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Abstract
Genome sequencing enables answering fundamental questions about the genetic basis 
of adaptation, population structure and epigenetic mechanisms. Yet, we usually need 
a suitable reference genome for mapping population-level resequencing data. In some 
model systems, multiple reference genomes are available, giving the challenging task 
of determining which reference genome best suits the data. Here, we compared the 
use of two different reference genomes for the three-spined stickleback (Gasterosteus 
aculeatus), one novel genome derived from a European gynogenetic individual and 
the published reference genome of a North American individual. Specifically, we in-
vestigated the impact of using a local reference versus one generated from a distinct 
lineage on several common population genomics analyses. Through mapping genome 
resequencing data of 60 sticklebacks from across Europe and North America, we 
demonstrate that genetic distance among samples and the reference genomes im-
pacts downstream analyses. Using a local reference genome increased mapping ef-
ficiency and genotyping accuracy, effectively retaining more and better data. Despite 
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1  |  INTRODUC TION

Genome-level sequencing has revolutionized many biological fields 
including evolution, ecology, microbiology and population genom-
ics (Jones & Good,  2016; Kao et al.,  2014; Stapley et al.,  2010). 
Historically, scientists have relied on one or a small number of 
high-quality linear haploid reference genomes to address their spe-
cific questions. Progressively, the availability of high-quality ref-
erence genomes from large-scale projects (e.g. Earth BioGenome 
and Vertebrate Genome Projects; Genome 10K Community of 
Scientists,  2009; Lewin et al.,  2018), the decreasing costs of se-
quencing and the availability of curated variant databases (e.g. 
dbSNP and dbVar; Lappalainen et al., 2013; Sherry et al., 2001) have 
improved the breadth and depth of genomic research.

Reference genome assemblies aim at representing a typical 
set of DNA sequences within a species. But, by their nature, ref-
erence genomes do not encompass all the genetic diversity within 
a species and can lack entire tracks of DNA such as population-
specific loci (Lee et al.,  2020; Sherman et al.,  2019). This problem 
is exemplified in humans, where it has been estimated that the 
main human reference genome (GRCh38) is missing up to 10% of 
the total human genome, as inferred from sequencing thousands of 
additional samples from various populations (Sherman et al., 2019; 
Sherman & Salzberg,  2020). Moreover, using a poorly assembled 
and fragmented reference genome, or a reference genome from a 
differentiated individual, can lead to reference bias, where reads 
containing alternative alleles become less likely to map (Günther & 
Nettelblad, 2019; Prasad et al., 2022; Prüfer et al., 2010). These lim-
itations can be lessened with the availability of population-specific 
genome references, but generating high-quality chromosome-level 
assemblies is time-consuming and computationally demanding even 
if costs of sequencing are decreasing.

Recently, a graph-based genome alignment methodology has 
been developed to index and incorporate variant databases, pro-
viding a practical and highly efficient method that better captures 
genomic variation in a species (Kim et al.,  2019). Databases of 
high-quality variants, however, are not currently available for most 
study systems and generating the high-quality reference databases 

requires a significant amount of time and resources even in low-
variable regions. In highly variable regions, graph-based approaches 
can incur significant computational overhead and increase ambigu-
ity of the reference when multiple similarly plausible variants are 
present (Grytten et al., 2020; Pritt et al., 2018). Depending on the 
complexity and size of the genome, generating a high-quality ref-
erence genome can also incur significant costs and computational 
resources, albeit to a lesser extent than genome graphs. Until ad-
vances are made for overcoming the challenges around generating 
the minimum resources required to construct reliable graphs, assem-
bling haploid references is still preferred alternative.

Arguably one of the most important factors to consider when 
multiple reference genomes or assembly versions are available is 
their difference in quality. Whilst we are moving towards complete 
and error-free assemblies (Rhie et al.,  2021), the continuing ad-
vances of methodologies can create significant differences among 
assemblies. For example, bioinformatic tools have been developed 
to resolve false gene duplications that stem from heterozygosity 
in homologous haplotypes (Guan et al.,  2020; Roach et al.,  2018). 
In some cases, such as in humans, reference genomes are contin-
ually updated alongside major advances, where choosing the most 
updated version will offer the most accurate analysis of human 
sequencing data (Guo et al.,  2017; International Human Genome 
Sequencing Consortium,  2001, 2004; Pushkarev et al.,  2009). 
However, when multiple similar quality and genetically diverse ref-
erence genomes are available from multiple populations or strains 
(e.g. Berner et al., 2019; Gan et al., 2011; Hirsch et al., 2016; Springer 
et al., 2018), genetic distance among samples and the reference may 
be an important factor to consider even for low-variable genomic 
regions.

The detection of genomic polymorphisms is affected by the evo-
lutionary time between the individuals being sequenced and the 
reference genome (Bohling, 2020; Prasad et al., 2022; Reid, Moran, 
et al., 2021). This has implications on both the detection and the ge-
notyping of single nucleotide polymorphisms (SNPs) and structural 
variants (SVs). For example, variant calling through pipelines such as 
GATK and freebayes use Bayesian inference to call genotypes (i.e. 
the likelihood of a genotype, given the data; Garrison & Marth, 2012; 

comparable distributions of the metrics generated across the genome using SNP data 
(i.e. π, Tajima's D and FST), window-based statistics using different references resulted 
in different outlier genes and enriched gene functions. A marker-based analysis of 
DNA methylation distributions had a comparably high overlap in outlier genes and 
functions, yet with distinct differences depending on the reference genome. Overall, 
our results highlight how using a local reference genome decreases reference bias to 
increase confidence in downstream analyses of the data. Such results have significant 
implications in all reference-genome-based population genomic analyses.

K E Y W O R D S
Gasterosteus aculeatus, genome assembly, gynogenetic, population genomics, read mapping, 
reference genomes, reference mapping bias, stickleback
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van der Auwera et al., 2014). When high differentiation between ref-
erence genome and the sampled individuals exists, a high proportion 
of segregating sites will emerge as fixed differences between the 
samples and the reference genome (i.e. homozygote nonreference in 
diploids), and therefore uncertain genotypes can have a higher likeli-
hood of being called as homozygote nonreference, even if this is not 
the case. Analogously, most methods used to detect SVs (read-depth, 
split paired-read, breakpoints and assembly) compare mapped reads 
to the reference genome (Pirooznia et al., 2015). Several studies on 
humans have demonstrated that ethnicity-specific reference ge-
nomes are beneficial (Ameur et al., 2017; Dewey et al., 2011; Fakhro 
et al., 2016; Lacaze et al., 2019). Specifically, the targeted reference 
genomes improved reliability of genetic and structural variation calls 
(Ameur et al., 2017; Fakhro et al., 2016). Moreover, recent studies 
have demonstrated that increasing phylogenetic distance between 
target species and reference genome decreases mapping efficiency 
and has strong effects on evolutionary inferences made from the 
data (Bohling, 2020; Prasad et al., 2022).

The three-spined stickleback (Gasterosteus aculeatus) is a super-
model in evolutionary biology (Reid, Bell, & Veeramah, 2021), and re-
search on this small teleost fish has pioneered discoveries related to 
the genomics of adaptation (Feulner et al., 2015; Haenel et al., 2019; 
Jones et al., 2012; Roesti et al., 2015), adaptive divergence (Feulner 
et al., 2015; Huang et al., 2016; Roesti et al., 2013) and molecular 
genetic mechanisms underpinning vertebrate development (Shapiro 
et al., 2004; Spitz et al., 2001). Genomic investigations using G. acu-
leatus have mostly relied on a single high-quality chromosome-level 
reference genome from an isolated population in Alaska (Jones 
et al., 2012), which has been updated with multiple improvements 
(Glazer et al.,  2015; Nath et al.,  2021; Peichel et al.,  2017; Roesti 
et al.,  2013). Recently, several additional de novo G. aculeatus 
contig-level genome assemblies have been made available, includ-
ing European- and marine-derived assemblies (Berner et al., 2019). 
These additional genome assemblies may be appropriate given the 
wide geographic distribution of the species; there are Atlantic and 
Pacific clades of G. aculeatus that diverged an estimated 44.6 Kya 
with extensive phenotypic and genetic diversity across its range 
(Fang et al., 2018; McKinnon & Rundle, 2002).

