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Summary
Background The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact 
of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, 
Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these 
diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic.

Methods For this prospective analysis, laboratories in 30 countries and territories representing five continents 
submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The 
impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease 
distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to 
quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive 
integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by 
hemisphere.

Findings Overall, 116 841 cases were analysed: 76 481 in 2018–19, before the pandemic, and 40 360 in 2020–21, during 
the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae 
(risk ratio 0·47; 95% CI 0·40–0·55), H influenzae (0·51; 0·40–0·66) and N meningitidis (0·26; 0·21–0·31), while no 
significant changes were observed for S agalactiae (1·02; 0·75–1·40), which is not transmitted via the respiratory 
route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or 
group. An estimated 36 289 (95% prediction interval 17 145–55 434) cases of invasive bacterial disease were averted 
during the first 2 years of the pandemic among IRIS-participating countries and territories.

Interpretation COVID-19 containment measures were associated with a sustained decrease in the incidence of 
invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, 
but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These 
IRIS data provide a better understanding of microbial transmission, will inform vaccine development and 
implementation, and can contribute to health-care service planning and provision of policies.
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Introduction
Three of the most common causes of invasive bacterial 
disease are Streptococcus pneumoniae, Haemophilus 
influenzae, and Neisseria meningitidis; young children, 
adolescents, and older adults are at greatest risk of disease. 
All three bacterial species colonise the oropharynx or 
nasopharynx of healthy individuals and all three bacteria 
are transmitted person to person via respiratory droplets.

The Global Burden of Diseases, Injuries, and 
Risk Factors Study estimated that, in 2019, S pneumoniae 
was the leading bacterial cause of death among children 
younger than 5 years worldwide (225 000 deaths; 
95% uncertainty interval [UI] 180 000–281 000).1 It was 
also the leading cause of deaths due to lower respiratory 
infections (653 000; 95% UI 553 000–777 000) and 
meningitis (44 500; 34 700–59 800) among people of all 
ages, and led to 40·3 million (32·8–50·0) years of life 
lost globally.1 The same report estimated that 
101 000 deaths (95% UI 82 800–124 000) worldwide were 
due to H influenzae, the majority of which were due to 
lower respiratory infections, and an estimated 
141 000 deaths (96 800–203 000) were from bloodstream 
infections and meningitis caused by N meningitidis. 
N meningitidis is a global pathogen but a particular 
public health problem in Africa since it is a cause of 
meningitis epidemics, both within and outside the 
meningitis belt.2 S pneumoniae and H influenzae are 
also among the most common causes of deaths 
associated with infections caused by bacteria that are 
resistant to antibiotics.3

The Invasive Respiratory Infection Surveillance (IRIS) 
Consortium, an international network of microbiology 

laboratories in 30 countries and territories, was 
established early in 2020 in response to the COVID-19 
pandemic and concerns about the potential for increased 
post-viral secondary bacterial infections.4 The main aim 
of the IRIS Consortium is to investigate the incidence of 
invasive diseases caused by S pneumoniae, H influenzae, 
and N meningitidis. Invasive infections due to these 
bacterial species are legally notifiable to public health 
registries in the majority of countries participating in 
IRIS.4

Previously, we reported significant reductions in the 
incidence of diseases caused by all three bacteria early 
in the COVID-19 pandemic and showed that these 
reductions were associated with the timing and 
stringency of COVID-19 containment measures.4–9 A 
subset of laboratories also submitted data for cases of 
disease caused by Streptococcus agalactiae, a major cause 
of invasive disease across all age groups but especially 
neonates, and which is not transmitted via the respiratory 
route.1,10 S agalactiae was included as a comparator 
organism to assess the stability of routine disease 
surveillance during the pandemic. There was no change 
in the incidence of invasive S agalactiae infections in the 
early months of the pandemic, suggesting that any 
disruptions to routine laboratory surveillance during the 
COVID-19 pandemic were minor and did not explain the 
observed reductions in diseases caused by S pneumoniae, 
H influenzae, and N meningitidis.4

