
ORIGINAL PAPER

Brain Topography
https://doi.org/10.1007/s10548-023-00993-6

states can reliably be identified and partly resemble task-
elicited states (Smith et al. 2009), but see also (Davis et al. 
2017). These states mirror in their variance the variance 
observed in human function and experience across healthy 
and pathological conditions (Castellanos et al. 2013).

While most research studies on resting-state networks to 
date have used fMRI, EEG scalp fields are an alternative 
means to non-invasively measure and compare human brain 
states. Such data yield temporally unfiltered, instantaneous, 
and spatially summated scalp-projected local neuro-electric 
potentials of the whole brain, thereby permitting tracking 
of the dynamics of brain functional state changes with mil-
lisecond resolution (Michel and Murray 2012).

Spontaneously occurring EEG scalp fields tend to aggre-
gate into a relatively small number of prototypical spatial 
distributions, which permit the extraction of a confined set 

Introduction

The last decades of research into system-level dynamics of 
the human brain have recognized that spontaneous brain 
activity follows well-organized and replicable coactiva-
tion patterns. The basic tenet of neuroscience states that: 
(i) functional and mental states materialize as brain states 
of synchronous neural firing, (ii) a systematic inventory of 
such brain states can reliably be mapped onto an equally 
systematic inventory of functional and mental states. Fol-
lowing this, a vast body of empirical research has indeed 
shown that such spontaneously organizing brain resting 
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Abstract
Over the last decade, EEG resting-state microstate analysis has evolved from a niche existence to a widely used and 
well-accepted methodology. The rapidly increasing body of empirical findings started to yield overarching patterns of 
associations of biological and psychological states and traits with specific microstate classes. However, currently, this 
cross-referencing among apparently similar microstate classes of different studies is typically done by “eyeballing” of 
printed template maps by the individual authors, lacking a systematic procedure. To improve the reliability and validity 
of future findings, we present a tool to systematically collect the actual data of template maps from as many published 
studies as possible and present them in their entirety as a matrix of spatial similarity. The tool also allows importing novel 
template maps and systematically extracting the findings associated with specific microstate maps from ongoing or pub-
lished studies. The tool also allows importing novel template maps and systematically extracting the findings associated 
with specific microstate maps in the literature. The analysis of 40 included sets of template maps indicated that: (i) there 
is a high degree of similarity of template maps across studies, (ii) similar template maps were associated with converging 
empirical findings, and (iii) representative meta-microstates can be extracted from the individual studies. We hope that this 
tool will be useful in coming to a more comprehensive, objective, and overarching representation of microstate findings.
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of functional brain states that replicate within and across 
individuals (Khanna et al. 2014; Koenig et al. 2002; Michel 
and Koenig 2018; Pascual-Marqui et al. 1995; Wackermann 
et al. 1993; Zanesco et al. 2020). This observation, made 
first in the eighties (Lehmann 1990; Lehmann et al. 1987), 
anticipated similar discoveries in resting state fMRI data 
(Biswal et al. 1995; Raichle et al. 2001). In addition, these 
scalp fields tend to remain stable for sub-second periods, 
which has made researchers conclude that brain informa-
tion processing follows approximately stepwise dynamics, 
where each such step corresponds to a network of highly 
synchronized local nodes that facilitate the flow of infor-
mation to nodes of other networks (Lehmann et al. 1987; 
Michel and Koenig 2018). These single steps of brain infor-
mation processing have been called microstates (Lehmann 
et al. 1987). EEG microstates are thus a unique mean to 
quantify the dynamics of brain functional state changes in a 
time resolution compatible with the speed of human thought 
and information processing (Koenig et al. 2005; Lehmann et 
al. 1998; Wackermann et al. 1993). Over the last 50 years, a 
large body of empirical data has related the spatial configu-
ration or topographies of these microstates and the temporal 
dynamics of these microstates to a broad range of functional 
and dysfunctional states of humans (Bréchet et al. 2020a; 
De Bock et al. 2020; Lehmann et al. 2010; Milz et al. 2016; 
Rieger et al. 2016; Tarailis et al. 2021, 2023).

