
(
1 − ρ2V2(2 − V2) + r2ρ1 − 2ρ1V1(1 − α2,0)

)

2 (ρ1V1 + ρ2V2 − 1)

⎞

⎠ . (B.4)

We are interested in the first two elements of−J ′−1× ∂	′
∂ρ1

, which will give us dV1/dρ1
and dV2/dρ1. It can be checked that

dV1

dρ1
= −2ρ2(V2 − 1)2V1

ρ1
(
(ρ2 − ρ1)(V2 − 1)2 + ρ2

1 (r
2 + V 2

2 )
) ,

dV2

dρ1
= 2(V2 − 1)(r2 + V2)ρ1

ρ2
(
(ρ2 − ρ1)(V2 − 1)2 + ρ2

1 (r
2 + V 2

2 )
) ,

where we also used the fact that V1 = (
ρ2
2V2 + ρ1 − ρ2

)
/ρ2

1 and the value of α2,0
from (A.4) for some further simplification.

The sign of dV1
dρ1

is negative: the numerator is negative, given V2 � 1; the denom-

inator is positive at V2 = 1 and is increasing in V2 if V2 > 1. Similarly, dV2
dρ1

is
positive.

We can now conduct the comparative statics of G2. Letting ρ̂1 > qρ1 and relying
on the single-crossing property of qG2(x) and Ĝ2(x), as we did in the proof B.1 of
Lemma 1, we can conclude that qG2(x) �SO SD Ĝ2(x), as Ĝ2(r) > qG2(r).

As for G1, the value of Ĝ1(x) at x = r and the slope in the range (r , (1− ρ̂2V̂2)/ρ̂1)

are lower than those for qG1. From the single-crossing, it must hold that
(
1 − t̂

)
/V̂2 >

(
1 − qt

)
/ qV2. Hence, qG1(x) �SO SD Ĝ1(x).
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Similarlly to the proof of the previous lemma, the principal prefers it, when both
distributions are dominated in the SOSD—sense, hence, he prefers ρ̂ to qρ. �

B.3 Proof of Lemma 3

Proof Part (iii) of Lemma 3 follow directly from the definition of zone D.
For part (ii), the decrease of the upper bound on α2,0 also follows directly from

the definition of zone B ′. In order to prove the the statement in terms of bounds on
α1,0, consider again the system 	 from B.1–B.3. Apply the implicit function theorem
to evaluate dα1,0

dρ1
, treating α1,0, V1, V2 as endogenous variables, ρ1 as an exogenous

variable, and keeping α2,0 fixed, and allowing t = 0 for the lower bound and t = 1 for
the upper bound. Thematrix of derivatives of the systemwith respect to (α1,0, V1, V2)

T

is

J ′ =
⎛

⎝
2ρ2

1V2 0 2
(
ρ2 − ρ1(1 − α1,0ρ1) − ρ2

2V2
)

0 −2(1 − α2,0)ρ
2
1 −2ρ2(ρ1 + ρ2V2 − 1)

0 ρ2
1 −ρ2

2

⎞

⎠ ,

and the derivative of the system with respect to ρ1 the same as before, in (B.4). We
need the first element of −J ′,−1 × ∂	′

∂ρ1
, which is

dα1,0

dρ1
= − (V2 − 1)

V 2
2 ρ2ρ

3
1((V2 − 1)2(ρ2 − ρ1) + ρ2

1 (V 2
2 + r2))

× χ,

χ
.=
[
V2(V2 − 1)3(ρ2 − 3ρ1)

+ (V2 − 1)ρ2
1

(
r2(ρ1 − ρ2) + V2 (4 − V2 (5 + 6ρ2 − 2V2(1 + 2ρ2)))

)

ρ4
1

(
r4(2t − 1) + 2r2(t − 1)V2 − (2 − V2)V 3

2

)]
, (B.5)

where we plugged in the values of α1,0 and α2,0 from A.3 and A.4 and V1 from B.3.

Let us determine the sign of dα1,0
dρ1

given V2 ∈
[
1, 1−ρ1r

1−ρ1

]
. The denominator is positive

similarly to B.2.
To determine the sign of χ , first proceed with
taking the second derivative of it with respect to V2. We have,

∂2χ

∂V 2
2

= 6(V2 − 1)ρ2
2

(
2ρ2

2V2 + ρ1 − ρ2

)
� 6(V2 − 1)ρ2

2 (2ρ
2
2 + ρ1 − ρ2)

= 6(V2 − 1)ρ2
2 (ρ

2
2 + ρ2

1 ) � 0.