We conducted an expanded prospective analysis of 
surveillance data for four bacterial species 
(S pneumoniae, H influenzae, N meningitidis, and 
S agalactiae) in the 2 years before COVID-19 (2018–19) 

Research in context

Evidence before this study
We searched PubMed, bioRxiv, and medRxiv for articles 
written in English and published before Dec 31, 2019, that 
reported on large-scale containment measures implemented 
during a pandemic. Search terms included “pandemic” AND 
“microbial transmission” OR “transmission” AND 
“containment”. Overall, 262 papers were identified, but none 
met our inclusion criteria. In the early stages of the COVID-19 
pandemic (ie, January–May, 2020), the Invasive Respiratory 
Infection Surveillance (IRIS) Consortium reported a significant 
reduction in invasive disease due to bacterial pathogens 
transmitted via the respiratory route. In particular, infections 
due to Streptococcus pneumoniae decreased by 68% at 4 weeks 
after COVID-19 containment measures were imposed 
(incidence rate ratio 0·32 [95% CI 0·27–0·37]), and by 82% at 
8 weeks (0·18 [0·14–0·23]). This reduction in disease was 
found to be associated with the implementation of COVID-19 
stringency measures and changes in human social behaviour. 
All 26 countries and territories participating in IRIS reported a 
substantial reduction in infections during this period 
compared with the previous 2 years.

Added value of this study
These new data from the expanded IRIS Consortium (which 
comprises 30 countries and territories as of 2021) showed a 
sustained reduction in invasive disease throughout the first 
2 years of the COVID-19 pandemic. Using time-series modelling, 
we estimated that more than 36 000 cases of invasive bacterial 
disease were averted in 2020–21 among the countries 
participating in IRIS; however, minor increases in disease cases in 
the latter half of 2021 require close monitoring to understand 
the nature of and possible reasons for re-emerging cases.

Implications of all the available evidence
Future epidemics and pandemics will occur and, although it is 
essential to understand the pathogen that is directly 
responsible for the pandemic, we need to understand that 
overall human health and the transmission of other microbes 
are also broadly affected by population-level responses to an 
epidemic or pandemic. Data from IRIS provide evidence of the 
effects of such public health responses on severe invasive 
bacterial infections across many countries during the COVID-19 
pandemic. 
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and the first 2 years of the pandemic (2020–21). Four 
countries were added to the IRIS Consortium since our 
first publication in 2021,4 which expanded the 
geographical coverage of IRIS to 30 countries and 
territories across six continents. We collected data on 
patient age and bacterial serotype or group to assess 
epidemiological changes that might have implications 
for disease burden and vaccination programmes. We 
quantified the effect of COVID-19 restrictions on the 
four pathogens under investigation, utilised time-series 
modelling techniques to analyse changes in disease 
during the first 2 years of the pandemic, and estimated 
the number of cases averted. We also assessed the 
incidence of disease by patient age and serotype or 
group, to investigate whether the epidemiology of 
invasive disease had changed during 2020–21 compared 
to the pre-pandemic years.

Methods
Study design and participants
For this prospective analysis, national reference and 
expert microbiology laboratories in 30 countries and 
territories submitted data on confirmed cases of invasive 
infections (within a normally sterile site) caused by 
one or more of the four bacteria under investigation. 
Australia, Colombia, Greece, and Paraguay joined IRIS 
after the initial establishment of the consortium. All 
IRIS-participating laboratories provided national 
reference data apart from Australia (New South Wales 
only) and China (one Beijing hospital only). Data were 
collected for patients of all ages except in South Korea, 
where only data from patients aged younger than 16 years 
were available for analyses.

Data collection
No patient-identifiable data were submitted to IRIS. In 
the originating laboratories, bacteria from clinical 
samples were primarily recovered and identified by 
standard microbiological culture methods and 
occasionally by PCR testing. Invasive disease cases 
identified from Jan 1, 2018, to Jan 2, 2022 (the end of ISO 
[International Organization for Standardization] week 52 
for 2021), were included in the current analyses. The 
PubMLST suite of databases was used to collect and 
manage IRIS data, and a private project only accessible 
to IRIS participants was used for each of the 
four organisms. At a minimum, information about the 
specimen sampling date, patient age, and serotype or 
group was submitted for each case except where data 
protection rules in a country prevented the submission 
of data on patient age. Study data were entered by IRIS 
participants or the database curators (ABB, KAJ, and 
DS). Automated data integrity checks were applied 
before data upload, and all IRIS data were manually 
checked by the curators for data consistency; any 
discrepant or missing data were queried and resolved 
with the submitting laboratory.

