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Objectives: The aim of this study was to evaluate the severity of COVID-19 pa-
tients' disease by comparing a multiclass lung lesion model to a single-class lung
lesion model and radiologists' assessments in chest computed tomography scans.
Materials and Methods: The proposed method, AssessNet-19, was developed
in 2 stages in this retrospective study. Four COVID-19–induced tissue lesions
were manually segmented to train a 2D-U-Net network for a multiclass segmen-
tation task followed by extensive extraction of radiomic features from the lung le-
sions. LASSO regression was used to reduce the feature set, and the XGBoost al-
gorithm was trained to classify disease severity based on the World Health Orga-
nization Clinical Progression Scale. The modelwas evaluated using 2 multicenter
cohorts: a development cohort of 145 COVID-19–positive patients from 3 cen-
ters to train and test the severity predictionmodel usingmanually segmented lung

lesions. In addition, an evaluation set of 90 COVID-19–positive patients was col-
lected from 2 centers to evaluate AssessNet-19 in a fully automated fashion.
Results: AssessNet-19 achieved an F1-score of 0.76 ± 0.02 for severity classifi-
cation in the evaluation set, which was superior to the 3 expert thoracic radiolo-
gists (F1 = 0.63 ± 0.02) and the single-class lesion segmentation model
(F1 = 0.64 ± 0.02). In addition, AssessNet-19 automated multiclass lesion seg-
mentation obtained a mean Dice score of 0.70 for ground-glass opacity, 0.68
for consolidation, 0.65 for pleural effusion, and 0.30 for band-like structures
compared with ground truth. Moreover, it achieved a high agreement with radiol-
ogists for quantifying disease extent with Cohen κ of 0.94, 0.92, and 0.95.
Conclusions: A novel artificial intelligence multiclass radiomics model includ-
ing 4 lung lesions to assess disease severity based on theWorld Health Organiza-
tion Clinical Progression Scale more accurately determines the severity of
COVID-19 patients than a single-class model and radiologists' assessment.

Key Words: pulmonary disease, technology assessment, CT segmentation,
radiomics modeling

(Invest Radiol 2023;00: 00–00)

A rtificial intelligence (AI)–based lung image analysis models can
optimize the identification of patients who need specialized care.

Standardized intensive care unit admission criteria have been proven
to safely reduce intensive care unit overload. However, state-of-the-art
AI systems face challenges in standardizing COVID-19 severity states.1–3

A systematic review by Born et al4 highlighted discrepancies
between studies published by clinicians and AI communities on
COVID-19 patient care. They found that most AI studies focused on di-
agnosis rather than tasks such as severity and prognosis assessment,
which are more important in clinical practice. Also, it is pointed out that
AI models have a low adoption rate in clinical settings due to the need
for increased robustness and interpretability.4 Deep learning ap-
proaches for automated COVID-19 diagnosis using medical images,
or quantifying lung tissue involvement using computed tomography
(CT) scans, have been proposed and have demonstrated potential.5–11

However, these approaches currently face challenges in terms of stan-
dardization in patient condition characterization, making their imple-
mentation in health care systems difficult.12

On the other hand, AImodels that assessCOVID-19 patients' severity
usingmedical imaging and clinical datamustmeet clinical requirements.13–15

However, many existing approaches use a single-class lesion segmentation
model, which only classifies voxels as “healthy lung” or “lesion,”
neglecting the various pathological patterns that occur during disease pro-
gression, reducing the models' accuracy in characterizing patient severity.

To overcome these issues, we propose AssessNet-19, an automated
CT-based radiomics multiclass lung lesion segmentation model to assess
disease severity based on a standardized World Health Organization
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Clinical Progression Scale (WHO-CPS) for COVID-19 patients.16 We
hypothesize that evaluating patient disease severity by considering var-
ious pathological lung imaging findings, such as ground-glass opacities
(GGOs), consolidations (CONs), pleural effusion (PLE), and band-like
structures (BANs), can improve accuracy and contribute to identifying ra-
diological markers to characterize COVID-19 disease severity.
MATERIALS AND METHODS

Study Design
This study collected CT imaging exams and clinical data retro-

spectively from COVID-19 patients with acute lung disease from four
medical centers: Inselspital Bern, University of Bern in Switzerland
(IBE), Lindenhofspital Bern in Switzerland (SLB), University Hospital
of Parma in Italy (UPA) and Yale University - New Haven Hospital in
the USA (UYA). The data were collected between March 2020 and
November 2021 from COVID-19 patients with acute lung disease. The
clinical data were obtained during routine clinical workup and retrospec-
tively collected and anonymized. The subjects included in the study had
to have a positive COVID-19 PCR test and CT scan, with imaging and
clinical data collected within 24 hours of each other for consistency.

Including these four sites was motivated by establishing a diverse
dataset that would promote clinical consistency and mitigate potential
biases associated with training on data from a single source. The selection
of multiple sites resulted in a heterogeneous contribution, ensuring a
broader representation of cases and enhancing the generalizability of the
findings. The data set compiled for this study encompasses a comprehen-
sive range of disease severities. It comprises CT scans obtained from 4 dif-
ferent manufacturers, using various reconstruction kernels, and includes
scans conducted with and without intravenous contrast. It is important to
note that the primary focus of this study was not to compare the perfor-
mance of individual hospitals but rather to develop a robust model capable
of running across different technical configurations in future applications.

Data
The study was approved by the Ethics Commission of the Canton

of Bern (ID: 2020-02614, ID: 2020-00954), the Ethics Committee at Yale
University–NewHavenHospital (ID: 2000027839), and the Ethics Com-
mittee at the University Hospital of Parma (ID: 1398/2020/OSS/
AOUPR). All patients in the study gave consent for their data to be used
for research. We retrospectively collected patients' medical imaging and
clinical data fromwhich a subset of the available cases was selected using
3 criteria: patients had to have an acute COVID-19 infection, a CT scan
taken within 15 days before and 60 days after a positive COVID-19 test,
and clinical data available within ±12 hours of CTacquisition. This study
confirmed the presence of the SARS-CoV-2 virus in all included patients
by retrieving their positive PCR test results from the database at each hos-
pital center. The PCR test procedures followed internal hospital protocols
by established guidelines by health authorities, including the WHO and
local health agencies, ensuring the reliability and accuracy of the results.