In this study, we report the generation and de novo annotation 
of a European G. aculeatus genome assembly derived from a gyno-
gen individual (Samonte-Padilla et al., 2011). The gynogenesis pro-
cess in G. aculeatus produced a near-complete homozygous diploid 
fish (Samonte-Padilla et al., 2011), which helps alleviate some of the 
genome assembly difficulties associated with heterozygosity. Then, 
using European- and North American-derived reference genomes, 
we investigated the effect of reference genome origin. We used 
high-quality genome-wide resequencing data from 60 G. aculeatus 
individuals from five recently diverged lake–river pairs distributed 
across the European (Atlantic clade; Fang et al.,  2018) and North 
American (Western North America; Pacific clade) G. aculeatus ranges. 
The resequenced genome data have been used to investigate the 
distribution of islands of differentiation across the genome (Feulner 
et al.,  2015) and the role of copy number variation in adaptation 

(Chain et al.,  2014), offering baselines to evaluate specific metrics 
against a new local genome. We also compared how the different ge-
nomes affect DNA-methylation calling, focussing on an additional 50 
European fish for which reduced-representation bisulfite sequencing 
(RRBS) was available (Sagonas et al., 2020). We hypothesise that the 
mapping and genotyping results will generally fall into three catego-
ries: (h1) using a local reference genome has a clearly beneficial effect 
for local populations (i.e. a decrease in reference bias stemming from 
phylogenetic distance for local populations), (h2) one reference ge-
nome is better than the other regardless of origin (i.e. reference bias 
stemming from genome assembly quality) and (h3) the effect of local 
reference genome is still clear, but the effect of reference bias is also 
clearly evident (i.e. a mixture of both h1 and h2). Our hypotheses can 
be observed in the outcome of statistical tests: h1 presents as a sig-
nificant interaction between reference origin and population origin, 
h2 as a significant effect of reference origin and h3 presents similarly 
to h1 with a significant interaction, but the post hoc analysis indicates 
a clear bias towards one of the reference genomes.

2  |  MATERIAL S AND METHODS

2.1  |  Reference genome assembly and annotation

The induction of the diploid gynogen individual followed the pro-
tocol established for three-spined sticklebacks (Samonte-Padilla 
et al.,  2011). In brief, fertilized stickleback eggs were mixed with 
UV-irradiated sperm (2 min of exposure) and then exposed to a 
heat-shock treatment of 34°C for 4 min, 5 min of postfertilization. 
The treatment caused the genetic inactivation of the sperm, re-
sulting in homozygote maternal offspring that lack paternal alleles 
(Samonte-Padilla et al., 2011). In order to increase the likelihood of 
embryo development, two siblings from the same family were used 
for this process. After 5 months of posthatching, a fish was sacri-
ficed. DNA was extracted using the Qiagen high-molecular-weight 
extraction kit following the manufacturer's protocol. Sequencing 
was then conducted at the Beijing Genomics Institute (BGI), tak-
ing place on a PacBio platform. In total, 2,805,993 reads were gen-
erated with a coverage of 44.1X. A total of 214,285 PacBio reads 
were discarded before further analysis given their short length. In 
addition, Illumina paired-end sequencing libraries in a HiSeq2500 
platform were constructed with insert sizes of about 170 base pairs 
(bp), 500 and 800 bp.

Genome assembly was performed using Canu v1.6 assembler 
(Koren et al.,  2017), followed by an internal polishing step using 
Quiver. To hybrid polish the PacBio assembly, a total of 316,797,342 
high-quality Illumina reads were mapped to the contigs using BWA-
MEM v0.7.15 (Li, 2013), and the alignment was then used for further 
polishing using Pilon v1.22 (Walker et al., 2014). Illumina raw reads 
were trimmed, and low quality and adaptor sequences were removed 
using Cutadapt v1.13 (Martin, 2011). To evaluate the PacBio de novo 
contig-level assembly and search for potential misassemblies, we 
used FRCbam v1.3.0 (Vezzi et al., 2012), whereas its completeness in 
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terms of core orthologous genes was assessed using BUSCO v3.0.1 
(Simão et al., 2015) and the ‘actinopterygii’ data set. The 32.1 kb con-
tig tig00001189_pilon mapped to the mitochondrial genome of the 
North American G. aculeatus (Peichel et al., 2017) and was trimmed 
and labelled the mitochondrial genome. The sequence was trimmed 
to only include the 15.8 kb that aligned to the North American mito-
chondrial genome given the size of the mitochondrial genomes are 
moderately conserved even across long phylogenetic distances (Gissi 
et al., 2008). The excess 16.3 kb of contig tig00001189_pilon were 
labelled and kept in the assembly, making up two additional contigs.

To scaffold the European G. aculeatus contig-level gynogen as-
sembly into pseudochromosomes, we used Chromosemble from the 
Satsuma2 package (Grabherr et al., 2010). Here, we ordered and ori-
ented the contigs based on synteny with the North American G. ac-
uleatus chromosome-level genome obtained from Dryad (Peichel 
et al., 2017), excluding the unmapped scaffolds. We tested for the 
effect of contig size on alignment rates, and only retained con-
tigs with an alignment rate of 70% or above for further assembly. 
Gynogen contigs not scaffolded onto a pseudochromosome were 
concatenated in size order into an unmapped scaffold for popula-
tion genomic analyses, separating each contig by 1000 N's. Synteny 
between the European and North American G. aculeatus assem-
blies was calculated using the SatsumaSynteny2 function (Grabherr 
et al.,  2010), and plotted using the Circos v0.69 visualization tool 
(Krzywinski et al., 2009). It should be noted that the reference ge-
nomes have been created using distinctly different methodologies. 
As such, significant reference origin by population origin interac-
tions that do not clearly exhibit a reciprocal effect in the test statistic 
likely include a genome quality effect.

Repetitive sequences were identified de novo in the European 
pseudochromosome assembly using Repeat Modeler v.2.0.1 whilst 
Repeat Masker v.4.1.1 (Smit et al., 2015) was used to mask the ge-
nome using the three-spined stickleback and zebrafish libraries in 
two separately rounds. The results of each round were then ana-
lysed together, complex repeats were separated, to produce the 
final repeat annotation. Genome annotation was performed on the 
European repeat-masked pseudochromosome genome assembly 
using MAKER2 v.2.31.9 (Holt & Yandell, 2011). Subsequent genome 
annotation was performed following a two-round approach. For the 
first round, the repeat annotation data (release 95) as well as G. ac-
uleatus transcriptome and protein sequences from ENSEMBL and 
UniProt/SwissProt databases were used as evidence sets for the 
prediction of gene models, whilst est2genome and protein2genome 
setting were set as 1. For the second round, SNAP (Korf, 2004), with 
ADE of 0.25 and length of 50, and AUGUSTUS v.3.2.3 with default 
values (Stanke et al.,  2008) were trained on the gene model pre-
dicted from the first round. Functional annotation was performed 
using BlastP against UniProt proteins with an E-value threshold of 
1e−5, and InterProScan v.5.4-47 (Jones et al., 2014) was used for do-
main annotation. The resulting gene models were filtered to retain 
those with AED value of 0.5 or less, having PFAM annotations and 
significant hits to known proteins against UniProt DB (E-value 1e−5).