However, for microstate research to thrive as an over-
all coherent research program (Lakatos 1978), it is neces-
sary to find correspondences of specific microstate spatial 
distributions and their spatiotemporal dynamics with spe-
cific functional and mental states that generalize across all 
these individual studies. This implies that we must be able 
to identify similar prototypical microstate configurations 
across corresponding studies. So far, to ensure compatibil-
ity of findings, studies have addressed this problem by a 
priori choosing a reference set of normative microstate pro-
totype maps, typically drawn from large cohorts of healthy 
subjects (Custo et al. 2017; Koenig et al. 2002), and label-
ing their newly obtained template maps by this common 
reference. Beyond this, the reference to these normative 
prototype maps (that were sometimes also called canonical 
microstate maps) has also been frequently used to justify 
the choice of the number of microstate classes by arguing 
that choosing the same number of classes as these canonical 
template maps is necessary to compare findings across stud-
ies. Using this approach, the results from new studies have 
been related to previously published studies using equal or 
similar labels even when there are topographical differences 
in the microstate maps (Michel and Koenig 2018).

While this approach has been somewhat successful in 
the past, it is not immune to criticism. Most importantly, 
the comparability of microstates across studies does not 

depend on the number of microstate classes employed being 
equal but on the actual topographical similarities of the 
microstate maps, which are supposed to represent similar 
underlying generators, brain functions, and mental states. A 
closer inspection of the four-class solution microstate maps 
of many studies that referenced their template maps to the 
“canonical four” maps of the first normative EEG micro-
state study (Koenig et al. 2002), however, reveals that there 
are considerable topographic variances in the template maps 
assigned to the same microstate class (Michel and Koe-
nig 2018). This entails that findings attributed to the same 
microstate class may be associated with only very partially 
overlapping brain states. In addition, this approach limits the 
potential of the methodology to the capacity of such canoni-
cal templates to adequately represent the entire repertoire 
of brain states of interest. Apart from the rather obvious 
objection that a set of only four microstate classes, sampled 
with only 19 channels, may not be the most promising can-
didate for such an undertaking, it remains questionable if it 
is at all reasonable to aim for a “one size fits all” microstate 
template gold standard. Factors such as brain maturation, 
lesions, state of wakefulness, drug effects, mental diseases, 
or brain plasticity may lead to systematic changes in brain 
networks recruited under some circumstances which may 
generate topographically distinct microstates.

Other issues plague the universal use of the four “canoni-
cal microstates”. Due to a lack of alternatives, the similarity 
of microstate maps across studies has often been assessed by 
visual comparison of the topographies with published fig-
ures. This approach is inexact, prone to errors, and offers no 
quantitative description of similarities between microstate 
topographies. Another critical gap in the field is the inability 
to query literature based on spatial topographies of micro-
states instead of the labels associated with the microstates. 
This entails the risk that, eventually, interesting associations 
between studies remain undiscovered if the researchers fail 
to anticipate these associations between specific topogra-
phies, irrespective of class labels, and specifically search 
for them. And finally, to date, no studies have examined the 
commonality or spatial correlations of microstate template 
map configurations across studies. In our opinion, these 
issues justify an in-depth analysis of the topographic vari-
ability of microstate maps across studies and their associ-
ated inverse solutions.

The present project aims to overcome these issues by 
addressing the problem of comparing microstate map 
topographies and the associated findings across studies in a 
novel, quantitative manner. Instead of a rigid common clas-
sification of microstates that is purely based on labels, we 
propose to build a comprehensive database of microstate 
template map topographies from as many published studies 
as possible and augment this database with the empirical 
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findings associated with these template map topographies. 
To do so, we have developed two user-friendly, MATLAB-
based, interactive graphical user interface (GUI) applica-
tions through which the database can be accessed. These 
applications allows the users to: (i) add microstate template 
maps from their own data (using the MSTemplateEditor.
mlapp), (ii) query the database to identify template maps 
from other studies that share a sufficiently high and quan-
tifiable amount of variance with the template maps they 
have extracted in their data (using the MSTemplateEx-
plorer.mlapp), and (iii) use the reported findings associated 
with the thereby identified template maps of other studies 
to guide the interpretation of their own results (using the 
MSTemplateExplorer.mlapp).