The data assembly, curation, and image ground truth labeling
were completed in 3 steps, as shown in Figure S1 (Supplementary Ma-
terial, http://links.lww.com/RLI/A833). Imaging characteristics used in
the developing and evaluation cohorts are summarized in Table S1
(Supplementary Material, http://links.lww.com/RLI/A833). An initial
U-Net (R231) model released by Hofmanninger et al17 was used to auto-
matically segment the left and right lungs from CT scans to create base-
line lung segmentations. Finally, radiologists reviewed the automatically
generated lung segmentations, making necessary corrections and manu-
ally segmenting each lung lesion according to the segmentation protocol.

Disease Severity Labeling–Ground Truth
The WHO score was fully automated using the WHO scoring

algorithm on raw clinical data from the IBE and UYA centers and
2 www.investigativeradiology.com
manually obtaining data from the UPA center's medical records.
All scores were based on theWHO-CPS.16 TheWHO score was calcu-
lated for subjects at centers IBE and UPA using clinical data within
24 hours centered around the CT examination. At UYA, clinical data
were recorded daily and matched with the CT examination data from
that same day. Manual review at centers IBE and UYA confirmed the
automated scoring. Patients who died within 12 hours of CTwere not
included in the study.

The severity of the disease is evaluated based on 4 stages: ambu-
latory mild disease (symptomatic but not requiring hospitalization),
hospitalized moderate disease (hospitalization with minimal treatment),
hospitalized severe disease (hospitalization with noninvasive ventila-
tion), and intubated critical disease (hospitalization requiring intuba-
tion, mechanical ventilation, and possibly organ failure). In addition,
the AI model's evaluation involved categorizing the WHO scores into
3, 4, and 5 severity stages, which were grouped into 3 categories for as-
sessment purposes (see Table 1).

In this study, we used hierarchical multilabel classification to
group the WHO severity scores into coarser labels. This approach
was adopted to address the larger label space inherent in individual
WHO scores, in contrast to the relatively smaller label space associated
with the multilabel severity group. Our evaluation focused on selecting
the appropriate number and hierarchy of labels for grouping the severity
scores, ensuring coherence in the classification process. For the 3-label
hierarchy, we collapsed the WHO scale as follows: “mild ambulatory”
(MA) encompassing scores 1 to 3, “hospitalized disease” (HD) cover-
ing scores 4 to 6, and “intubated critical disease” (IC) representing
scores 7 to 9. In the 4-label hierarchy, we categorized patients into
MA for scores 1 to 3, “hospitalized moderate disease” (HM) for scores
4 and 5, “hospitalized severe disease” (HS) for score 6, and IC for
scores 7 to 9. Finally, the 5-label hierarchy involved the following
groupings: MA for scores 1 to 3, HM for scores 4 and 5, HS for score
6, IC for scores 7 and 8, and “intubated critical disease plus organ fail-
ure” (IC+) for score 9. By examining the different hierarchical label
configurations, we assessed the performance and coherence of the se-
lected multilabel hierarchy in accurately representing the severity of
COVID-19 patients based on the WHO scores.

Medical Image Labeling–Ground Truth
Figure 1 illustrates 5 pathological CT findings used to train the

multiclass lesion segmentation model. The data curation process in-
cluded manual segmentation of 10 equidistant slices per subject, cover-
ing the lung from apex to the base, taking 2–6 hours, depending on the
case complexity. The segmentation team consisted of 2 experienced ra-
diologists (20 and 9 years of experience), 2 residents (2 years of expe-
rience), and 4 medical students trained by expert radiologists. At least
1 other team member reviewed segmentations to ensure quality. The
lung and lesion segmentation followed the 2008 thoracic imaging defi-
nitions of the Fleischner Society.18 The multiclass segmentation proto-
col ensured that each lung lesion segmentation remained within the
boundaries of the lung segmentation. In addition, strict nonoverlapping
criteria were enforced for different lesion classes. This was imple-
mented due to the nature of the U-Net multiclass segmentation network,
which was specifically designed to assign a single label to each voxel.

Labeling the 5 radiographic pathologies involved creating a coarse
mask of contiguous lesions using a paint tool and then manually
correcting and checking the segmentation using tools such as the erase
tool and logical operator tool in 3D slicer. The segmentation of each
pathological lung imaging finding was performed differently. For ex-
ample, GGO, BAN, PLE, and TBR lesion segmentation labels were
created in the lung window, whereas the soft tissue window (W: 350;
L: 50) was used for CON segmentation. CON lesions were initially
identified using the threshold tool to create a coarse mask for segmen-
tation. Subsequently, manual correction of the CON label was per-
formed in the lung window using the erase tool. If overlapping borders
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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TABLE 1. The WHO-CPS and 3 Groups to Assess the Disease Status of COVID-19 Patients

WHO Clinical Progression Descriptor WHO Score

Groups to Assess the Disease Status of Patients With COVID-19

3 States 4 States 5 States

Uninfected; no viral RNA detected 0 — — —
Asymptomatic; viral RNA detected 1 Ambulatory mild disease Ambulatory mild disease Ambulatory mild disease
Symptomatic; independent 2
Symptomatic; assistance needed 3
Hospitalized; no oxygen therapy* 4 Hospitalized disease Hospitalized moderate disease Hospitalized moderate disease
Hospitalized; oxygen by mask or nasal prongs 5
Hospitalized; oxygen by NIVor high flow 6 Hospitalized severe disease Hospitalized severe disease
Intubation and mechanical ventilation:
PO2/FiO2 ≥ 150 or SpO2/FiO2 ≥ 200

7 Intubated critical disease Intubated critical disease Intubated critical disease

Mechanical ventilation: PO2/FiO2 < 150
(SpO2/FiO2 < 200) or vasopressors

8

Mechanical ventilation: PO2/FiO2 < 150 and
vasopressors, dialysis, or ECMO

9 Intubated critical disease plus
organ failure

Dead 10 — — —

Note: This study did not evaluate symptoms in nonhospitalized patients, and therefore, we did not distinguish between scores 1, 2 and 3. The severity scoringwas based
according to the WHO working group guidelines,16 using the parameters of viral detection, hospitalizations, use of low-flow oxygen (by nasal cannula), or high-flow
nonintubated oxygenation (by high-flow nasal cannula or continuous or noninvasive positive airway pressure ventilation), intubation and mechanical ventilation, the ox-
ygenation ratios based on SpO2/FiO2 or PO2/FiO2, the administration of vasopressors, requirement of dialysis or ECMO (extracorporeal membrane oxygenation), and
death. To calculate the oxygenation ratios, FiO2 is represented as a fraction (ie, 0.5 for 50% inhaled oxygen).