We identified orthologous and paralogous gene families among 
the North American and European G. aculeatus reference genomes 
using OrthoFinder v2.4.1 with the default parameters (Emms & 
Kelly,  2019). Protein sequences were extracted using the getfasta 
function in the BEDtools toolset v2.26.0, using the -split parameter 
to only include exonic regions (Quinlan & Hall,  2010). Where ap-
plicable, downstream analyses were restricted to only include the 
7529 1-to-1 orthologues identified between the two assemblies to 
remove any biases stemming from differences in gene number or 
functional annotation.

2.2  |  SNP data collection and processing

Whole genome resequencing data from a total of 60 G. aculeatus 
individuals were used from five recently diverged freshwater lake 
(_L) and river (_R) population pairs (Table  S1; details on sampling, 
library preparation, sequencing and original data processing up to 
adapter trimming can be found in; Feulner et al., 2015). Each popula-
tion pair was comprised of 12 wild-caught individuals, with six indi-
viduals coming from each lake and each river population. The five 
population pairs were sampled from two sites in Germany (G1 and 
G2; European; Atlantic clade), and one site in Norway (No; European; 
Atlantic clade), the United States (US; North American; Pacific clade) 
and Canada (Ca; North American; Pacific clade).

For the genome scan using SNP data, raw data were processed 
following previous procedures (Feulner et al.,  2013). Adapter-
cleaned reads were trimmed using Trimmomatic v0.36 (Bolger 
et al., 2014) in paired-end mode, trimming read tails with a PHRED 
quality score below 20 and trimming to a maximum of 50 bp. Using 
BWA-MEM v0.7.17 (Li, 2013), reads were independently mapped to 
both the anchored European and US reference genomes (Peichel 
et al.,  2017). Mapping efficiency was calculated using Bamtools 
v2.4.1 (Barnett et al., 2011). All downstream processing of mapped 
reads and methodology for variant calling were identical for both 
reference genomes. Mapped reads were processed using Picard 
toolkit v2.18.7 (https://broad​insti​tute.github.io/picar​d/), applying 
FixMateInformation and CleanSam. All reads belonging to the same 
individual from different lanes were combined using MergeSamFile, 
and then duplicate reads were flagged using MarkDuplicates. Variant 
calls were performed using GATK v4.0.6.1 (McKenna et al., 2010), 
calling variants in all genomes simultaneously, split by chromosome. 
The final set of SNPs was produced using hard filtering following 
the best practise workflow (see supplementary methods for filter-
ing thresholds; (Depristo et al., 2011)). Genome mapping and vari-
ant calls were conducted on the QMUL Apocrita High-Performance 
Computing Cluster (King et al., 2017).

To assess the proportion of the gynogenetic reference genome 
that remains heterozygotic we conducted another SNP calling analy-
sis using the same GATK variant calling and filtering pipeline detailed 
above. Here, the paired-end Illumina libraries used to polish the gy-
nogen assembly were used as input.
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2.3  |  Phylogenetic analyses

In order to assess the phylogenetic relationship between the ref-
erence genomes and the 60 resequenced genomes, we com-
pared maximum-likelihood phylogenies based on each variant call 
with its respective reference genome. Maximum-likelihood phy-
logenies for both SNP calls were inferred using RAxML v8.2.11 
(Stamatakis, 2014). We randomly sampled 1% of all segregating sites 
by setting the ‘—select-random-fraction’ parameter to 0.01 in the 
GATK function SelectVariants. The resulting VCFs were converted 
to PHYLIP format (Felsenstein, 1989) using the vcf2phylip.py script 
(doi: 10.5281/zenodo.1257058). Trees were constructed using the 
GTRGAMMA model with 1000 bootstraps. Phylogenetic trees were 
plotted using the R package ggtree package v2.2.4 (Yu et al., 2017).

2.4  |  Estimations of genotype bias

Calling of genotypes (i.e. heterozygote versus homozygote) may be 
affected by reference genome origin. Measures of genome-wide 
zygosity across all segregating sites were performed by parsing the 
genotype field in the VCF file using a custom R script. Genotypes 
were grouped into five distinct categories: homozygous reference, 
homozygous nonreference, heterozygous reference/non-reference, 
heterozygous nonreference/nonreference and missing (Figure  S1). 
This process was repeated to estimate genotypes for each individual 
mapped to both reference genomes.

2.5  |  Genome scan using SNP data

Genome scans were performed in R v4.0.2 (R Development Core 
Team, 2019), and population genetics indices were calculated using 
the R package PopGenome v2.7.5 (Pfeifer et al.,  2014). We meas-
ured Tajima's D and π in each population, and FST in each parapatric 
population pair. All metrics were calculated in nonoverlapping 20 kb 
windows across all 20 autosomal chromosomes and the unmapped 
scaffold. To obtain outlier genomic windows, we extracted the top 
1% of the empirical distributions for each metric and population 
(or population pair for FST). This conservative criterion (e.g. Feulner 
et al., 2015; Lai et al., 2019; Stern & Lee, 2020) was chosen to in-
crease our confidence in defining outliers. Finally, we defined outlier 
genes as any gene overlapping one or more outlier genomic windows 
from the SNP-based genome scans using the foverlaps function in 
the R package data. table v1.9.6 (Dowle et al., 2015).

The proportion of basepair overlap among outlier windows 
was estimated using the Supermatcher algorithm in the EMBOSS 
tool kit (Rice et al., 2000). First, for each combination of reference 
origin and population origin, outlier windows were extracted and 
concatenated by chromosome into a single sequence (excluding the 
unmapped scaffold). For each population, contiguous outlier se-
quences from each SNP were aligned, and the proportion of overlap 
was estimated by Supermatcher. This process was repeated for each 

of the three outlier metrics that utilized sliding windows (i.e. Tajima's 
D, π, and FST). If a chromosome in a population did not contain outlier 
windows identified using both reference genomes, the alignment 
rate was set to 0%. For example, two Tajima's D outlier windows 
were identified on chromosome 6 in Germany 2 River using the 
North American reference genome, compared to 0 when using the 
European reference genome.

2.6  |  Detection of structural variants

To investigate the impact of reference genome origin on the detec-
tion of structural variants (SVs), we used two independent SV call-
ers, DELLY2 v0.8.3 (Rausch et al., 2012) and LUMPY v0.3.0 (Layer 
et al.,  2014). Both LUMPY and DELLY were run using the default 
parameters. The LUMPY call was genotyped using SVTyper v0.7.1 
(Chiang et al., 2015), and all SVs marked with the ‘LowQual’ DELLY 
flag were removed. To ensure SVs found by both programs were the 
same, only SVs with an overlap of at least 50% were accepted and 
merged into a cohort-level VCF file using SURVIVOR v1.0.3 (Jeffares 
et al., 2017). For downstream analyses, we included autosomal du-
plications, deletions and inversions with a length of between 1 kb 
and 1 Mb supported by at least six split or discordant reads. All sam-
ples that were homozygote nonreference or heterozygote across all 
samples were analysed separately as these variants likely arise from 
the reference genome assemblies. Genes with coordinates entirely 
nested within SVs were defined as structurally variable genes (SVG) 
using the foverlaps function in the R package data. table v1.9.6.