Compared to the currently employed approach of assign-
ing and labeling newly found microstate template maps 
according to a single set of published “canonical” tem-
plates, the new approach has many advantages. First, this 
approach has the potential to identify cross-study microstate 
maps, which can serve as a more comprehensive reference 
for sorting and labeling microstate classes in future stud-
ies. This ensures that future studies do not bias the entire 
field towards a few privileged “canonical maps” that have 
been used as a reference for interpreting novel findings 
in most cases. Second, the similarity among the maps of 
the different studies can now be quantitatively expressed 
as the amount of shared variance in their spatial distribu-
tion, which is a good proxy of the shared variance in source 
space. Third, the novel method is far less sensitive to the 
number of classes identified in a new study: even if differ-
ent studies have unequal numbers of microstate classes, the 
shared spatial variance is the most relevant factor that mat-
ters when associating the microstate template maps with 
results from other studies. Users may thus associate find-
ings from other studies if the template maps of their and the 
referenced studies are sufficiently similar even if different 
numbers of microstates were identified. On the other side, 
researchers should refrain from doing so if these template 
maps are not sufficiently similar, even if the same number 
of classes were identified. Finally, traditional tools of litera-
ture research, such as PubMed or Web of Science, do not 
permit querying the literature using the spatial topography 
of a microstate class as a search criterion. This application 
allows users to search for findings associated with similar 
template maps and uncover interesting associations across 
the growing number of microstate studies.

The present paper presents the first version of the MAT-
LAB-based application and demonstrates the analytical 
advantages of the novel approach proposed. The follow-
ing methods section will describe how we collected and 
organized existing data and findings on EEG microstate 
templates, how the similarities among these template maps 

were computed and visualized, how one can extract empiri-
cal findings from the database, and how across study meta 
microstate maps were computed.

Methods

Application Information

The MATLAB applications and the template maps from 
published studies collected so far are available here: https://
github.com/ThomasKoenigBern/MS-Template-Explorer. 
The applications are available as ready-to-use and stand-
alone MATLAB apps and were developed and tested with 
MATLAB version 2022b. The applications have several 
functions:

a.	 The MSTemplateEditor app allows users to add micro-
state template maps from their own data. A screenshot of 
the MSTemplateEditor with a sample dataset is shown 
in Fig. 1. To import new template maps, the MSTem-
plateEditor requires the template map data to be in a 
numeric and tabular format, along with the coordinates 
of the electrode positions.

b.	 The MSTemplateExplorer has several built-in functions 
which are available as independent tabs.

�i.	 Similarity Matrix – This tab allows users to ex-
plore the topographical similarities of their maps 
with those of other studies in the database. To gen-
erate the similarity matrix, the amount of shared 
variance (i.e., the squared spatial correlation coef-
ficient) among all available microstate template 
maps is computed pairwise. The obtained similar-
ity matrix can then be used to compute a multidi-
mensional scaling (MDS) to provide an intuitive 
visualization of the similarities and differences 
among template maps across various studies.

ii.	 MDS - The MDS procedure assigns each template 
map to a point in a two- or three-dimensional space 
and arranges the positions of these points such that 
their pairwise distances optimally represent the 
similarities the similarity matrix gives. Topographi-
cally similar maps are thus represented at similar 
locations in this space, whereas topographically dis-
similar maps are represented at different locations. 
The MDS display of the MSTemplateExplorer also 
allows users to select and plot individual template 
maps using the mouse cursor or the maps’ labels. 
Once a series of similar maps has been selected, the 
associated empirical findings are made available to 
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meta-microstate maps, to backfit them to the tem-
plate maps from individual studies in the MDS tab 
and extract all the associated findings for a given 
meta-map. Users can also export the obtained meta-
maps in a format compatible with the microstate 
toolbox presented in this issue (Kleinert et al., n.d.) 
and use these maps directly for microstate feature 
extraction.