Google COVID-19 Community Mobility Reports 
(CCMRs) are anonymised, within-country mobile device 
location history data that capture the movement of people 
in six categories, including time spent in workplaces and 
residential areas. Google CCMR data are calculated as a 
daily percentage change from the baseline day, which 
was the median value between Jan 3 and Feb 6, 2020. In 
our previous study we used Google CCMR data to 
estimate the week when each country first implemented 
COVID-19 containment measures. We used the same 
estimates in the current analyses, and for the four 
additional countries the week of implementation was 
calculated as described previously.4

The stringency of each country’s COVID-19 contain-
ment measures was quantified with the Oxford 
Blavatnik COVID-19 Government Response Tracker 
(OxCGRT).11 This stringency index combines nine 
indicators that are tracked daily: school, workplace, and 
public transport closures; public event cancellations; 
gathering restrictions; stay at home requirements; 
internal move ment restrictions; international travel 
controls; and public information campaigns. A 
composite stringency index variable between 0 and 100 
is calculated and is available for download on the 
OxCGRT website. For our analyses, the daily stringency 
index was converted into an ISO weekly index by taking 
the mean stringency index metric for that week. 
Cumulative weekly case counts for each organism were 
plotted against the weekly stringency index for each 
country and organism.

Time-series analysis and decomposition
Case counts were summed by month to generate country-
specific and organism-specific time series for 2018–21. 
Monthly case totals were used to improve the overall 
model fit and accommodate the 2020 leap year 
(ie, 53 weeks). A second time-series analysis was done for 

Streptococcus 
pneumoniae

Haemophilus 
influenzae

Neisseria 
meningitidis

Streptococcus 
agalactiae

2018

Number 30 553 3510 2302 1702

Median (IQR) 2405 (1824–3162) 282 (248–360) 192 (162–207) 147 (130–155)

2019

Number 30 606 3697 2228 1883

Median (IQR) 2574 (2018–3050) 323 (273–342) 182 (164–196) 154 (144–171)

2020

Number 15 501 2120 976 1886

Median (IQR) 834 (627–1258) 115 (102–169) 40 (36–81) 157 (145–168)

2021

Number 15 306 2117 550 1904

Median (IQR) 1160 (1003–1391) 158 (128–194) 40 (35–56) 156 (149–170)

Data shown are numbers of isolates per year. The year corresponds to the International Organization for 
Standardization year. IRIS=Invasive Respiratory Infection Surveillance.

Table 1: Overall number of invasive disease cases submitted to IRIS-participating laboratories before 
(2018–19) and during (2020–21) the COVID-19 pandemic

https://www.bsg.ox.ac.uk/research/covid-19-government-response-tracker
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Figure 1: Streptococcus pneumoniae invasive disease case counts
For each country or territory, weekly invasive disease cases from Jan 1, 2018, to Jan 2, 2022 (four complete International Organization for Standardization years), were plotted against the weekly 
Oxford COVID-19 Government Response Tracker stringency index value in 2020–21. The vertical dashed line indicates the week in which pandemic response measures were initiated in each country. 
*Many of the Spanish sampling dates were submitted only by month and not day of sampling, so the sampling date was entered as the first day of the month if the actual sampling day was 
unavailable.
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the S pneumoniae, H influenzae, and N meningitidis 
datasets to account for potential seasonal differences, 
whereby case counts were pooled by countries residing 
in the northern or southern hemispheres, respectively. 
S agalactiae data were only collected from countries in 
the northern hemisphere.