2.7  |  Methylation data processing and 
genome scan

For the DNA methylation analysis, we used 50 methylomes of labo-
ratory full-sib families of European G. aculeatus obtained from the 
study of Sagonas et al. (2020), were we investigated whether para-
site infection alters genome-wide patterns and levels of DNA meth-
ylations. For each fish, a single-end library of 100 bp reads with an 
average of 11.5 million reads was produced. The raw data were qual-
ity checked using FASTQC v0.11.5 (Andrews, 2010). Cutadapt v1.9.1 
(Martin, 2011) was used to trim and filter low-quality bases (-q 20), 
remove trimmed reads shorter than 10 bases and remove adapters 
using multiple adapter sequences (ATCGGAAGAGCACAC, AGATC​
GGA​AGA​GCA​CAC and NNAGA​TCG​GAA​GAG​CACAC) with a mini-
mum overlap of 1 bp between adapter and read. Trimmed reads 
were independently mapped against the European and US refer-
ence genomes (Peichel et al., 2017) to extract methylated cytosines, 
using Bismark v0.22.1 (Krueger & Andrews, 2011) with the Bowtie2 
v2.3.2 aligner, allowing up to two mismatches. Similar to the SNP 
data, Bamtools v2.4.1 (Barnett et al., 2011) was used to calculate the 
mapping efficiency.

Cytosine methylation ratios in CpG sites were estimated for 
each fish and differentially methylated sites (DMS) were calculated 
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6  |    THORBURN et al.

between the two treatment groups (no parasite exposed or exposed 
to the nematode parasite Camallanus lacustris), respectively (for more 
information, see Sagonas et al., 2020) using the R package MethylKit 
v1.14.2. CpG methylation ratios were estimated by calculating the 
number of reads mapping to a given position carrying a cytosine di-
vided by those reads carrying either C or T. CpG sites with cover-
age below 10× and sites that have more than 99.9th percentile of 
coverage were discarded in each sample from downstream analyses. 
We selected DMS between treatments using the following criteria: 
change in fractional methylation larger than 15%; q-values lower 
than 0.01 (SLIM method), and the presence of methylated Cs in at 
least 50% of the samples within a treatment group. Differentially 
methylated genes were identified using the genomation R package 
v.1.1.0 (Akalin et al.,  2015); a gene was considered differentially 
methylated if at least one DMSs was located no further than 1.5-kb 
upstream and 500 bases downstream of it.

2.8  |  GO enrichment analysis

To examine how the origin of the reference genome impacts func-
tional enrichment of outlier genes, structurally variable genes, and 
differentially methylated genes, we performed gene ontology (GO) 
enrichment analyses. GO enrichment analyses were performed 
using the g:GOSt function in the g:Profiler v0.1.9 package (Raudvere 
et al., 2019). Outlier genes were grouped by all combinations of ref-
erence genome origin versus population of origin, resulting in four 
distinct combinations: Europe–Europe, Europe–North America, 
North America–Europe and North America–North America. The 
lists of outlier genes or SVGs identified using the European assembly 
were assigned the orthologous North American gene identifiers for 
GO enrichment. p-values were corrected for multiple testing using 
FDR.

2.9  |  Statistical analyses

Linear mixed effect models in the lme4 package (Bates et al., 2015) 
were used to analyse how the origin of the reference genomes af-
fected mapping efficiency, detection of genome-wise zygosity and 
population-genetic indices (i.e. Tajima's D, π, and FST). For mapping 
efficiency, the proportion of mapped reads that were singletons or 
duplications were independently used as response variables. An in-
teraction between reference genome origin (i.e. North America or 
Europe) and population origin (i.e. North America or Europe) were 
assigned as fixed effects, and population ID was set as a random 
factor. The same approach was used for all analyses, indepen-
dently replacing the response variable with the zygosity categories 
or population-genetic indices, retaining the same fixed and ran-
dom effects. p-values were inferred using Satterwaite's degree of 
freedom method in the lmerTest package (Kuznetsova et al., 2017). 
Tukey's HSD post hoc tests were performed using emmeans (Lenth 
et al., 2020).

3  |  RESULTS

3.1  |  Reference genome assembly

The contig-level European gynogen assembly is 458.4 Mb, making it 
1.0% smaller than the North American reference genome (463.0 Mb; 
Peichel et al., 2017). We achieved an N50 of 0.746 Mb, comprised of 
1906 contigs (Table 1). Guided by synteny, we conservatively placed 
419.3 Mb (91.5%) into 21 chromosomes (Figure 1), forming a pseu-
dochromosome level assembly allowing for a more accurate compar-
ison of the impact of the origin of reference genomes on population 
genomic metrics. A combination of gene evidence from the G. acu-
leatus North American reference genome (available cDNA and pro-
tein sequences) and ab initio gene predictions resulted in 22,739 
genes annotated and a BUSCO completeness score of 95.2%. A total 
of 18,255 (90.2%) genes in the European gynogen assembly were 
orthologous to genes in the North American assembly. Additionally, 
we confirmed the European- and North American-derived reference 
genomes are nested within the phylogeny of populations sampled 
from the same geographic regions (Figure S2).

Next, we called SNPs in the paired-end libraries used to polish 
the European genome assembly to assess the remaining heterozy-
gosity in the gynogen genome assembly, which is expected to be 
homozygous after the gynogenesis procedure. In total, we identi-
fied 299,931 SNPs (average genome-wide read depth of 60.6) in the 
genome: 3118 SNPs were homozygote nonreference, and 296,813 
were heterozygote. Hence, after two generations of gynogene-
sis, only 0.07% of the genome remains polymorphic, compared to 
0.53% ± 0.01% (mean ± SE) across all samples mapped to both refer-
ence assemblies (Table S1).

3.2  |  Mapping efficiency

To assess the impact of reference genome origin on downstream 
analyses, we started by mapping whole genome resequencing reads 
from 60 individuals to the reference genomes. In total, we identified 
10,672,162 SNPs using the North American reference genome, and 
10,757,204 SNPs using the European reference genome (Table S1). 
Overall, we achieved an average genome-wide depth of coverage of 
20.40 (range; 11.09–35.46) using the North American reference and 
20.99 (11.30–36.14; Table S1) using the European reference. Reads 
mapped more efficiently (i.e. a higher proportion of reads mapped) to 
the European reference genome regardless of the population of ori-
gin with total reads mapping 2.31% ± 0.16% (European; estimate ± SE) 
and 1.13% ± 0.20% (North American) more efficiently, albeit with 
a greater increase in efficiency for local samples (LMER; Reference 
Origin:Population Origin, F108 = 21.38, p < .001; Figure  2a and 
Table S2). This same result was also observed when only consider-
ing properly matched paired-end reads (i.e. paired reads where both 
reads map in the correct orientation; 0 × 2 flag), where reads mapped 
more efficiently to the European reference, but there was a greater 
increase in efficiency for local populations (European, 3.14% ± 0.22%; 
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    |  7THORBURN et al.

North American, 1.36% ± 0.27%; Reference Origin:Population Origin, 
F108 = 25.94, p < .001; Figure  2a). There were also 0.83% ± 0.08% 
(European) and 0.24% ± 0.09% (North American) fewer singletons 
(i.e. where only one of the paired-end reads mapped) when mapping 
European or North American populations to the European reference 
(LMER; Reference Origin:Population Origin, F108 = 25.10, p < .001; 
Figure  2b). Reference genome or population origin had no effect 
on mapping of duplicate reads (LMER; Reference Origin:Population 

Origin, F108 = 0.01, p = .942; Reference Origin, F108 = 0.12, p = .729; 
Population Origin, F8 = 3.76, p = .088; Figure 2b). Overall, using the 
European-derived genome assembly noticeably improved mapping 
efficiency irrespective of the sample origins, although the effects 
were noticeably more efficient for European populations. Such re-
sults are consistent with hypothesis h3, which describes that a local 
reference genome is beneficial, but the effects are generally more 
substantial when using the European reference genome.