Computational Information

Database Development

We contacted as many researchers as possible who have 
published on resting-state EEG microstates and asked 
them to send us the scalp field potential data of the mean 
microstate template maps they had identified in their pub-
lished studies. Altogether, we collected 43 sets of template 
map data from 40 studies (Antonova et al. 2022; Artoni et 
al. 2022; Bréchet et al. 2020a; Britz et al. 2010; Croce et 
al. 2018, 2020, 2022; Custo et al. 2017; Damborská et al. 

the user in a tabular form in the “Findings” tab. The 
3D view of the MDS display can also be rotated for 
visual exploration.

iii.	 Findings – The tab allows users to systemati-
cally access the empirical findings associated with 
the template maps from published studies that are 
included in the database, which may allow for 
improved interpretation of results in future studies. 
The MSTemplateExplorer also permits the extrac-
tion of all the empirical findings across studies that 
are related to a selected meta-microstate map. All 
selected findings and the corresponding publica-
tions can be exported to an Excel spreadsheet. This 
grouping of study maps and their associated finding 
based on spatial similarity parallels the approach 
by Tarailis et al. (2023) but uses a fully data-driven 
procedure.

iv.	 Meta Clusters – This tab allows for the computa-
tion and visualization of meta-maps, i.e., the spatial 
clusters of all the microstate template maps across 
studies. The MSTemplateExplorer also allows users 
to manually rearrange the sequence of the obtained 

Fig. 1  Screenshot of the MSTem-
plateEditor with the template 
maps and meta-data of the study 
by Diezig et al. 2022, on EEG 
microstates during the transition 
to sleep
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number of included subjects and submitted to the modified 
k-means algorithm (Pascual-Marqui et al. 1995), the stan-
dard approach for identification of within-subject template 
microstate maps, to identify the meta-maps. In the current 
implementation, the clustering is done for a range from 4 to 
7 clusters, which spans the usual range of cluster numbers 
used in resting state EEG microstate studies. For demonstra-
tion purposes, the 5-cluster solution of the meta-microstate 
maps was used to backfit the template maps across all the 
studies included, and the empirical findings associated with 
one of the 5-class meta-microstate maps was extracted for 
demonstration.

Percent Overlap in Assignment of maps across Different 
Cluster Numbers

As we did not have sufficiently unequivocal criteria to 
select the number of meta-microstate maps and resorted to 
computing a series of solutions with different numbers of 
clusters, we investigated the quantitative effect of adding 
or removing microstate classes when fitting them to EEG 
resting-state data. Therefore, we conducted a small analysis 
on a sample dataset of resting state EEG of healthy sub-
jects (Kleinert et al., n.d.) (https://osf.io/yqt7k/) to look at 
the commonality of the meta-microstate map assignment 
when using solutions with different numbers of classes. For 
this purpose, the different sets of meta-microstate maps we 
had obtained in the previous step were separately backfitted 
to the EEGs, yielding, for each number of meta-microstate 
maps, a time series of assignments. Based on these mul-
tiple assignments, we computed, for each combination of 
cluster numbers, the percent overlap in assignment for each 
combination of meta-microstate classes (see Fig. 7), yield-
ing what we will call matrices of commonality of microstate 
assignment. This overlap in assignment between different 
numbers of clusters is informative about the changes in 
assignment to be expected when changing from a solution 
with a given number of classes to a solution with a different 
number of classes.

Results

Similarity Matrix

The similarity matrix obtained from the 39 included stud-
ies is shown in Fig. 2. The matrix shows clear “lines” of 
high map similarity that parallel the identity diagonal. This 
indicates that most studies have, as intended, arranged their 
microstate template maps in a common sequence. Further-
more, across studies, the similarities of corresponding micro-
state maps are often high, indicating good reproducibility of 