Interrupted time-series analysis
Seasonal autoregressive integrated moving average 
(ARIMA) models were used to quantify the impact of 
COVID-19 containment measures on the incidence of 
invasive bacterial disease, and to generate counterfactual 
trends with 95% prediction intervals (PIs) for each of the 

Figure 2: Interrupted time-series analyses of invasive disease data in the northern and southern hemispheres
Observed cases of invasive disease for each bacterial species (blue solid lines) were plotted against the counterfactual weekly number of cases predicted by the ARIMA models (red dashed lines) if the 
COVID-19 pandemic had not occurred. The black vertical dashed line indicates the modal month (ie, the most common month when containment measures were put in place). The grey shading 
depicts 95% prediction intervals. Streptococcus agalactiae data were only collected in the northern hemisphere, and data are plotted by weeks in the calendar year rather than International Organization 
for Standardization year. The numbers next to ARIMA in the first set of parentheses indicate which components have been included to generate the counterfactual (p,d,q), while the second set of 
parentheses provides an indication of the seasonal model used (P,D,Q). The square brackets indicate that the model is generated using monthly data (12 months in a year). Please see text for details. 
ARIMA=autoregressive integrated moving average. 
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four pathogens. Although it would have been desirable to 
fit separate ARIMA models by country, the dataset in most 
countries was too small for this to be implemented, and 
residual autocorrelation and negative case counts 
produced after model fitting precluded this approach.

ARIMA models took the simplified form of:

where p=non-seasonal autoregressive (AR) order, d=non-
seasonal differencing, q=non-seasonal moving average 
(MA) order, P=seasonal AR order, D=seasonal dif-
ferencing, Q=seasonal MA order, and s=time span of 
repeating seasonal pattern (number of observations in a 
year), 12 months.

Box-Jenkins methodology was applied when building 
the ARIMA model and both manual and automated 

methods were used to select the final models.12 Each time 
series was assessed for stationarity with the augmented 
Dickey-Fuller unit root test, which tested the null 
hypothesis of non-stationarity.12 None of the individual 
time series analysed in this study was non-stationary so 
no adjustments were required.

Manual model identification and coefficient esti-
mation were performed, and we accounted for any 
seasonal pattern in the time series. We utilised the 
auto correlation function and the partial auto correlation 
function to decide on the potential inclusion of and 
number of autoregressive or moving average com-
ponents (order selection), or both. The final ARIMA 
models were selected with a combination of unit root 
tests, maximum likelihood estimation, and minimised 
corrected Akaike information criterion values.12,13

To measure the impact of COVID-19 containment 
measures, step and slope variables were included as 
regressors in the final ARIMA models: step (0 before 
containment measure implementation, 1 thereafter); 
and slope (0 before containment measure imple-
mentation, +1 for each month thereafter). Based on 
Google CCMR data, the step variable switched from 
0 to 1 from March, 2020, onwards for all countries.4 
These changes reflect the change in personal behaviour 
in response to the pandemic as well as the containment 
measures initiated across the 30 countries and 
territories in our cohort. The final ARIMA models were 
used to produce a counterfactual prediction that 
assumed the COVID-19 pandemic did not occur, based 
on disease data from the two pre-pandemic years, 
which generated a mean monthly case estimate and 
95% PI. The relative risk (RR) of invasive disease, and 
number of cases averted, from March, 2020 (when the 
pandemic was officially declared by WHO), were 
estimated as follows: RR=number of cases 
observed / number of counter factual cases. The major 
threats to internal validity as described by Penfold and 
Zhang14 (history, instru mentation, and selection bias) 
were rigorously assessed and mitigated, and all model 
assumptions were met.

Meta-analysis
The RR estimates of disease and 95% CIs in the northern 
and southern hemispheres were combined with an 
inverse-variance weighted, fixed-effects meta-analysis to 
generate a pooled RR and 95% CI estimate. These 
models used a restricted maximum likelihood approach 

Figure 3: Risk of invasive disease during the pandemic for each bacterial species by hemisphere
Results of the meta-analysis are shown as fixed-effects model estimates for each bacterial species.
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Cases averted (95% PI)

Streptococcus pneumoniae

Northern hemisphere 24 893 (13 377 to 36 410)

Southern hemisphere 5067 (2726 to 7409)

Haemophilus influenzae

Northern hemisphere 3027 (966 to 5089)

Southern hemisphere 479 (–162 to 1120)

Neisseria meningitidis

Northern hemisphere 2258 (1240 to 3275)

Southern hemisphere 649 (312 to 986)

Streptococcus agalactiae

Northern hemisphere –84 (–1314 to 1145)

Overall, 36 289 (95% PI 24 229 to 48 349) cases were averted. PI=prediction 
interval.