Contig assembly
Anchored 
assembly

Peichel et al. (2017) 
Assembly

Number of contigs 1906 23a 23a

Total size of contigs 458,064,828 459,230,166 463,045,109

Longest contig 5,194,525 33,176,498 34,244,925

N50 746,270 18,858,959 20,606,801

Assembly validation

Complete BUSCOs 4363 (95.2%)

Complete single-copy BUSCOs 3913 (85.4%)

Complete duplicated BUSCOs 450 (9.8%)

Fragmented BUSCOs 93 (2.0%)

Missing BUSCOs 128 (2.8%)

Total BUSCO groups searched 4584

a21 LGs, chrM and all unplaced contigs concatenated into a single chromosome per the North 
American reference genome.

TA B L E  1  Assembly statistics for 
the European-derived gynogenetic 
Gasterosteus aculeatus genome assembly.

F I G U R E  1  Synteny plot between 
the two Gasterosteus aculeatus genome 
assemblies. Grey lines between the 
autosomes represent +99% syntenic 
blocks greater than 1 kb between the 
European gynogen assembly (left, 
blue blocks) and the North American 
G. aculeatus assembly (right, red blocks). 
Coloured lines represent synteny between 
resolved regions and the unmapped 
scaffold in each assembly. Specifically, 
blue and green lines represent 1 kb +99% 
syntenic blocks between the unmapped 
scaffolds and the alternate reference 
autosome.
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8  |    THORBURN et al.

3.3  |  Estimations of genotype performance

When using a local reference genome, there were 6.24% ± 0.38% 
(European; estimate ± SE) and 0.47% ± 0.47% (North American) 
fewer missing genotypes (LMER; Reference Origin:Population 
Origin, F428 = 123.97, p < .001; Figure 3). The same was true for the 
detection of heterozygote genotypes of both classes (i.e. heterozy-
gote reference/nonreference and nonreference/nonreference), 
where a local reference genome decreases the number of calls by 
0.13% ± 0.09% (European) and 0.31% ± 0.11% (North American) 
for heterozygote reference/nonreference, and 0.10% ± 0.003% 
(European) and 0.05% ± 0.004% (North American) for heterozy-
gote nonreference/nonreference genotypes (LMER; all models re-
port the Reference Origin:Population Origin interaction; reference/
nonreference, F428 = 9.86, p = .002; nonreference/nonreference, 
F428 = 872.85, p < .001; Figure  3). Conversely, we identified ap-
proximately four times higher proportions of homozygote reference 
genotypes when using a local reference genome for European pop-
ulations (12.19% ± 0.37%) in comparison with the North American 
populations (3.36% ± 0.35%; LMER; Reference Origin:Population 
Origin, F428 = 691.30, p < .001; Figure  3). Finally, approximately a 
twofold decrease in the proportion of homozygote nonreference 
variants were identified when using a local reference genome for 
European populations (−5.72% ± 0.12%) over the North American 

populations (−2.53% ± 0.14%; LMER; Reference Origin:Population 
Origin, F428 = 2012.29, p < .001; Figure 3). Overall, these results are 
consistent with hypothesis h1, which posited that a local reference 
genome would offer a benefit and would manifest as significant 
interactions.

3.4  |  Genome scan using SNP data

The genome-wide distributions of metrics commonly used in pop-
ulation genomics were affected by the origin of the genome used 
(Figures  4, S3 and S4). For a genome scan investigating patterns 
of differentiation, FST was 0.019 ± 8.4 × 10−4 (mean ± SE) higher 
for European populations and 0.005 ± 1.0 × 10−5 higher for North 
American populations when using a local reference genome (LMER; 
Reference Origin:Population Origin, F220053 = 324.60, p < .001; 
Table S2). A similar pattern was observed using TD, whereby TD was 
0.026 ± 2.95 × 10−3 (European) and 5.90 × 10−3 ± 3.61 × 10−3 (North 
American) higher when using a local reference genome (LMER; 
Reference Origin:Population Origin, F406709 = 63.97, p < .001). In 
addition, using a local reference genome led to significantly lower 
values of nucleotide diversity being detected (LMER; Reference 
Origin:Population Origin, F407698 = 123.20, p < .001), with low es-
timates for both European (−3.28 × 10−5 ± 5.39 × 10−6) and North 

F I G U R E  2  Effect of reference genome 
origin on mapping efficiency. Scales 
differ among panels, but the units are 
the same (a, b). There was significantly 
higher mapping efficiency when using the 
European reference genome regardless 
of sample origin for total reads (matched 
and singleton), matched pair reads (a) as 
well as significantly lower singletons (b). 
There was no difference in the number 
of duplicate reads identified. Reference 
genome origin is labelled at the top of the 
plot, and mapped population origin at the 
bottom.
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    |  9THORBURN et al.

American (−9.99 × 10−5 ± 6.60 × 10−6) populations. These results are 
consistent with hypothesis h1, where a local reference genome has a 
significant impact on analyses.

Through sampling each metric individually and taking the top 
~1% of the FST, π, or TD distributions, we generated multiple lists of 
outlier genes (Tables 2 and S3). Notably, the distributions of outlier 
genes across the genome were not significantly different when using 
either reference genome (two-sample Kolmogorov–Smirnov test; 
FST, D = 0.140, p = .988; π, D = .121, p = .998; TD, D = 0.157, p = .962; 

Figures 4, S3 and S4). Overall, higher number of outlier genes, in-
cluding the subset of outlier 1-to-1 orthologous genes, were identi-
fied when using a local reference genome (Table 2). The difference 
in genes among calls with different reference genomes putatively 
translated into no overlapping significantly enriched GO terms for 
the FST, π, and TD analyses if any enrichment was detected (Table 2). 
Complete GO enrichment tables are reported in Table S4. The mean 
alignment rates and standard deviations among chromosomes for 
each population are reported in Table S5.

3.5  |  Genomic structural variants

We next addressed the question whether using a local refer-
ence genome affected the detection of structural variants. First, 
we counted SVs by type (i.e. deletions, duplications and inver-
sions) organized by the combination of reference genome and 
population origin (Table 3). Overall, no fixed SVs were observed 
in all samples. The distribution of deletions significantly differed 
among SV calls (two-sample Kolmogorov–Smirnov test, D = 0.278, 
p = .008; Figure S5), whereby fewer SVs were detected when using 
the North American reference genome. The distribution of dupli-
cations and inversions did not significantly differ among SV calls 
with either reference genome (two-sample Kolmogorov–Smirnov 
test; duplications, D = 0.109, p = .890; inversions, D = 0.140, 
p = .754; Figure S5). Additionally, we identified more deletions in 
the North American populations mapped to their local reference 
genome than than the European populations mapped to their local 
reference genome (LMER; Reference Origin:Population Origin, 
F108 = 61.813, p < .001; Tables  3, S6 and S7). Next, we identified 
significantly more inversions when using the North American 
reference genome for both population origins, but the differ-
ence was greater for the European populations (LMER; Reference 
Origin:Population Origin, F108 = 34.52, p < .001; Table 3). Finally, a 
similar number of duplications were identified in European popu-
lations irrespective of reference origin, whereas fewer duplica-
tions were identified in North American populations when using 
a local reference genome (LMER, Reference Origin:Population 
Origin, F108 = 3.99, p = .048; Tables S6 and S7). Overall, the results 
of the SV analysis are in line with hypothesis h3 where the effects 
of a local reference genome are present, but unequal effects indi-
cate one reference is better than the other.