*If hospitalized for isolation only, record status as for ambulatory patient.

ECMO, extracorporeal membrane oxygenation; FiO2, fraction of inspired oxygen; NIV, noninvasive ventilation; PO2, partial pressure of oxygen; SpO2, oxygen
saturation.
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with PLE were present, they were subtracted using the logical opera-
tor tool. All vessels within the CON area were included, whereas
bronchi and BAN were excluded if not filled with fluid. After
segmenting CON, the remaining opacified lung lesions were seg-
mented as GGO. For GGO, the segmentation was carried out manually
instead of using a threshold method. Large and intermediate vessels
and visible bronchi were excluded. Band-like structures were defined
FIGURE 1. Manual segmentation of 5 different lesion classes such as ground-g
structure (BAN), and bronchi/traction bronchiectasis (TBR).

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
as dense structures with a tubular-like shape, excluding pleura, and at-
electasis. Three-dimensional visualization was used to identify BAN
structures, as they tend to be intertwined with CON or GGO. The
bronchial lumen was segmented for the TBR class, using 3D visual-
ization to address motion artifacts and pseudobronchi. Please refer to
the Supplementary Material, http://links.lww.com/RLI/A833, for visu-
alizing the contouring process as per the segmentation protocol.
lass opacity (GGO), consolidation (CON), pleural effusion (PLE), band-like
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Data-Centric AI Model to Automate the Multiclass
Lesion Segmentation and Disease Severity Assessment

AssessNet-19 model is a data-centric AI model developed
through incremental cycles, where subjects were selected from the
needs of the previous model. Figure 2 shows the final design of the
AssessNet-19 model.19 The pipeline includes image preprocessing,
lung segmentation, multiclass lesion segmentation, and radiomics fea-
ture extraction for severity assessment prediction.

The image preprocessing pipeline extracts axial slices and corre-
sponding lesion segmentations from each CT scan and reshapes them to
fit the 2D format required by the nnU-Net framework.20 It also uses
cropping, normalization, and resampling techniques, such as cropping
to intensity values between 0.5th and 99.5th percentiles, normalizing
using a z-score, and resampling to median voxel size using third-order
spline interpolation for image data and nearest-neighbor interpolation
FIGURE 2. Overview of the AssessNet-19 model, a 2-stage pipeline for assessi
slices are extracted from each CT scan and paired with ground truth segment
segmentation. The 2D segmentation outputs are then used to construct the 3
stage: Radiomics feature extraction and selection process applied to each lesio
inputted into the ML algorithm. Finally, the model was fine-tuned through cro
slices per subject.

4 www.investigativeradiology.com
for segmentation masks. The multiclass lung and lesion segmentation
models use a 2D U-Net architecture,21 and were implemented separately
with the nnU-Net framework.20 They were trained on 118 subjects using
an NVIDIA-RTX-A6000, taking 16 hours for 1000 epochs per fold, av-
eraging 57.90 ± 0.54 seconds per epoch for the lesion segmentation
model, and 15.29 hours for 1000 epochs per fold for the lung segmenta-
tion model, averaging 55.06 ± 0.38 seconds per epoch. Section S1 in the
Supplementary Material, http://links.lww.com/RLI/A833, provides the
implementation details, and Figure S2 in the Supplementary Material,
http://links.lww.com/RLI/A833, presents the learning curves for internal
training and validation sets for eachmodel. One hundred seven radiomics
features were extracted from each axial slice per subject and each lesion
class using the pyRadiomics library.22 Essential features from each lesion
were selected using LASSO.23 Following the image biomarker standard-
ization initiative, shape features were normalized based on lung segmen-
tation to prevent bias due to lung anatomy.24 Finally, the radiomics-based
ng COVID-19 patients' disease severity. First stage: Ten equidistant axial
ation to train two 2D U-Net networks for lung and multiclass lesion
D volume of the lungs and multiclass lesions for quantification. Second
n class. Then, the elected features are concatenated, normalized, and
ss-validation and XGB-classifier based on majority votes for every 10 axial

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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severity prediction model was trained using the extracted features, and
various machine learning models were tested using F1-score as a metric
on a 5-fold cross-validation procedure. The best-performing method was
XGBoost,25 which was chosen for evaluation in the test cohorts.

Benchmarking
In the severity assessment by radiologists, 3 experienced lung ra-

diologists with 20, 14, and 9 years of experience qualitatively and quan-
titatively assessed the disease severity using a 4-class severity scale and
the disease extent for GGO and CON in the percentage of lung volume.
The radiologists were blinded to all patient information, including the
final severity score. Furthermore, we compared 3 ways of categorizing
the disease severity as a 3-, 4-, or 5-label hierarchy to identify the suit-
able hierarchical multilabel classification task in terms of performance
and coherence to represent the severity of disease states based on the -
WHO-CPS.

Statistical Analysis
The statistical analysis focused on evaluating the quality of auto-

mated lung and multiclass lesion segmentation using 2 metrics: Dice
(Dice similarity coefficient) and Hausdorff distance. In addition, the
performance of the WHO severity prediction model was assessed using
multiple metrics, including confusion matrices for accuracy analysis,
AUC-ROC (area under the receiver operating characteristic curve) for
performance evaluation, and F1-score for a comprehensive assessment.
These metrics and the corresponding confusion matrices provide in-
sights into the model's effectiveness in accurately classifying disease
severity categories.