Table 2: Estimated number of invasive disease cases averted during the 
COVID-19 pandemic (2020–21), by hemisphere 

ARIMA (p,d,q) (P,D,Q)s

Figure 4: Streptococcus pneumoniae invasive disease cases by serotype and 
patient age

(A) Distribution of serotypes responsible for 90% of all reported cases between 
2018 and 2021, listed by case count, increasing or decreasing trend year by year, 

and percentage change of each serotype recovered in 2018–19 compared to 
2020–21 (average number of cases each year, pre-pandemic vs during the 
pandemic). (B) Heat map depicting the number of cases of each serotype 

recovered per year and by age group. ND=not determined.
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for coefficient estimates.15 This approach was also applied 
to pool the results of the various sensitivity analyses.

Sensitivity analysis
For each of the four pathogens, segmented regression 
models were fitted to each country, stratified by age 
group and serotype or group. Negative binomial and 
quasi-Poisson generalised linear models were fitted to 
account for overdispersion of data, using population size 
as an offset and adjusting for seasonality, using month as 
a factor variable and Fourier terms.13 These models 
included a step change variable for implementation of 
containment measures, as described above. We also 
included models that extrapolated a counterfactual trend 
from pre-pandemic data. Further details are provided in 
the appendix (pp 1–2) and have been published 
previously.4 

Role of the funding source
The funders had no role in data collection, data analysis, 
data interpretation, writing of the manuscript, or the 
decision to submit the manuscript for publication.

Results
All 30 countries participating in the IRIS Consortium 
submitted data on cases of S pneumoniae invasive disease, 
as represented by bacterial isolates or case reports, or both, 
submitted to each of the IRIS laboratories. Most countries 
also submitted invasive disease data on H influenzae (n=24) 
and N meningitidis (n=21), and nine countries submitted 
invasive disease data on S agalactiae. Overall, 116 841 cases 
were analysed: 76 481 in 2018–19, before the pandemic, and 
40 360 in 2020–21, during the pandemic. The number of 
S pneumoniae, H influenzae, and N meningitidis cases 
during 2020–21 was approximately half the expected 
number each year compared to pre-pandemic totals, but 
the number of S agalactiae cases was similar each year 
(table 1).

There was an association between the stringency of 
COVID-19 containment measures implemented in each 
country and the number of S pneumoniae cases reported 
to laboratories (ie, as the stringency of containment 
measures decreased during 2021 in many countries, 

there were concomitant increases in S pneumoniae cases; 
figure 1). Similar associations were observed for 
H influenzae and N meningitidis, but not S agalactiae 
(appendix pp 3–5).

Time-series analyses by northern and southern hemi-
spheres for each of the bacterial species showed an overall 
reduction in cases of disease caused by S pneumoniae, 
H influenzae, and N meningitidis, but not S agalactiae, 
during the pandemic (figure 2). Notably, cases due to 
S pneumoniae, H influenzae, and N meningitidis were 
increasing by the end of 2021. Google CCMR data were 
used to assess the point at which there was a step change 
that precipitated the reduction in cases of disease within 
each country, which was from March, 2020 (when the 
pandemic was declared), in both the northern and 
southern hemispheres (figure 2).

The data were meta-analysed by hemisphere, the 
results of which showed a significant reduction in the 
risk of invasive disease caused by S pneumoniae (RR 0·47; 
95% CI 0·40–0·55), H influenzae (0·51; 0·40–0·66), and 
N meningitidis (0·26; 0·21–0·31) but not S agalactiae (1·02; 
0·75–1·40; figure 3). Sensitivity analyses supported the 
use of the ARIMA model (appendix p 6), which estimated 
that 36 289 (95% PI 17 145–55 434) cases were averted in 
these 30 countries during the first 2 years of the pandemic 
(table 2).