2019a, b; Deolindo et al. 2021; Diezig et al. 2022; Hano-
glu et al. 2022; Hu et al. 2023; Kleinert et al. 2022; Koenig 
et al. 2002; Liu et al. 2020; Murphy et al. 2018; Musaeus 
et al. 2020; Nagabhushan Kalburgi et al. 2020; Nash et al. 
2022; Notturno et al. 2023; Ricci et al. 2020, 2022; Schiller 
et al. 2019, 2020; Smailovic et al. 2019; Spring et al. 2017, 
2018, 2022; Tarailis et al. 2021; Tomescu et al. 2018, 2022; 
Vellante et al. 2020; Zanesco et al. 2020, 2021a, b, c; Zap-
pasodi et al. 2017, 2019). The obtained data were revised 
and converted to a common data format compatible with 
the EEGLAB microstate analysis toolbox presented in this 
issue (Kleinert et al., n.d.) using the MSTemplateEditor 
function specifically designed for this purpose. Only find-
ings containing a contrast between groups and/or conditions 
or reporting inverse solutions were considered. Within each 
study, only grand-mean maps were entered unless there was 
a statistically corroborated difference in map topography. In 
addition to the microstate template maps from various stud-
ies, the meta-data of these template maps was also included 
in the database. The metadata consists of the most critical 
analysis parameters used in the study, information about the 
subjects’ groups and conditions at the time of data collec-
tion, publication data, and, most importantly, the findings 
associated with the temporal dynamics of each microstate 
class reported in the publication.

Similarity Matrix and Multidimensional Scaling

Once the template maps of all included studies were pro-
cessed and associated with their metadata, a similarity 
matrix was computed to quantify the similarity of micro-
state template maps across all maps of all studies. The visu-
alization of these similarities in a subset of 21 studies is 
shown in Fig. 2. For the standard case where the two maps 
have different electrode montages, the MSTemplateEx-
plorer spatially resampled the data to the electrode montage 
with fewer electrodes using spherical splines (Perrin et al. 
1989) before the shared variance was computed. The simi-
larities among microstate template maps were computed as 
the squared spatial correlation coefficient, which is identical 
to the shared variance. For the computation of the MDS, 
these values were recomputed to the dissimilarity value as 
defined in (Lehmann and Skrandies 1980) and used as input 
of Euclidean distances.

Across-study meta-microstate map Clusters

To generate the meta-microstate map clusters, the user 
needs to select a reasonably general electrode setup onto 
which all the template maps from the studies chosen are 
interpolated using spherical splines (Perrin et al. 1989). 
The maps of the individual studies are then weighted by the 
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available collection of the empirical findings associated with 
the selected maps is shown in Fig. 4. Users can, therefore, 
directly explore the association of “their” template maps 
with the findings/conclusions made in previous publications 
based on the topographical similarity of the template maps.

Meta-microstate maps, Similarities in Microstate 
Topographies across Classes, and Empirical Findings 
associated with meta-microstate maps

The resulting meta-microstate maps obtained from the 
included studies are shown in Fig.  5. Unsurprisingly, the 
obtained maps are very similar to the well-known prototypi-
cal microstate maps (Custo et al. 2017; Koenig et al. 2002). 
Interestingly, however, moving from a solution with a given 
cluster number to a solution with one more cluster pro-
duced very little change in the topographies of the obtained 
classes, but instead added a class with a new topography. 
The newly computed meta-maps show the “canonical four” 
microstate topographies in the 4-class solution, and these 
same “canonical four” microstate topographies can indeed 
be seen across all the solutions of meta-microstate maps.

The backfitting of the 5-class meta-microstate map solu-
tion of the meta-maps to the template maps of the individual 
studies is shown in Fig.  6. The assignment confirms the 
clear cluster structure of the data across studies (and is visu-
ally even more convincing in the 3D display also available 

microstate maps across studies (this point has been made 
earlier, e.g., by Michel and Koenig 2018, or Tarailis et al. 
2023). There are, however, also cases of microstate template 
maps that have rarely been described or that do not map 
well onto the topographies of the “canonical four” micro-
state classes, producing some gaps and shifts in this overall 
pattern (e.g., for the maps of Deolindo et al. 2021 that were 
recorded in actively flying helicopter pilots).

Multidimensional Scaling

The MDS display obtained from the similarity matrix is 
shown in Fig. 3. It is apparent that most of the microstate 
maps of the different studies aggregate in a series of clouds, 
confirming their replicability across studies. In the figure, a 
set of points in a region of such a cloud has been selected 
to show the associated map topographies and studies, which 
allows the user to interactively identify microstate maps 
from other studies that are similar to maps identified in her/
his own dataset(s). To extract the exact similarities among 
the selected maps, users can switch to the Similarity Matrix 
tab and select only the chosen subset of studies (panel in the 
lower right part of the display).