RESULTS

Data Set Stratification and Patient Characteristics
The development and evaluation cohorts were compiled to en-

sure a balanced distribution of WHO scores. A stratified shuffle split
approach was used to divide the development cohort into train and test
sets, while preserving the same percentage for eachWHO class as in the
complete set. Figure 3 shows the distribution ofWHO scores and disease
FIGURE 3. Distribution ofWHO scores and disease severity labels among the tr
as follows: N represents the number of subjects, SK refers to soft-kernel, and M

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
severity labels in the training, testing, and second testing sets. First, a de-
velopment cohort of 145 subjects: 70 from center IBE, 31 from center
UPA, and 44 from center UYA.A total of 1450 axial slicesweremanually
segmented. The subjects were then randomly divided into a set of 118
cases for training and a set of 27 cases for testing the AssessNet-19
model. The evaluation set comprised 90 subjects: 78 from IBE and 12
from UPA. This cohort was used to evaluate AssessNet-19 in a fully au-
tomated fashion. The study involved patients who were transferred from
other hospitals in a more critical condition, which resulted in limited data
availability regarding the timing of the first PCR test. The study included
58 CT scans conducted before a confirmative positive COVID-19 PCR
test, representing a subset of 235 CT scans collected from 3 hospitals.

The first cohort was divided into training and testing sets using
stratified sampling based on WHO score, deceased subjects, and CT
kernels. Figure 3 shows the distribution of WHO scores for the devel-
opment cohort and second test set. Table 2 summarizes the clinical
characteristics recorded for each partition in the training and testing
sets, including demographics, anthropometric variables, comorbidities,
laboratory variables, and hospitalization characteristics obtained from
medical records. This study used clinical data to calculate the WHO se-
verity score, following the guidelines provided by Marshall et al.16 To
compute the WHO severity score, we derived the following clinical
parameters from the available clinical variables: hospitalization status,
mortality status, low SpO2 levels, low PO2 levels, vasopressor usage, in-
tubation or tracheostomy procedure, high-flow oxygen therapy require-
ment, low-flow oxygen therapy requirement, dialysis requirement, and
ECMO (extracorporeal membrane oxygenation) support.

Multiclass Lesion Segmentation Performance
We evaluated the performance of AssessNet-19, our automated

multiclass lung lesion segmentation model, using a test set of 27 sub-
jects. AssessNet-19 was trained with 10 equidistant axial slices per
CT scan, addressing the multiclass problem with standard nnU-Net
hyperparameters. The learning curves are available in the Supplemen-
tary Material, http://links.lww.com/RLI/A833.

The evaluation demonstrated that AssessNet-19 consistently
achieved accurate segmentations across all disease severities, aligning
aining, testing, and evaluation sets. The abbreviations used in the figure are
K represents medium-soft-kernel.

www.investigativeradiology.com 5
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TABLE 2. Patient Characteristics Description Among the Training, Testing, and Second Testing Set

Clinical
Characteristics

Training Set n = 118 Testing Set n = 27 Second Testing Set n = 90

Distribution
IQR

(25%, 75%) Available Distribution
IQR

(25%, 75%) Available Distribution
IQR

(25%, 75%) Available

Demographic characteristics
Age 62.4 ± 14.3 (54, 70) 118 63.3 ± 14.78 (54.5, 73.5) 27 61.4 ± 11.97 (54, 69) 80
Gender (female) 41 (34.74%) — 118 9 (33.33%) — 27 24 (30.0%) — 80
Gender (male) 77 (65.25%) — 118 18 (66.66%) — 27 56 (70.0%) — 80

Anthropometric characteristics
Height, cm 171.82 ± 9.47 (−165, 178) 72 167.04 ± 10.76 (158.3, 172) 15 171.11 ± 8.28 (−165, 176) 53
Weight, kg 85.69 ± 16.84 (73.9, 95.9) 79 86.30 ± 22.91 (70.4, 99.6) 17 83.84 ± 14.99 (72.4, 92.2) 52
BMI 29.29 ± 5.64 (25.9, 31.9) 73 31.09 ± 6.86 (27.3, 36.3) 16 29.04 ± 5.99 (24.3, 34.4) 47

Comorbidities characteristics
Asthma 10 (8.69%) — 115 4 (14.81%) — 27 4 (5.0%) — 80
Diabetes 27 (24.32%) — 111 12 (48.0%) — 25 33 (41.25%) — 80
COPD 15 (13.51%) — 111 3 (12.%) — 25 15 (18.75%) — 80
Lung fibrosis 4 (3.47%) — 115 0 (0.0%) — 26 1 (1.25%) — 80

Laboratory characteristics
eGFR 70.72 ± 26.79 (47.0, 90.0) 108 71.08 ± 29.48 (46.7, 90.0) 24 72.13 ± 23.90 (58.5, 90.0) 79
WBCs 9.04 ± 5.08 (5.3, 11.0) 84 9.93 ± 3.63 (7.4, 13.9) 17 11.10 ± 5.01 (8.01, 23.2) 45
Lymphocytes 1.13 ± 0.68 (0.8, 1.3) 64 1.03 ± 0.49 (0.64, 1.31) 16 1.06 ± 0.59 (0.71, 1.43) 16
Neutrophils 6.84 ± 4.28 (3.9, 8.5) 45 9.39 ± 3.76 (6.55, 12.0) 10 8.48 ± 6.46 (3.3, 13.5) 12
CRP 126.4 ± 100 (36.9, 217) 72 112.7 ± 113 (38.8, 157) 15 142.5 ± 107 (62.5, 222) 43

The clinical variables were obtained within ±12 hours of CT acquisition per subject.

Note: Continuous variables are represented as median, standard deviation, and interquartile range (IQR). Categorical variables are expressed as numbers and percent-
ages of the available subjects.