Data were then stratified by serotype or group and 
patient age. Among S pneumoniae cases, there were 
significant reductions in the case count of all major 
serotypes in 2020–21, although cases of disease due to 
some serotypes were beginning to increase in the latter 
months of 2021 (figures 2, 4A). Case numbers in 2020–21 
were reduced in every age category and there were no 
major changes in the overall patterns of disease by age or 
serotype (figure 4B).

Stratification of H influenzae cases by serotype and 
patient age showed a reduction in case counts of all 
serotypes except for serotype b (Hib), which decreased 
in 2020 and then increased at the end of 2021 (p<0·0001). 
However, the total number of Hib cases remained very 
low: only 276 Hib cases were reported among 24 countries 
in 2021 (figure 5A). Overall, Hib cases increased among 
children aged 0–4 years in 2021 (n=146) versus 2020 (n=87; 
figure 5C). When stratified by country, the increase in 
Hib infections was primarily observed in five countries 
in 2021: the Netherlands (n=70), France (n=50), South 
Africa (n=43), Israel (n=27), and Paraguay (n=10; 
figure 5E).6,16 Among cases of N meningitidis there was a 
significant reduction in infections due to all serogroups 
(but especially capsule groups W, C, and Y), with no 
obvious changes in the patterns of disease by age group 
(figure 5B, D).

Discussion
Our statistical models estimated that, on average, more 
than 36 000 cases of life-threatening invasive bacterial 
diseases caused by S pneumoniae, H influenzae, and 

Figure 5: Haemophilus influenzae and Neisseria meningitidis invasive disease 
cases by serotype, capsule group, country, and age
Distribution of serotypes between 2018 and 2021 for Haemophilus influenzae (A) 
and Neisseria meningitidis (B) are shown, listed by case count, increasing or 
decreasing trend year by year, with percentage change of each serotype 
recovered in 2018–19 compared to 2020–21 (average number of cases each year, 
pre-pandemic vs during the pandemic). Heat maps depicting the number of 
cases of each serotype recovered per year and by age group are shown for 
H influenzae (C) and N meningitidis (D). Number of cases of H influenzae by 
country are shown (E), displaying only those countries where at least 100 cases 
in total had been reported across all four study years. Circles represent the total 
number of cases each year, and lines indicate the increasing or decreasing trend 
year by year, with all serotypes depicted by the dashed line and H influenzae 
serotype b (Hib) depicted by the solid line. ND=not determined.
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N meningitidis were averted in the countries participating 
in the IRIS Consortium during the first 2 years of the 
COVID-19 pandemic. The large number of averted cases 
reduced the morbidity and mortality associated with 
these infections, which would have eased the burden on 
some health-care systems during the pandemic. The 
documented reduction in infections was most plausibly 
due to the worldwide implementation of COVID-19 
containment measures aimed at reducing transmission 
of SARS-CoV-2, which simultaneously reduced trans-
mission of other microbes that spread via respiratory 
secretions, including those studied by the IRIS 
Consortium.

Our findings cannot be explained by under-reporting of 
data by hospitals and laboratories that were overwhelmed 
by the pandemic. In most of the 30 countries and 
territories represented in this analysis, it is a legal 
requirement to report cases of invasive disease caused by 
the pathogens covered in this study, and the inclusion of 
S agalactiae as a non-respiratory comparator organism 
provided reassurance that the surveillance programmes 
in these laboratories were functioning without major 
disruptions during the pandemic.

The findings show that although cases of disease 
remained significantly lower in 2020–21 compared to 
pre-pandemic levels, rates of disease were increasing in 
some countries and territories towards the end of 2021.17,18 
It is therefore reasonable to predict that rates of invasive 
bacterial infections will return to pre-pandemic levels in 
due course. Furthermore, the 2021 data showed a small 
overall increase in Hib cases after an initial decrease 
in 2020. However, other factors could have influenced 
these dynamics even before the pandemic, such as 
changes to Hib vaccines or vaccine schedules (or both), 
or pre-pandemic increases in the incidence of Hib 
infection.6,16 Renewed emphasis on the active surveillance 
of invasive diseases caused by Hib is certainly warranted 
going forward.