This implies, that ∂χ
∂V2

is increasing for V2 ∈
[
1, 1−ρ1r

1−ρ1

]
, and achieves its maximum

in that range under V2 = 1−ρ1r
1−ρ1

. Check that ∂χ
∂V2

attains a non-positive value given
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V2 = 1:

∂χ

∂V2
|V2=1 = ρ2

1

(
−1 − 2ρ2ρ1 + r2(−1 + 2ρ1(1 − (1 − t)ρ1))

)

� ρ2
1 (−1 − 2ρ2ρ1 + 1 × (−1 + 2ρ1(1 − (1 − 1)ρ1)))

= −2ρ2
1ρ

2
2 � 0.

This implies that either χ attains a local minimum in V2 for V2 ∈
[
1, 1−ρ1r

1−ρ1

]
(this

happens if ∂χ
∂V2

is positive for V2 = 1−ρ1r
1−ρ1

); or χ is decreasing in V2 in that range.

In either case, it would be sufficient to check that χ � 0 for V2 ∈
{
1, 1−ρ1r

1−ρ1

}
, to

conclude that χ � 0 in the whole interval V2 ∈
[
1, 1−ρ1r

1−ρ1

]
. Doing so yields indeed

χ |V2=1 � 0, and χ |
V2= 1−ρ1r

1−ρ1

� 0, as desired.

Overall, χ � 0 and, thus, dα1,0
dρ1

� 0 for t ∈ {0, 1}. Hence, we have proven the part
(i i) of Lemma 3. The part (i) follows, because the upper bound of B on α1,0 coincides
with the lower bound of D on α1,0; and upper bound of B on α2,0 coincides with the
upper bound of B ′ on α1,0. �

C Equilibrium in B under �1 = 0

The mapping established in this paper is not well-behaved for ρ1 = 0. However,
check that the following strategy profile constitutes an equilibrium under ρ1 = 0 and
α1,0 ∈ [ 1+r2

2 , 1 − r + r2), α2,0 � r :

G1(x) =

⎧
⎪⎨

⎪⎩

0, if x < r

max{x, x(α2,0)}, if r � x < 1

1, if 1 � α̂1;
α̂2 =

{
1, w.p. α2,0,

0, w.p. 1 − α2,0,

where x(α2,0)
.= 1−√

r2 + α2,0 − 1. While other equilibria are possible under ρ1 =
0,we choose toworkwith the one above because it coincideswith the limiting behavior
of entrepreneurs as ρ1 ↓ 0. Note also that the investor’s payoff from this equilibrium
is α1,0 + α2,0 − α1,0α2,0 − r , same as in zones D and DM .

D Investor-preferred tie-breaking rules

Consider all point outside of A, A′, and the span of C . The points (α1,0, α2,0) in[
1+r2
2 , 1

]
×
(
0, 1−r2

2

)
belong to zone B and/or D under various values of ρ1. For

every point in B, the investor’s payoff is monotonically decreasing in ρ1, and in D,
the paoyff is at the local maximum level. Hence, “rule 0” is optimal in (α1,0, α2,0) ∈[
1+r2
2 , 1

]
×
(
0, 1−r2

2

]
.
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The points in
[
1−r2
2 , 1+r2

2

]2
can only belong to B ′ and B ′M under various values

of ρ1. There, it is optimal for a point to be on line α1(α2,0, ρ1, ρ2). Hence, rule ρ�
1 is

optimal.

Any point in
(
1+r2
2 , 1

)
×
(
1−r2
2 , 1+r2

2

)
can belong to B ′ and B ′M under some

tie-breaking rule. So ρ�
1 is one of the local maximizers. Any point in

(
1+r2
2 , 1

)
×

(
1−r2
2 , 1+r2

2

)
can also belong either to B, or D, or to both. Hence, “rule 0” is another

local maximizer.

The region
(
1+r2
2 , 1

)2
is similar to

(
1+r2
2 , 1

)
×
(
1−r2
2 , 1+r2

2

)
, but additionally,

it can be spanned by zones B M and/or DM . In region B M , the investor’s payoff is
increasing in ρ1 and in DM it is at the local maximum level. Hence, “rule 1” is a third
local maximizer in that region.
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