Next, we investigated the role of a local reference genome 
on the detection of genes entirely nested within SVs, which we 
defined as structurally variable genes (SVG; Table  3). This anal-
ysis was limited to 1-to-1 orthologs to ensure there was no bias 
arising from copy number variation among reference genome an-
notations. Here, we identified significantly fewer SVG-deletions 
for European populations using a local reference genome; how-
ever, there was no significant difference in SVG-deletions in 
the North American populations when using either reference 
(LMER, Reference Origin:Population Origin, F108 = 25.94, p < .001; 
Tables  S6 and S7). On the contrary, we identified significantly 

F I G U R E  3  Proportion of SNP classes among all segregating 
sites. Segregating sites with no coverage or with a SNP that was 
removed during filtering are defined as missing information.
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10  |    THORBURN et al.

more SVG-duplications when using the North American refer-
ence, regardless of the origin of the population (LMER, Reference 
Origin:Population Origin, F108 = 9.40, p = .003; Tables S6 and S7). 
Finally, significantly fewer inversions were detected when using 
a local reference genome (LMER; Reference Origin:Population 
Origin, F108 = 62.55, p < .001; Tables S6 and S7).

To identify whether a local reference genome correlated with 
the detection of functional enrichment in SVs, we investigated the 
SVGs GO enrichment. Similar to the overall SVG distribution anal-
ysis, this analysis was restricted to 1-to-1 orthologs. We identified 
no overlap in functional enrichment in the majority of the compar-
isons (Table 3). The one exception was SVG-deletions in the North 
American populations, where three out of 13 significantly enriched 
terms (signalling receptor regulator activity, signalling receptor ac-
tivator activity and receptor ligand activity) were identified in both 
calls. Overall, the detection of SVs and SVGs was affected in differ-
ent ways by the origin of the reference genome.

3.6  |  DNA methylation analysis

Finally, we conducted a DNA methylation analysis after map-
ping bisulfite sequencing reads to the two reference genomes. 
The inclusion of this analysis permits us to investigate the effect 
of reference genome origin on both DNA methylation analyses 
and on marker-based analyses, as opposed to the window-based 

genome scans reported above. The alignment of reads to the ref-
erences showed significantly higher efficiency when using a local 
European reference genome (72.5%) compared with the North 
American reference (68.4%), resulting in an increase of 6% (paired 
t-test; t = −44.44, df = 49, p < .001). The more efficient mapping to 
a local reference produced a significantly higher calling of cyto-
sine bases (6% increase, paired t-test; t = −28.31, df = 49, p < .001) 
and methylated Cs (8.2% increase, paired t-test; t = −33.18, df = 49, 
p < .001). Similarly, the comparison of the number of methylated 
sites per fish after filtering for low coverage sites revealed that 
using the local European reference genome resulted in identify-
ing more methylated sites (560,629.08 ± 12,167.89) than with the 
North America reference (510,240.14 ± 11,037.78, paired t-test; 
t = −44.20, df = 49, p < .001). Additionally, the number of differ-
entially methylated sites (DMS) was higher when using a local 
European reference genome (N = 2550 DMS) in comparison with 
the North American reference (N = 2404 DMS). Differentially 
methylated sites overlapped with 711 and 712 genes in the 
European and North American assemblies, respectively, and spe-
cifically 298 and 299 genes were 1-to-1 orthologs between the 
two assemblies. A total of 204 of those genes with DMS (68%) 
were shared in both genomes. There were three significantly en-
riched GO terms (protein binding, calcium ion binding, and bind-
ing) shared in both analyses, and two enriched GO terms (cation 
binding and metal ion binding) only identified when using a diver-
gent reference genome (Table 2).

F I G U R E  4  Comparing distributions of π outliers. Windows are compared across the genome for (top) European and (bottom) North 
American populations mapped to the (a) European or (b) North American reference genome. Axes are square root transformed.

 17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13838 by U

niversität B
ern, W

iley O
nline L

ibrary on [26/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11THORBURN et al.

TA
B

LE
 2

 
D

is
tr

ib
ut

io
n 

of
 o

ut
lie

r w
in

do
w

s 
an

d 
di

ff
er

en
tia

lly
 m

et
hy

la
te

d 
si

te
s 

(D
M

S)
, o

ve
rla

pp
in

g 
ge

ne
s,

 a
nd

 th
ei

r f
un

ct
io

na
l e

nr
ic

hm
en

t.

Po
pu

la
tio

n 
or

ig
in

Re
fe

re
nc

e 
or

ig
in

M
et

ric
O

ut
lie

r 
w

in
do

w
s

O
ut

lie
r 

ge
ne

s
1-

1 
O

rt
ho

lo
g 

ou
tli

er
 g

en
es

Sh
ar

ed
 o

ut
lie

r 
O

rt
ho

lo
gs

Pe
rc

en
ta

ge
 o

ve
rla

pp
in

g 
ou

tli
er

 g
en

es
Pe

rc
en

ta
ge

 o
ut

lie
r w

in
do

w
 

Ba
se

pa
ir 

ov
er

la
p

Si
gn

ifi
ca

nt
 

G
O

 te
rm

s
O

ve
rla

pp
in

g 
G

O
 te

rm
s

N
or

th
 A

m
er

ic
a

N
or

th
 A

m
er

ic
a

Ta
jim

a'
s 

D
87

8
10

19
33

5
22

1
65

.9
7%

39
.2

8 
±

 9.
89

%
3

0

N
or

th
 A

m
er

ic
a

Eu
ro

pe
Ta

jim
a'

s 
D

87
4

91
6

33
3

66
.3

7%
0

Eu
ro

pe
N

or
th

 A
m

er
ic

a
Ta

jim
a'

s 
D

13
08

13
21

34
2

21
4

62
.5

7%
41

.2
8 

±
 5

.2
4%

0
0

Eu
ro

pe
Eu

ro
pe

Ta
jim

a'
s 

D
13

09
14

49
42

4
50

.4
7%

3

N
or

th
 A

m
er

ic
a

N
or

th
 A

m
er

ic
a

F ST
44

6
54

1
19

4
99

51
.0

3%
38

.8
4 

±
 1

6.
79

%
0

N
A

N
or

th
 A

m
er

ic
a

Eu
ro

pe
F ST

44
0

53
4

17
4

56
.9

0%
0

Eu
ro

pe
N

or
th

 A
m

er
ic

a
F ST

67
2

70
3

24
0

10
1

42
.0

8%
41

.0
0 

±
 6

.1
9%

0
0

Eu
ro

pe
Eu

ro
pe

F ST
66

0
78

8
24

3
41

.5
6%

2

N
or

th
 A

m
er

ic
a

N
or

th
 A

m
er

ic
a

π
88

8
69

6
21

2
29

13
.6

8%
37

.6
9 

±
 1

3.
17

%
0

N
A

N
or

th
 A

m
er

ic
a

Eu
ro

pe
π

88
0

55
8

15
3

18
.9

5%
0

Eu
ro

pe
N

or
th

 A
m

er
ic

a
π

13
32

58
1

14
3

36
25

.1
7%

36
.9

2 
±

 1
2.

82
%

0
N

A

Eu
ro

pe
Eu

ro
pe

π
13

20
63

0
19

9
18

.0
9%

0

Eu
ro

pe
N

or
th

 A
m

er
ic

a
D

M
S

24
04

71
2

29
9

20
4

68
.2

3%
N

A
5

3

Eu
ro

pe
Eu

ro
pe

D
M

S
25

50
71

1
29

8
68

.4
5%

3

TA
B

LE
 3

 
D

is
tr

ib
ut

io
n 

of
 s

tr
uc

tu
ra

l v
ar

ia
nt

s 
an

d 
st

ru
ct

ur
al

ly
 v

ar
ia

bl
e 

ge
ne

s 
an

d 
th

ei
r f

un
ct

io
na

l e
nr

ic
hm

en
t.