BMI, body mass index; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate; WBCs, white blood cell count; CRP, C-reactive
protein.
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well with the ground truth. The model's performance varied across differ-
ent lesion categories, with mean Dice similarity coefficients of 0.7 ± 0.27
for GGO, 0.68 ± 0.34 for CON, 0.65 ± 0.31 for PLE, and 0.30 ± 0.16
for BAN. In addition, AssessNet-19 exhibited improved consistency
in segmenting shapes and sparse lesions, as indicated by the smaller
Hausdorff distance. For a qualitative comparison, please refer to Figure 4,
which illustrates segmentations produced by AssessNet-19 and the cor-
responding ground truth for selected cases involving COVID-19 pa-
tients with varying disease severities.

Radiomics Signatures to Characterize the
COVID-19 Disease

Radiomics signatures play a crucial role in characterizing
COVID-19 disease, and our study used a comprehensive process to
extract and analyze quantitative features from medical images. This
process encompassed automated multiclass lesion segmentation to
define regions of interest (ROIs), extraction of radiomic features re-
lated to shape, intensity, texture, and spatial relationships within the
ROIs, and normalization of the radiomics features. The primary goal
was to reduce the dimensionality of the feature space and identify the
most relevant features for classification or prediction tasks.

In our study, we focused on identifying 4 key radiomics signa-
tures that effectively characterize the severity of COVID-19 disease.
These signatures provide valuable insights into the assessment task,
specifically lung lesion segmentation and lesion extent quantification.
Figure 5 visually presents the radiomics signatures for the 4 severity
states: MA, HM, HS, and IC. Figure 5A showcases the radiomics
signatures for the single-class model, whereas Figure 5B displays the
signatures for the multiclass model. The spider charts in these figures
6 www.investigativeradiology.com
illustrate the average values of the z-normalized radiomics features used
in both models. Figures 5C and 5D demonstrate 3D reference lung and
lesion segmentations, respectively, highlighting the segmentation outputs
for each disease severity state from the single and multiclass models.

To provide further insights into the classification process, we
present Table 4, which showcases the relationship between laboratory
test results, CT scans of lung lesions, and radiomics signatures in clas-
sifying the 4 severity states of COVID-19. This table includes informa-
tion on crucial laboratory tests (lymphocytes, neutrophils, white blood
cell count [WBCsn], and estimated glomerular filtration rate [eGFR])
for each severity stage. The laboratory test results were obtained within
±12 hours of CT acquisition per subject. The table's CT lung lesion
quantification section displays the extent of 4 types of lung lesions
(GGO, CON, PLE, and BAN) for each severity stage, represented as per-
centages commonly used by radiologists in clinical practice. Finally, the
radiomics disease signature section presents the features used in the
multiclass model for each stage of COVID-19 severity. These features en-
compass lesion extension, intensity histograms, and various texture fea-
tures such as the co-occurrence matrix, size zone matrix, neighboring
tone difference matrix, dependence matrix, and run length matrix. This
information provides additional insights into the patient's condition and
aids in explaining the predictions made by the AssessNet-19 model.

Significant differences were identified (P < 0.001) between the
4 severity states for lymphocytes and eGFR. In contrast, little differences
were observed (P = 0.015 andP = 0.0012) between the neutrophil disease
states and WBCsn, respectively. In addition, significant differences were
observed in CT of lung lesions quantification (P < 0.001) among the 4
COVID-19 severity states for CON, PLE, and BAN. In contrast, less pro-
nounced differences were found (P = 0.039) between the 4 disease states
for GGO. In some cases, patients in the severely hospitalized condition
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 4. Qualitative results of AssessNet-19 for multiclass lesion segmentation in COVID-19 patients with varying disease severities, including
ambulatory mild, hospitalized moderate, and critically intubated cases.

FIGURE 5. Radiomics signatures to characterize the COVID-19 disease. Radiomics signature of single-class and multiclass models using 4-disease state
classification and a representative 3D lung and lesion segmentation for each disease state. The radiomics features were normalized and mainly
composed of lesion extension, intensity histograms, and texture features such as the co-occurrence matrix, size zone matrix, neighboring tone difference
matrix, dependence matrix, and run length matrix. Radiomics values fall within a range of −1 to 1.

Investigative Radiology • Volume 00, Number 00, Month 2023 CT-Based Radiomics for WHO Severity Assessment
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TABLE 3. Quantitative Evaluation Among Single-Class Lesion Model, Multiclass Lesion Model, and Radiologists' Qualitative Score Assessment
on the Development Cohort Using 27 Subjects Manually Segmented and the Second Evaluation Cohort Using 90 Subjects Fully Automated
Segmented

Classification Task

Development Cohort–Ground Truth Test (n = 27) Evaluation Test (n = 90)

Single-Class
Model

Multiclass
Model

Radiologists'
Quality Score

Single-Class
Model

Multiclass
Model

Radiologists'
Quality Score

F1-Score F1-Score F1-Score F1-Score F1-Score F1-Score

3-WHO Classes 0.71 ± 0.03 0.90 ± 0.03 0.63 ± 0.10 0.66 ± 0.01 0.79 ± 0.02 0.69 ± 0.03
4-WHO Classes 0.52 ± 0.03 0.74 ± 0.02 0.45 ± 0.09 0.64 ± 0.02 0.76 ± 0.02 0.63 ± 0.02
5-WHO Classes 0.39 ± 0.03 0.67 ± 0.03 — 0.51 ± 0.02 0.66 ± 0.01 —

Radiologists' Qualitative Score = themean F1-scorewas determined bymajority voting among 3 radiologist experts to assess the severity score qualitatively using only
CT images.