An important concern now, as people have returned to 
normalised social interactions, is which pathogens will 
cause disease. The usual patterns of microbial 
transmission were altered during the pandemic, and if 
the microbiome within the upper respiratory tract was 
also disrupted, this could lead to changes in the 
prevalence of serotypes or groups associated with disease, 
increased prevalence of circulating non-vaccine types, or 
emergence of non-traditional disease-associated types.19,20 
If the microbiome was not substantially disrupted, then 
one might expect a return to disease patterns that are 
recognisable to those observed before the pandemic. 
Time will reveal which of these outcomes proves to be 
true.

There is also growing concern around decreased 
population immunity or a so-called immunity debt (ie, a 
higher proportion of susceptible individuals within a 
population because of reduced exposure to commonly 
circulating microbes) as a result of pandemic restrictions, 

which could lead to future outbreaks of disease.21,22 
Certain populations might be at increased risk of 
infection, such as children born during the pandemic; 
teenagers and young adults because of their increased 
social mixing; and older people because of immuno-
senescence, high rates of underlying comorbidities, and 
frailty. The situation is further compounded by 
disruptions in routine vaccination schedules around the 
world since health-care systems were reorganised to deal 
with the threat of the pandemic, but at the expense of 
providing other essential public health services.23–26 For 
example, reinstatement of routine paediatric vaccination 
programmes is one of the most important post-pandemic 
challenges that remains to be addressed in many parts of 
the world.

In addition to reduced exposure to pathogens, the 
typical patterns of respiratory disease were disrupted 
during the pandemic, and the prevalence of commonly 
circulating respiratory viruses such as respiratory 
syncytial virus and influenza viruses was also reduced 
during the pandemic due to the implementation of 
COVID-19 containment measures.27,28 Two recent studies 
reported a correlation between the reduced prevalence of 
respiratory viruses and reductions in diseases due to 
S pneumoniae during the pandemic.29,30 Further work will 
be necessary to better understand any causative 
relationship between respiratory viruses and colonising 
nasopharyngeal bacteria, mechanisms of co-infections, 
and to mechanistically understand how one microbe 
might influence the pathogenicity of another.

Limitations of the time-series analyses in this study 
included difficulties in fitting ARIMA models to 
individual countries and territories. Each country has its 
own pattern of disease and public health restrictions, and 
some countries reported relatively small case numbers. 
This necessitated temporal pooling by month and 
geographical pooling by hemisphere, leading to wider 
prediction intervals and reduced predictive power of the 
models. Although we assessed data from 2018 to 2021, 
when taking account of a yearly trend, the necessary 
seasonal adjustment in the model leads to a loss of a 
year’s worth of data, which affected our sample size.12

Despite these limitations, strengths of these analyses 
included the large datasets rapidly contributed by 
investigators, which spanned 4 years and increased the 
power of these analyses. Additionally, high-quality data at 
a national level were made available by accredited 
reference laboratories undergoing routine audit and data 
validation practices, which minimised information bias. 
Selection bias is likely to be minimal because the bacteria 
under investigation cause diseases that necessitate 
urgent hospital care, and legislation in most of these 
countries and territories mandates the reporting of 
invasive diseases due to one or more of these bacteria. 
We also tested a range of time-series analyses to ensure 
the robustness of the results and the findings were 
reproducible.
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As our societies emerge from the COVID-19 pandemic, 
this large prospective study by the IRIS Consortium 
allows for timely detection of changes in invasive diseases 
caused by S pneumoniae, H influenzae, and N meningitidis, 
and provides a means to detect and address substantial 
changes that will undoubtedly occur. Most importantly, it 
is essential that any ongoing disruptions to bacterial 
vaccination programmes are resolved since diseases due 
to these bacteria are devastating but can be prevented by 
safe and effective vaccines already used in many 
countries worldwide.
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