Database of Empirical Findings

The findings associated with the topographies of maps 
selected above (Fig.  3) were explored. The presently 

Fig. 2  The similarity matrix 
obtained from 21 sets of template 
maps from different studies. 
Each column and row represent 
one template map of one study. 
Increasing brightness of the simi-
larity matrix indicates increasing 
spatial similarity among pairs 
of maps. Note that many ‘lines’ 
of high similarity parallel the 
diagonal, suggesting that the 
obtained maps were similar and 
similarly ordered across many 
studies. A data tip can be used to 
read out the shared variance for 
any pair of maps that is of inter-
est, and a click on an element of 
the similarity matrix plots the 
corresponding pairs of maps. The 
“+” and “–” buttons can be used 
to change the lower end of the 
color scale (lower cut-off value) 
of the similarity matrix, the upper 
end of the scale is always 100%. 
Note that for visual clarity, not 
all available studies have been 
selected for the display

 

1 3



Brain Topography

Fig. 4  The complete list of find-
ings associated with the maps 
selected in Fig. 3. Note that there 
are major inconsistencies in the 
labelling of these maps despite 
their spatial similarity. At the 
same time, there are consistent 
empirical findings: The list sug-
gests, e.g., that with increasing 
presence of the selected map(s), 
there is a progression from a state 
of high concentration (Deolindo 
et al. 2021), through increasing 
hypnagogic experiences during 
rest (Diezig et al. 2022) to a state 
of first dreaming and then dream-
less sleep (Bréchet et al. 2020b)

 

Fig. 3  MDS display of the 
similarity matrix shown after a 
few maps have been selected and 
displayed. The point represent-
ing a particular map can also be 
identified using the list on the 
left side. Note again the striking 
visual similarity of the selected 
maps
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the changes in assignment to be expected when changing 
from a solution with a given number of classes to a solution 
with a different number of classes. Our results indicate that 
in the analyzed data, changing from a solution with a given 
number of classes to a solution with one more or one less 
class had little effect on the microstate assignment for all 
but one class.

in the app). An example of the findings associated with a 
particular meta-microstate class is shown in Table 1.

Percent Overlap in the Assignment of maps across 
Different Cluster Numbers

The matrices of commonality of microstate assignment 
across classes for the sample dataset are shown in Fig. 7. 
These matrices generally show very high values on the 
diagonal, where the commonality of the spatially most simi-
lar meta-microstate maps is represented. This overlap in 
assignment between different solutions is informative about 

Fig. 6  The back-fitting of the 5 
class meta-microstate template 
maps to the template maps of 
the individual studies. Note that 
because all microstate maps 
are scaled to equal GFP (i.e., 
unit vector length), they are 
technically on a n-dimensional 
hypersphere, that is then reduced 
in dimensionality by the multi-
dimensional scaling. The display 
represents this hypersphere in 
just two dimensions, yielding the 
(false) impression that the clus-
ters at the horizon of the sphere 
are more compact. The MSTem-
plateExporer allows switching 
to a 3D representation, which 
permits a more appropriate visual 
impression

 

Fig. 5  “Meta-microstate template 
maps” obtained after cluster-
ing across the template maps of 
all included studies. Solutions 
ranging from 4 to 7 classes are 
shown. Note the high correspon-
dence of maps across the differ-
ent solutions
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by clustering across the template maps of the different stud-
ies. Topographically similar microstate template maps are 
assumed to represent similar active sources in the brain. As 
these sources can be assumed to constitute similar func-
tional states, the empirical findings associated with these 
topographically similar template maps can be identified 
more objectively and systematically. The MSTemplate-
Explorer allows users to extract data-driven associations 
between empirical findings across studies, and the potential 
of this approach is likely to expand as more published tem-
plate maps from independent studies are added.