TABLE 4. Radiomics Signatures to Characterize the COVID-19 Disease

Multiclass Radiomics Disease Severity Signatures

Features A. Mild (n = 12) H. Moderate (n = 43) H. Severe (n = 19) I. Critical (n = 44) P

Laboratory tests
Lymphocytes 0.88 ± 0.66 0.97 ± 0.46 1.09 ± 0.45 1.57 ± 1.03 <0.001
Neutrophils 5.11 ± 2.63 5.33 ± 3.41 6.94 ± 3.54 9.75 ± 5.02 0.015
WBCsn 7.36 ± 2.02 6.73 ± 3.82 8.65 ± 4.15 12.13 ± 5.62 0.0012
eGFR 76.16 ± 24.15 83.50 ± 16.33 81.58 ± 16.91 53.28 ± 29.4 <0.001

CT-based quantification of lung lesions
GGO lesion extent 6.99 ± 9.31 22.28 ± 20.50 34.85 ± 19.52 31.62 ± 21.12 0.039
CON lesion extent 0.90 ± 1.48 6.56 ± 10.4 20.61 ± 22.3 27.65 ± 24.08 <0.001
PLE lesion extent 0.00 ± 0.00 1.54 ± 4.59 0.11 ± 0.37 5.07 ± 9.29 <0.001
BAN lesion extent 0.25 ± 0.34 0.45 ± 0.87 0.17 ± 0.46 0.16 ± 0.39 <0.001

Radiomic markers
GGO lesion extent −0.83 (−0.92, −0.74) −0.40 (−0.48, −0.33) 0.15 (0.02, 0.27) 0.53 (0.44, 0.63) <0.001
GGO F.O. maximum −0.55 (−0.74, −0.37) −0.14 (−0.23, −0.04) 0.31 (0.18, 0.45) 0.16 (0.07, 0.24) <0.001
GGO major axis length −0.57 (−0.80, −0.35) −0.08 (−0.18, 0.02) 0.10 (−0.01, 0.23) 0.13 (0.04, 0.22) <0.001
GGO difference variance −0.58 (−0.78, −0.38) −0.02 (−0.13, 0.08) 0.19 (0.09, 0.30) −0.04 (−0.12, 0.04) <0.001
GGO joint average −0.68 (−0.88, −0.48) −0.18 (−0.28, −0.08) 0.32 (0.20, 0.43) 0.15 (0.06, 0.24) <0.001
GGO size zone non-UI −0.74 (−0.83, −0.65) −0.36 (−0.43, −0.29) 0.21 (0.06, 0.37) 0.42 (0.32, 0.52) <0.001
CON lesion extent −0.50 (−0.55, −0.44) −0.32 (−0.36, −0.28) 0.01 (−0.09, 0.11) 0.36 (0.23, 0.49) <0.001
CON F.O. kurtosis −0.65 (−0.75, −0.54) −0.19 (−0.27, −0.11) −0.08 (−0.16, −0.01) 0.40 (0.28, 0.51) <0.001
CON cluster tendency −0.29 (−0.37, −0.21) 0.01 (−0.11, 0.12) 0.02 (−0.04, 0.08) 0.10 (−0.01, 0.21) 0.003
CON cluster tendency −0.29 (−0.37, −0.21) 0.01 (−0.11, 0.12) 0.02 (−0.04, 0.08) 0.10 (−0.01, 0.21) 0.003
CON joint average −0.89 (−1.0, −0.78) −0.21 (−0.30, −0.11) 0.03 (−0.09, 0.15) 0.40 (0.31, 0.48) <0.001
CON zone entropy −1.08 (−1.21, −0.87) −0.23 (−0.33, −0.13) 0.14 (0.017, 0.27) 0.45 (0.38, 0.52) <0.001
PLE lesion extent −0.30 (−0.31, −0.29) −0.08 (−0.17, 0.01) −0.30 (−0.32, −0.28) 0.30 (0.18, 0.43) <0.001
PLE F.O. 90th percentile −0.33 (−0.35, −0.32) −0.17 (−0.27, −0.06) −0.22 (−0.32, −0.12) 0.34 (0.24, 0.44) <0.001
PLE busyness −0.28 (−0.29, −0.27) −0.10 (−0.18, −0.03) −0.29 (−0.30, −0.28) 0.32 (0.18, 0.45) <0.001
PLE dependence entropy −0.48 (−0.512, −0.46) −0.20 (−0.28, −0.12) −0.35 (−0.45, −0.26) 0.43 (0.32, 0.54) <0.001
BAN lesion extent 0.01 (−0.10, 0.13) 0.01 (−0.03, 0.23) 0.02 (−0.14, 0.18) −0.12 (−0.14, −0.1) 0.013
BAN difference entropy −0.017 (−0.19, 0.15) 0.034 (−0.06, 0.13) −0.05 (−0.18, 0.08) −0.10 (−0.19, −0.01) 0.021

The link between laboratory test results, CT-based quantification of lung lesions, and radiomics signatures in characterizing the 4 proposed stages of COVID-19
severity.

Note: Disease extent and laboratory variables are represented as median and standard deviation. The laboratory test results were obtained within ±12 hours of CTac-
quisition per subject. Radiomics variables are represented as the median and interquartile range (IQR). Radiomics values fall within a range of −1 to 1. The P values were
obtained through an analysis of variance (ANOVA) calculation.

WBCsn, white blood cell count; eGFR, estimated glomerular filtration rate; CT, computed tomography; GGO, ground-glass opacity; CON, consolidation; PLE, pleu-
ral effusion; BAN, band-like structure.
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had a greater extent of GGO than those in the critical intubated condition.
This could be explained by a higher presence of CON and PLE lesions in
critically intubated patients and the inclusion of intubated patients with
organ failure (as indicated by a WHO-9 score) in the study population.

Figure S5 in the Supplementary Material, http://links.lww.com/
RLI/A833, compares the disease extent estimated by radiologists with
that generated by the multiclass model (AssessNet-19). Results show
excellent agreement for overall disease extent, GGO, and CON, with
Cohen κ values of 0.94/0.87, 0.90/0.71, and 0.83/0.71, respectively.
FIGURE 6. Comparison of a single-class model versus a multiclass model and t
COVID-19 patients.

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
The multiclass model combines CON with PLE, as the radiologists'
qualitative CON disease estimation includes PLE.