Po
pu

la
tio

n 
or

ig
in

Re
fe

re
nc

e 
or

ig
in

SV
 ty

pe
N

um
be

r o
f 

SV
s

N
um

be
r o

f 
SV

G
s

1-
1 

O
rt

ho
lo

g 
SV

G
s

Sh
ar

ed
 o

ut
lie

r 
O

rt
ho

lo
gs

Pe
rc

en
ta

ge
 

ov
er

la
pp

in
g 

ou
tli

er
 

ge
ne

s
Si

gn
ifi

ca
nt

 G
O

 
te

rm
s

O
ve

rla
pp

in
g 

G
O

 te
rm

s

N
or

th
 A

m
er

ic
a

N
or

th
 A

m
er

ic
a

D
el

et
io

n
39

15
30

34
92

0
33

0
35

.8
7%

3
3

N
or

th
 A

m
er

ic
a

Eu
ro

pe
D

el
et

io
n

57
20

26
13

87
7

37
.6

3%
13

Eu
ro

pe
N

or
th

 A
m

er
ic

a
D

el
et

io
n

40
49

29
68

89
3

29
6

33
.1

5%
1

0

Eu
ro

pe
Eu

ro
pe

D
el

et
io

n
50

27
21

13
71

6
41

.3
4%

16

N
or

th
 A

m
er

ic
a

N
or

th
 A

m
er

ic
a

D
up

lic
at

io
n

26
84

39
08

11
95

50
0

41
.8

4%
0

N
A

N
or

th
 A

m
er

ic
a

Eu
ro

pe
D

up
lic

at
io

n
34

02
31

80
11

25
44

.4
4%

0

Eu
ro

pe
N

or
th

 A
m

er
ic

a
D

up
lic

at
io

n
43

00
40

70
12

56
52

4
41

.7
2%

2
0

Eu
ro

pe
Eu

ro
pe

D
up

lic
at

io
n

44
25

30
72

10
74

48
.7

9%
0

N
or

th
 A

m
er

ic
a

N
or

th
 A

m
er

ic
a

In
ve

rs
io

n
79

4
41

28
13

58
62

6
46

.1
0%

20
0

N
or

th
 A

m
er

ic
a

Eu
ro

pe
In

ve
rs

io
n

75
7

33
82

12
34

50
.7

3%
10

Eu
ro

pe
N

or
th

 A
m

er
ic

a
In

ve
rs

io
n

82
8

40
31

13
52

52
2

38
.6

1%
15

0

Eu
ro

pe
Eu

ro
pe

In
ve

rs
io

n
68

5
29

91
10

81
48

.2
9%

0

 17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13838 by U

niversität B
ern, W

iley O
nline L

ibrary on [26/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12  |    THORBURN et al.

4  |  DISCUSSION

Until the prohibitive requirements to using genome-graphs are al-
leviated, reference genomes remain an integral part of population 
genomic analyses. However, the reference genome can introduce 
mapping biases that significantly influence downstream analyses 
and inferences (Bohling, 2020; Günther & Nettelblad, 2019; Prasad 
et al.,  2022; Prüfer et al.,  2010; Valiente-Mullor et al.,  2021). 
Meanwhile, the effects of using a local or more differentiated refer-
ence genome remain understudied for ecological and evolutionary 
model species (but see Galla et al., 2019). To address this knowledge 
gap, we generated a de novo annotated synteny-guided assembly of 
a European Gasterosteus aculeatus fish. Using this novel genome and 
the established North American reference genome to map sequence 
data of samples from different populations in Europe and North 
America, we confirm the reference genome origin significantly im-
pacts downstream analyses. Most notably, a local reference genome 
increased mapping and genotyping performance. Specifically, map-
ping efficiency was significantly better using the European reference 
genome, but the increase in performance was greater for local sam-
ples. When using a local reference, more genomic sites were geno-
typed, and genome window-based estimates of TD and FST increased 
whilst π slightly decreased. Similarly, structural variant (SV) analysis 
gave slightly different results based on the reference genome used. 
Consequently, most GO analyses resulted in only a minor propor-
tion of matching enriched GO functions when using different ref-
erence genomes. In contrast to the window-based methods, the 
marker-based DNA methylation analysis pipeline was relatively less 
affected by reference genome origin, but still about one third of dif-
ferentially methylated genes was uniquely identified by one but not 
both references.

4.1  |  Genome assembly of a gynogenetic individual

Recent tools and techniques have increased the efficacy of reference 
genome assembly, such as utilizing long- and short-read sequencing 
(Rhie et al., 2021), scaffolding with Hi-C (Peichel et al., 2017), optical 
or linkage mapping (Glazer et al., 2015), among the growing list of 
novel and effective techniques (Rhie et al.,  2021). The generation 
of gynogenetic individuals purges genome-wide variation simplify-
ing assembly of genomes (Christensen et al., 2018; Samonte-Padilla 
et al.,  2011). Here, after applying a previously established proto-
col for gynogenesis, we putatively removed more than 99.9% of 
genome-wide variation, likely aiding in scaffolding by long-read 
sequencing. The remaining SNPs identified in gynogen genome 
likely stem from paralogous sequences that were not identified by 
the genome assembler or from errors in the SNP calling process. 
Alternatively, a small paternal contribution in meiotic gynogenesis 
has been identified and may also contribute to our observations 
(Currey et al., 2023).

The contiguity of the contig-level gynogen G. aculeatus assembly 
is comparable with the top few assemblies published by the Fish10k 

project (Fan et al., 2020) in terms of number of contigs and contig 
N50. Notably, there are a few altered placements of contigs into 
chromosomes among assemblies. The largest was the 2.07 Mb con-
tig tig00002041_pilon, which aligns to both the middle of chrVIII 
(9.25–10.87 Mb) and the end of chrIX (17.89–18.29 Mb) and was 
placed in Gy_chrIX by Chromosemble. The Atlantic and Pacific G. 
aculeatus clades diverged an estimated 44.6Kya (Fang et al., 2018) 
leaving substantial time for large genomic rearrangements to occur. 
As such the correct placement of tig00002041_pilon is similarly 
likely in either chromosome that illustrates the need for further in-
vestigations to resolve the differences among assemblies. Overall, 
the new European gynogen reference genome is high quality, en-
abling us to test the effects of reference genome origin on down-
stream population genomic analyses.

4.2  |  Mapping and calling variants

Despite continuing advances in tools to assemble reference ge-
nomes and map sequenced reads, difficulty remains in correctly 
mapping reads to complex genomic regions enriched in heterozygo-
sity, structural variation or repetitive elements (Kajitani et al., 2014; 
Treangen & Salzberg,  2012). By using a reference genome with 
a longer evolutionary time to the most recent common ancestor 
(MRCA), complex variants have time to accumulate, likely decreas-
ing mapping efficiency to genomic regions with arguably some of 
the most sought-after features (e.g. polymorphic regions associated 
with rapid evolutionary changes and adaptations). Here, we show 
that using a European stickleback reference genome that has a 
lower time to the MRCA with European populations increases map-
ping efficiency and decreases missing data. Conversely, the North 
American populations also showed increased efficiency when 
mapped to the European reference, but the difference was notice-
ably smaller than for European populations. Such a result indicates 
the removal of heterozygosity through gynogenesis (Samonte-
Padilla et al., 2011) and the putative resolution of complex genomic 
regions in the European assembly improved mapping efficiency. 
These results are concordant with ethnicity-specific reference ge-
nome studies, which have demonstrated that local reference ge-
nomes increase depth of coverage resulting in increased sensitivity 
in variant calling (Ameur et al.,  2017; Dewey et al.,  2011; Fakhro 
et al., 2016). Overall, a local reference genome clearly has a positive 
impact on mapping and variant calling.