Authors of past and future studies using the microstate 
approach are encouraged to submit their template maps 
using our GUI-based tool, MSTemplateEditor. By having 
an increasingly complete database of EEG-microstate tem-
plate map topographies, we can change the status quo of 

Discussion

This project aims to build a comprehensive database of 
published resting state microstate template maps and their 
empirical findings and to develop a user-friendly interface 
to query topographical similarities across past studies and 
provide users with a platform to compare the topographies 
of their own studies with published ones. An analysis of a 
total of 39 studies we had available at the time of the writ-
ing of this article showed a high commonality of microstate 
template map configurations across studies. This was true 
despite significant differences in analytical parameters, 
experimental setups, specific strategies, experimental ques-
tions, conditions, and groups. This overall high replicability 
of microstate configuration across studies is also reflected in 
the representative sets of ‘meta-microstate maps’ obtained 

Label Contrast Effect
Antonova 2022_C No findings
Brechet 2020_4 Slowwave sleep vs. wakeful resting More GEV
Brechet 2020_4 Dream experience vs. no experience in slowwave 

sleep
Less GEV

Croce 2020_D related to alpha band power Less Contribution
Croce 2022_D isometric contraction task against rest More Duration
Croce 2022_D isometric contraction task against rest More Occurrence
Custo 2017_G Right inferior parietal lobe extending to the superior 

temporal gyrus
More current 
density

Custo 2017_G Cerebellum More current 
density

Damborska 2019a_E No findings
Damborska 2019b_E No findings
Deolindo 2021_F Critical helicopter landing maneuver vs. resting state Less Contribution
Deolindo 2021_F Critical helicopter landing maneuver vs. resting state Less Duration
Deolindo 2021_F Critical helicopter landing maneuver vs. resting state Less Occurrence
Diezig 2022_4 Hypnagogic state vs. wake More Contribution
Diezig 2022_4 Hypnagogic state vs. wake More Duration
Diezig 2022_4 Hypnagogic state vs. wake More Occurrence
Diezig 2022_4 bilateral activity in superior and middle frontal gyrus 

and precuneus
More current 
density

Murphy 2018_M2 No findings
Tarailis 2021_F Higher ARSQ score Somatic Awareness Less Contribution
Tomescu 2018_D Females compared to males Less Occurrence
Tomescu 2018_D In males: Adolescents(14-19y) against children 

(6-13y)
Less Occurrence

Tomescu 2018_D Young adults (20-30y) against adolescents (14-19y) More Occurrence
Vellante 2020_D No findings
Zanesco 2020_E more conscientiousness More GEV
Zanesco 2020_E less nervous mood More GEV
Zanesco 2020_E more conscientiousness More Occurrence
Zanesco 2021 Meditation_E No findings
Zanesco 2021 Meditation_F No findings
Zanesco 2021b_E mindwandering against on-task Less GEV
Zanesco 2021b_E mindwandering against on-task Less Occurrence
Zanesco 2021b_E mindwandering against on-task Less Contribution
Zanesco 2021c_E No findings

Table 1  All database findings 
associated with the 5th microstate 
class of the 5-class meta-map 
solution. Note that the labels of 
the microstate maps correspond 
to the labeling in the database and 
not necessarily to the reference 
list of this article
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the same number of clusters as seen in microstate class C in 
Fig. 3, in Michel and Koenig 2018. On the other hand, it is a 
necessary and sufficient condition that template maps share 
a high amount of topographical similarity to conclude that 
they share a high amount of source activity and, thus, pre-
sumably serve similar functions independent of the number 
of microstate classes used in the analysis. ‘Good’ choices 
of microstate class numbers may therefore be understood 
in the long run as choices that yield converging evidence 
across studies.