Disease Severity Assessment Benchmarking
In assessing COVID-19 disease severity, the multiclass model

proved superior to the single-class model and the radiologists' qualita-
tive score. Using 4-severity states, the multiclass model achieved an
F1-score of 0.76 ± 0.02, whereas the radiologists and single-class
model scored 0.63 ± 0.02 and 0.64 ± 0.02, respectively. Figure 6A
he qualitative score from 3 expert radiologists to assess the disease state of

www.investigativeradiology.com 9
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displays the patients' evaluation outcomes for the 4 disease severity
levels in the evaluation set.

Furthermore, we used ROC curves to classify each severity level
and compared the single-class and multiclass models and the radiolo-
gists' subjective scoring. For the ambulatory mild disease state, the radi-
ologists achieved excellent classification performance with an AUC of
0.94, whereas the multiclass and single-class models had good perfor-
mance with AUCs of 0.79 and 0.79, respectively. The multiclass model
showed excellent classification performance for the HM state with an
AUC of 0.84, whereas the radiologists and single-class model achieved
good performancewith AUCs of 0.76 and 0.73, respectively. For the HS
state, the multiclass model achieved good performance with an AUC of
0.71, the radiologists achieved OK performance with an AUC of 0.58,
and the single-class model achieved poor performance with an AUC
of 0.47. The multiclass model also achieved excellent classification per-
formance for the IC state with an AUC of 0.89, whereas the radiologists
and single-class model had good performance with 0.79 and 0.79, re-
spectively. Finally, we present the corresponding confusion matrices
for the single-class and multiclass lesion models and the radiologists'
qualitative scores on the evaluation cohort in Figure 6B.

Comparing Hierarchical Multilabel Classification for
Grouping WHO Severity Scores

In this study, we collapsed theWHO scale into 3, 4, and 5 hierarchi-
cal labels to evaluate the performance of the multiclass and single-class
model. These results are presented in box plots in Figure 6C and Table 3,
demonstrating the performance of disease severity assessment across all se-
verity states. The box plots visually represent the variation in performance
of F1 score for each severity state. For the 3-label hierarchy, the multiclass
model achieved an F1-score of 0.77, correctly classifying 12 of 18 MA
cases, 30 of 35 HD cases, and 30 of 39 IC cases. In contrast, the
single-class model achieved an F1-score of 0.65, correctly classifying 8
of 18 MA cases, 22 of 35 HD cases, and 30 of 39 IC cases. In the
4-label hierarchy, the multiclass model achieved an F1-score of 0.76, cor-
rectly classifying 10 of 18MA cases, 19 of 24HMcases, 5 of 11HS cases,
and 36 of 39 IC cases. The single-class model achieved an F1-score of
0.64, correctly classifying 10 of 18 MA cases, 14 of 24 HM cases, 0 of
11 HS cases, and 35 of 39 IC cases. Lastly, in the 5-label hierarchy, the
multiclass model achieved an F1-score of 0.65, correctly classifying 11
of 18 MA cases, 19 of 24 HM cases, 5 of 11 HS cases, 22 of 32 IC cases,
and 4 of 7 IC+ cases. The single-class model achieved an F1-score of 0.51,
correctly classifying 10 of 18 MA cases, 14 of 24 HM cases, 1 of 11 HS
cases, 21 of 32 IC cases, and 1 of 7 IC+ cases. These results demonstrate
the performance of both models across different hierarchical label configu-
rations for classifying the severity of COVID-19 patients based on the
WHO scores. Please see Section S2 in the Supplementary Material,
http://links.lww.com/RLI/A833, for the confusion matrices that compare
hierarchical multilabel classification between the single-class and
multiclass models. For a detailed and comprehensive comparison, please
refer to Figure 3 in the Supplementary Material, http://links.lww.com/
RLI/A833.

DISCUSSION
This study presents AssessNet-19, a multiclass radiomics model

that accurately assesses COVID-19 severity. Compared with traditional
models and radiologists' evaluations, the model achieved an F1-score of
0.76 ± 0.02, which is 12% higher than the single-class model's F1-score
and 13% higher than the radiologists' majority vote F1-score. The
model uses the WHO-CPS to classify the severity of COVID-19 cases
and separates lung lesions into 4 categories: GGO, CON, PLE, and
BAN. The 2D-UNet modelwas trained using a sparse annotation strategy
to improve efficiency and reduce annotation time. AssessNet-19 auto-
mates CT image segmentation to produce a severity score and radiomics
signature for characterizing a patient's status. This study establishes a
10 www.investigativeradiology.com
standardized, automated workflow for classifying COVID-19 cases
based on WHO guidelines, enabling future disease characterization
and prediction research.

The WHO introduced the WHO-CPS for COVID-19 in 2020 as
a standard evaluation basis for cohort studies and clinical trials and to
aid in resource planning.16 Although this scale has been used in several
studies, to our knowledge, no study has applied AI and chest imaging to
assess the severity proposed by the WHO. Ramaswamy et al26 detailed
the calculation of the WHO score from electronic medical records but
did not use AI techniques or imaging. Bennett et al27 used the WHO
scale and grouped severity categories to predict clinical severity and
found that demographics and comorbidities were correlated with dis-
ease severity. Our study compares the performance of a single-class
and multiclass segmentation model in classifying the severity of
COVID-19 patients using the WHO-CPS. It found that the multiclass
model had better results, with a 10%, 11%, and 15% greater F1-score
than the single-class model, when the WHO-CPS was grouped into 3,
4, and 5 classes, respectively.

In this study, the multiclass AI-model achieved a higher F1-score
than radiologists in assessing COVID-19 patients using CT imaging.
This is consistent with previous research that shows AI models perform
similarly or better than radiologists in assessing lung diseases.28–30 In
addition, multiple studies have demonstrated that AImodels using med-
ical imaging are more accurate in predicting the progression or outcome
of severe clinical states than radiologists' scores.30–32 In this study, the
multiclass AI model outperformed radiologists in assessing disease se-
verity using both 3-class and 4-class WHO scores (radiologists did not
evaluate a 5-class WHO score), particularly in differentiating between
hospitalized severe and critical intubated cases. This could be due to ra-
diologists evaluating images based solely on imaging findings without
regular feedback regarding the clinical status of those patients, which
tends to underestimate the clinical severity represented by the pathology
seen in the images. The AI model, on the other hand, learns to evaluate
imaging characteristics based on their consequences for patients' clini-
cal condition rather than the extent of pathology, which is a significant
benefit of using a supervised learning approach with the WHO-CPS
outcomes to train a medical imaging AI.