4.3  |  Genome scans

The effects of improved mapping efficiency and a decrease in miss-
ing data were observed to have significant impacts on the estima-
tion of important population genomic metrics. Here, genome-wide 
estimates of FST and TD were higher when using a local reference 
genome, whereas the opposite pattern was true for estimates of 
nucleotide diversity (π). Despite the differences in genome-wide 
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estimates, the genome-wide distribution of outlier windows of π, FST, 
and TD did not significantly differ across the genome for the same 
resequenced populations mapped to different reference genomes. 
Crucially, however, the detection of outlier genes was strongly im-
pacted when using different reference genomes, even when con-
servatively limiting the analysis to 1-to-1 orthologs identified among 
the references. Specifically, genes overlapping π outliers had a low 
proportion of matching orthologs in the same populations when 
mapped to different reference genomes. Genes overlapping outliers 
from scans for FST and TD were more consistent, but still revealed a 
large number of differences. In total, only 5.45% of the orthologs 
among assemblies were mapped to different chromosomes, clearly 
affecting the detection of outlier genes but only explaining a small 
proportion of differences observed. The difference in gene place-
ment may instead highlight numerous resolved differences among 
assemblies that have accumulated since the divergence of Atlantic 
and Pacific G. aculeatus clades 44.6 Kya (Fang et al., 2018). For ex-
ample, a small deletion in one reference assembly and not the other 
can result in a gene overlapping an outlier genomic window in only 
one scan. Overall improved mapping may help specific population 
genomic analyses including genome-wide representation sequencing 
where population structure may end up obscuring some SNPs pre-
sent in only one or few populations (e.g. Baltazar-Soares et al., 2020).

4.4  |  Structural variant detection

Similar to the effect of reference genome origin on SNP-based 
scans, the detection of SVs appears to be affected by both reference 
genome origin and the assembly regardless of origin. First, fewer 
deletions and inversions were identified when using a local refer-
ence genome. This result follows expectations, as there is less time 
between MRCA for SVs to build up between the sampled population 
and the reference genome. Second, more deletions and duplications 
and fewer inversions were detected when using the European refer-
ence, irrespective of population origin, suggesting differences in the 
genome assembly plays a role in the detection of SVs. However, the 
differences in SV detection did not translate into any significant dif-
ferences in the number of genes overlapping deletions.

There were differences in the effect of a local reference ge-
nome among SV classes, highlighting that calling SVs at the pop-
ulation level is clearly affected by both reference bias and a local 
reference genome. Here, the large reference bias effect likely stems 
from differences in sequencing and assembly methods employed to 
generate the two genome assemblies. These results further add to 
a body of literature highlighting the challenges around calling SVs 
within populations, which constitute a large proportion of genomic 
variation in Eukaryotes (Ho et al., 2020; Khayat et al., 2021; Mérot 
et al., 2023; Weissensteiner et al., 2020). Recent innovative studies 
calling population-level SV rely on multiple data sources (i.e., short 
read, long read, optical mapping) and independent mapping methods 
to create a robust dataset (Khayat et al., 2021; Mérot et al., 2023; 
Weissensteiner et al., 2020). Thus, in addition to using multiple data 

sources and mapping methods, taking the overlapping SVs called 
using two intraspecific reference genomes could be used to improve 
confidence in population-level SV calls.

4.5  |  Methylation

The most consistent analysis in terms of overlap among reference 
genomes was the marker-based DNA methylation test. First, using 
a local reference genome significantly increased mapping efficiency, 
which resulted in more methylated sites and DMS being detected. 
The number of genes overlapping the DMS using either reference 
genomes was the most consistent among all analyses, with one 
fewer gene (0.14% of total genes) and ortholog (0.34% of total 1-to-1 
orthologs) being identified when using a local reference. The DMS 
analyses recovered a relatively high proportion of overlapping out-
lier orthologs among reference genomes (68% of 1-to-1 orthologs), 
but still revealed an effect of the choice of reference.

4.6  |  GO enrichment

The largest effect of reference genome origin was in the GO enrich-
ment analyses of outlier genes from genome scans, with only a minor 
proportion of enriched GO terms overlapping when using different 
reference genomes. Given the overall small proportion of overlap-
ping outlier genes, these results were to be expected. GO enrichment 
analyses are particularly sensitive to minor changes in the number of 
genes or annotations in lists of genes (Gaudet & Dessimoz, 2017). It 
should be noted, however, that to allow for a direct comparison of 
the effects of the different reference genomes, we focussed on 1-
to-1 orthologs. GO enrichment analyses are common in population 
genomics (e.g. Chain et al., 2014; Feulner et al., 2015; Liu et al., 2018; 
Reimegård et al., 2017), and our results highlight reference genome 
origin strongly impacts such inferences.

5  |  CONCLUSIONS

Assembling reference genomes is a fast-moving field of research, 
which sees persistent updates and novel methodologies adopted 
(Rhie et al., 2021). Hence, variation seen in new reference genomes 
can reflect both the geographical range of the species distribution 
but also variation in methodologies used to sequence and assem-
ble the genomes. For example, the two G. aculeatus genomes used 
here originate from samples representing two distinct lineages, the 
European and North American lineage but also differ significantly 
in how they were generated. Notably, the North American refer-
ence genome (Peichel et al.,  2017) is part of a series of updates 
to the original G. aculeatus genome assembly (Jones et al.,  2012). 
The original assembly used entirely Sanger sequence data (Jones 
et al.,  2012), compared with the PacBio and Illumina sequence 
data used for the gynogen genome. As such, only when there is a 
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significant interaction between population and reference origin and 
no obvious bias in the observations towards either reference can we 
exclude that the differences in sequencing and assembly methodol-
ogies are not the primary cause for the observed patterns. Hence, to 
fully disentangle the effect of reference bias stemming from either 
phylogenetic distance and genome assembly quality, research using 
two directly comparable but differentiated reference genomes with 
a geographically diverse data set is needed.

The aim of this study was to investigate the effects of a local 
reference genome and its effects on downstream analyses. The 
reference-specific patterns and putative impact of reference bias 
stemming from reference genome quality on our results highlights 
that there is no simple solution. We suggest that the quality of the 
reference genome and annotations remains the single most import-
ant factor when choosing which reference to use. However, when 
multiple similar quality references are available, a local reference 
genome offers higher mapping efficiencies and decreases the pro-
portion of missing data, therein offering greater confidence in in-
ferences made during downstream analyses. The smallest reference 
effect among our analyses was for the marker-based methylation 
analysis, which had markedly more overlap among outliers in com-
parison with the window-based approach or the SV analysis, but still 
had over 30% of outliers that did not overlap. Taken together, using 
a local reference genome should increase the confidence of infer-
ences made within a study, even if the difference is only minor.

Overall, whether a local reference genome would be benefi-
cial depends on the study system. Here, a local reference genome 
clearly increases the confidence in population genomic analyses for 
a species with a wide distribution range and a high adaptive poten-
tial. In comparison, there are likely relatively few benefits of a local 
reference genome for species with small ranges and limited genetic 
variation. Mapping and genotyping information can be used to in-
form a decision on the benefit—a high proportion of reads mapping 
as singletons or a high proportion of missing and homozygote non-
reference genotypes are indications of reference bias that may be 
alleviated with the use of a local reference genome.
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