In this context, analyzing the commonality of micro-
state assignment across the different sets of meta-microstate 
maps (Fig. 7) further de-emphasizes the importance of find-
ing a presumably correct number of classes to account for 
the data. Across the different sets of meta-microstate tem-
plate maps, the assignment of the analyzed EEG data to the 
maps of the different sets of meta-microstates was highly 
stable for all but one or two microstate classes (Fig. 7). This 
indicates that also the typical class-wise microstate param-
eters such as microstate duration, microstate occurrence, or 
percent time covered are robust against changes in the num-
ber of classes used in many cases, and particularly for the 
‘canonical four’ microstate classes. The impact of the yet-
to-be-conclusively-solved problem of choosing the number 
of microstate classes may thus only have a limited impact 
on the field of EEG microstate analysis.

the ‘eyeball’ approach for labeling microstate template map 
classes across studies. Using a more objective, data-driven 
index of template map similarities across a hopefully increas-
ingly comprehensive collection of studies, we not only 
eliminate an element of arbitrariness in the rapidly growing 
field of EEG microstate analysis but also provide opportuni-
ties to examine interesting but previously overlooked asso-
ciations between studies. As an example, findings related to 
the microstate templates maps collection shown in Figs. 3 
and 4 not only show a systematic and continuous progres-
sion from a highly attentive state (Deolindo et al. 2021) to 
drowsiness and hypnagogic mentation (Diezig et al. 2022) 
to dreamless sleep (Bréchet et al. 2020a), but also to somatic 
awareness (Tarailis et al. 2021), which is something typi-
cally lost during decreased wakefulness.

Additionally, this approach provides a more objective 
means to relate microstate findings across studies, irrespec-
tive of the number of classes, which also partly addresses 
the still controversial issue of choosing an appropriate 
number of microstate clusters. In the past, it has often been 
argued that the number of classes should be selected such 
that the analysis is compatible with previous results, which 
explains the predominance of studies with four classes. 
However, from the theoretical point of view, having the 
same number of clusters does not necessarily imply that the 
topographies of template maps are comparable across stud-
ies. The identified maps may differ substantially even with 

Fig. 7  Commonality (percent overlap) of microstate assignment 
among meta-microstate maps with different numbers of classes. Each 
graph represents the commonalities of the assignment of microstates 
observed when changing between solutions with different numbers 
of classes of the meta-microstate maps. The color-coded bins of the 
graphs indicate the percentage of time points that are common for the 

given assignment. The data is normalized to make the sum of com-
monalities 100% over columns. For example, the second graph from 
the left in the first row indicates that 99% of all time points assigned 
to class 1 in the 4-class solution were assigned to class 1 in the 5-class 
solution, and 1% of all time points assigned to class 1 in the 4-class 
solution were assigned to class 3 in the 5-class solution
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CHQ, Silva RGA, Machado BS, Amaro Junior E, König T, 
Kozasa EH (2021) Microstates in complex and dynamical envi-
ronments: unraveling situational awareness in critical helicopter 
landing maneuvers. Hum Brain Mapp 42:3168–3181. https://doi.
org/10.1002/hbm.25426

Diezig S, Denzer S, Achermann P, Mast FW, Koenig T (2022) EEG 
Microstate Dynamics Associated with Dream-Like Experi-
ences during the transition to Sleep. Brain Topogr. https://doi.
org/10.1007/s10548-022-00923-y

Hanoglu L, Toplutas E, Saricaoglu M, Velioglu HA, Yildiz S, Yulug B 
(2022) Therapeutic role of repetitive transcranial magnetic stimu-
lation in Alzheimer’s and Parkinson’s Disease: Electroencepha-
lography Microstate correlates. Front Neurosci 16

Hu W, Zhang Z, Zhao H, Zhang L, Li L, Huang G, Liang Z (2023) 
EEG microstate correlates of emotion dynamics and stimulation 
content during video watching. Cereb. Cortex N. Y. N 1991 33, 
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9:e114163. https://doi.org/10.1371/journal.pone.0114163
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ler B (2022) A self-controlled mind is reflected by 

In conclusion, we hope that the present effort and the 
novel tools provided herein extend the methodological 
foundation for objectivity and comprehensiveness in the 
field of EEG resting state microstate analysis. The success 
of this project will depend on the willingness of the authors 
of past and future studies to provide their microstate tem-
plate maps and on journals and reviewers to encourage such 
a policy. In return, the findings of studies that provide their 
microstate template maps are more likely to be examined 
in a wider context and expanded upon by future studies, 
thereby increasing their impact.
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