Moreover, this study demonstrated that using a 2D-UNet model
called AssessNet-19, along with a sparse annotation strategy, improves
computational efficiency and reduces expert annotation time when
compared with a 3D-UNet model. Furthermore, the study conducted
single- and multiclass lesion segmentation using the AssessNet-19
model and compared it with 2 other state-of-the-art models: a 3D single
lesion model based on a full-resolution 3D U-Net trained with the
COVID-19 2020 grand challenge data set and a Scancovia segmenta-
tion model presented by Lassau et al.14,33 The results of the study re-
vealed that AssessNet-19 outperformed RapidSegLesion-19 in single
lesion segmentation, achieving a higher Dice score of 0.77 compared
with RapidSegLesion-19's Dice score of 0.65. AssessNet-19 showed
particular effectiveness in accurately segmenting lesions in dense areas.
In addition, the study compared AssessNet-19 with Scancovia for
multiclass lesion segmentation. AssessNet-19 demonstrated better
performance in segmenting COVID-19 lesions, with higher Dice
scores of 29%, 24%, and 50% for single, GGO, and CON lesions, re-
spectively. On the other hand, Scancovia exhibited issues with
oversegmentation in mild cases and undersegmentation in severe
cases, similar to RapidSegLesion-19. It is important to note that cau-
tion should be exercised when interpreting this comparison since the
2 models were trained using different segmentation protocols. For more
detailed information, please refer to Section S3 of the Supplementary
Material, http://links.lww.com/RLI/A833.

The multiclass lesion segmentation protocol proposed in the
study, which classifies lung lesions into 4 categories (GGO, CON,
PLE, and BAN), allows the AssessNet-19 model to be more accurate
than radiologists' evaluations or traditional models. TBR segmentations
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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were included as an additional class in the segmentationmodel but were
yet to be used in the severity assessment phase of AssessNet-19 be-
cause quantification of bronchi and differentiation between enlarged
and normal bronchi required more work and will be performed in
the future. The study found significant differences in the classification
of the 4 disease states for BAN (P < 0.001), with disease severity increas-
ing frommild to severe and decreasing for critical cases. This observation
could be attributed to the extent of CONs in critical cases increases, ob-
scuring the BANs. A recent study shows the significance of BAN, with
pleuroparenchymal bands present in 36 of 42 long COVID patients
3 months postacute phase.34 However, more research is needed to un-
derstand the role of BAN in long COVID and disease progression.

Previous research has shown that deep learning on medical im-
aging can accurately predict COVID-19 outcomes and assess disease
severity. Some studies focus on using DL models for quantifying CT
patterns to identify abnormalities in COVID-19 patients, whereas others
aim to improve results by combining clinical data and images to identify
severe outcomes.10,12–15,31,35 In addition, we automated the multiclass
radiomics model AssessNet-19 to address CT quantification, severity
assessment, and disease characterization. On the other hand, other stud-
ies uses radiomics features extracted from medical images to predict
disease outcomes and used the radiomics features to characterize
COVID-19 severity.36–38 We advanced prior studies by categorizing
COVID-19 severity into 4-disease statuses using the WHO-CPS. We
also characterized COVID-19 lesions in 4-lung pathologies and created
a “severity signature” by utilizing radiomics characteristics from each
lung pathology. This enabled the interpretation and quantification of pa-
tient status, visualization of disease-population values, and analysis of
lesion and interlesion patterns in radiological findings.

We selected LASSO for feature selection and XGBoost for clas-
sification based on the state of the art, careful consideration, and
empirical evaluation. LASSO was chosen for feature selection due to
its effective handling of high-dimensional data and ability to identify
relevant features. It performs feature selection and regularization, re-
ducing overfitting and improving interpretability. Furthermore, we con-
ducted a radiomics normalization comparison to improve classification
performance. The experiment compared unnormalized radiomic fea-
tures with z-score normalization, and the 2-step normalization ap-
proach exhibited superior performance, consistent with the findings
reported in.39 For classification, we compared XGBoost and Ran-
domForest classifiers. Our preliminary experiments showed thatXGBoost
outperformed Random Forest, achieving an F1-score of 0.75 compared
with 0.59. XGBoost's strength in handling complex relationships, miss-
ing data, and capturing nonlinearities made it a suitable choice. We also
evaluated voting approaches (majority and average voting) for ranking
the severity label. Both classifiers performed better with majority vot-
ing, indicating its superiority in capturing consensus. In summary, we
chose LASSO for feature selection and XGBoost for classification
due to their proven effectiveness in handling high-dimensional data,
selecting informative features, mitigating overfitting, capturing com-
plex relationships, and achieving superior classification performance.
For a detailed comparison of feature importance between the single and
multiclass models, including SHapley Additive exPlanations (SHAP
values), please refer to Figure S4 (Supplementary Material, http://
links.lww.com/RLI/A833).

The study has limitations because of a small sample size. There
were also a few ambulatory-mild cases (WHO-3) in our data set, which
may explain the model's poor performance in classifying them. This may
be because patients with mild symptoms are less likely to receive a CT.
Analysis of misclassified subjects can be found in the Supplementary Ma-
terial, http://links.lww.com/RLI/A833. Although our modelwas trained
and tested on a quite diverse data set, further validation would have re-
quired an external data set despite using a diverse data set. The lack of
clinical data in cases transferred from other hospitals affects all longitu-
dinal studies and presents challenges in including patients in our study.
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
In conclusion, the proposed AssessNet-19 model based on
multiclass lesion segmentation combined withWHO-standardized severity
scaling and radiological characterization is the first step to developing a
generalizable clinical decision support system for hospitals not only during
the COVID-19 pandemic but also for similar challenges in the future.
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