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ABSTRACT

The social environment is one of the primary sources of challenging
stimuli that can induce a stress response in animals. It comprises both
short-term and stable interactions among conspecifics (including
unrelated individuals, mates, potential mates and kin). Social stress is
of unique interest in the field of stress research because (1) the social
domain is arguably the most complex and fluctuating component of an
animal’'s environment; (2) stress is socially transmissible; and (3)
stress can be buffered by social partners. Thus, social interactions can
be both the cause and cure of stress. Here, we review the history of
social stress research, and discuss social stressors and their effects
on organisms across early life and adulthood. We also consider cross-
generational effects. We discuss the physiological mechanisms
underpinning social stressors and stress responses, as well as the
potential adaptive value of responses to social stressors. Finally, we
identify outstanding challenges in social stress research, and propose
a framework for addressing these in future work.

KEY WORDS: Hierarchy, Social behaviour, Social buffering, Stress,
Transgenerational

Introduction

Since the inception of formal research on ‘stress’ in biology
(Cannon, 1935; Selye, 1956), the social environment has been
identified as one of the primary sources of challenging stimuli that
can induce a stress response (see Glossary). ‘Stress’ can be defined
as a process whereby an organism reacts to stressors, including
detection of the stressor and the subsequent stress response
(Wingfield et al., 1998; Taborsky et al., 2021). Stress is disruptive
to homeostasis, the maintenance of the internal environment within
life-sustaining limits via physiological mechanisms (the self-
regulatory process of ‘allostasis’, achieved through allostastic
mediators including hormones, cytokines and cardiovascular
regulators; see Glossary) (McEwen, 2005). The stress response in
vertebrates is characterised by activation of key physiological
pathways: the sympathetic adrenal medullary system (SAM) and the
hypothalamic—pituitary—adrenal (HPA) axis, which provide short-
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and long-term allostatic responses to stressors, respectively (see
Box 1).

Potential stressors are wide ranging, and can include stimuli such
as predation risk, low food availability and adverse weather events.
In addition, an individual’s social environment, which comprises
interactions among conspecifics — including unrelated individuals,
mates, potential mates and kin (Dantzer and Newman, 2022) — can
act as a source of stressors (Table 1). The social environment is
perhaps unique among stressors in that it also acts as a buffer from
other sources of stress. Thus, stress in the social context
encompasses stress derived directly from the social environment,
as well as the role of the social environment in altering the outcomes
of stress.

There are at least three reasons why stress in the social context is
qualitatively different from non-social abiotic and biotic stress. First,
the social domain is arguably the most complex and fluctuating
component of an animal’s environment. Social interactions differ not
only in terms of the type of interaction (e.g. competitive, sexual) but
also with respect to the identity of the interacting individuals, the
number of social partners and their external and internal states (such
as rank, size and emotional state). Social information has to be
gathered quickly and may be incomplete, inherently generating
uncertainty, which itselfis an important stressor (Kaiser and Sachser,
2005). Moreover, social factors have varying time scales, from
highly stable and predictable (e.g. long-term dominance hierarchies)
to more rapid and unpredictable (e.g. aggression received from a
conspecific depending on their current physiological condition).

Second, stress is socially transmissible. Social transmission of stress
responses can be adaptive; for instance, transmission of a response to a
predator can benefit an entire collective, as not all individuals may
perceive the threat simultaneously, and a coordinated response can
more effectively deter predators (e.g. Doran et al., 2022). However, if
higher stress levels are transmitted across individuals within a social
unit, short-term benefits, such as improved anti-predator responses,
may be traded off against long-term costs of physiological stress such
as oxidative damage (see Glossary; Noguera et al., 2017).

Third, stress can be buffered by social partners. Social factors
have been mostly viewed as causes for social stress. However, the
mere presence of a social companion (e.g. a mate, parent or another
familiar member of the social group) can reduce the stress response
in other individuals (DeVries et al., 2003; Culbert et al., 2019;
Hennessy et al., 2009; Wu, 2021). There is also evidence that this
‘social buffering’ (see Glossary) can have a positive impact on
measures of health and well-being (DeVries et al., 2003).

Here, we review the history of social stress research, and discuss the
effects of social stressors in three contexts: in early life, in adulthood
and across generations (see Fig. 1). Individuals at different life stages
can be exposed to different social stressors, but can also differ in their
sensitivity to the same stressors. We highlight key experimental
advances in the field that have furthered our understanding of
physiological responses to social stress, and the potential for adaptive
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Glossary

Adaptive plasticity

Phenotypic changes in response to the environment (including the
parental environment) provide fitness benefits.

Allogrooming

Cleaning or maintaining the body surface of a conspecific individual.
Cooperative breeding

Joint raising of offspring by their parents and non-parents (‘helpers’).
Homeostasis/Allostasis

Processes to help control the body’s responses to an internal or external
environmental stressor. Homeostasis: stability of physiological
parameters for optimal functioning. Allostasis: process of maintaining
stability of physiological parameters essential for life through changes
the body makes in response to changing conditions.

Match-mismatch hypothesis

Early environmental influences (through parental effects or own
experience) act as predictors for the later-life environment later so that,
if the prediction is accurate, the offspring’s phenotype ‘matches’ the
environment in which it will live, increasing its fitness. If the prediction is
wrong, there would be a ‘mismatch’ at the cost of the fitness of the
offspring.

Oxidative damage

Damage (e.g. to cells and tissues) caused by an imbalance of free
radicals and antioxidants in the body.

Population cycling

Populations undergo large, cyclic increases and declines in population
size over a predictable period of time.

Reaction norm

A reaction norm depicts the range of phenotypes a single genotype can
produce, depending on the environment.

Social buffering

The presence of a social partner moderates the stress response of an
individual.

Stress response

The activation of coordinated neurophysiological responses in the brain
and periphery to cope with environmental demands or stressors.

plasticity (see Glossary). We aim for a broad and diverse approach
across taxa and social systems to illuminate the role of social stress in
an eco-evolutionary context. We additionally highlight the outstanding
challenges in social stress research and propose a framework for future
work.

A history of social stress research

Although stress research is now embedded into ecology and evolution
(Boonstra, 2013a), it was long considered a subspecialty within
medical sociology, primarily concerned with human health outcomes
(Selye, 1956; Aneshensel, 1992). Consequently, early research on
social stressors had its roots in human socio-psychology, particularly
relating to disease or health parameters (Rahe et al., 1964). The
concept of ‘social stressors’ in humans covers a broad list, including
adverse social conditions (e.g. family instability: McEwen and
Gianaros, 2010), unequal-power relationships (e.g. bullying,
victimisation: Bjorkqvist, 2001) and social factors not directly
related to physical interactions, such as wealth inequality (Wood
et al., 2012; Wilkinson and Pickett, 2006). Just as Selye’s (1956)
pioneering early work in unpicking the basis of stress physiology
noted a ‘general adaptation syndrome’ among patients presenting
diverse conditions or challenges (Selye, 1950), this range of social
stressors in humans has common outcomes, including obesity and
metabolic disorders (Scott et al., 2012), impaired immune function
(e.g. lower lymphocyte count: Owen et al., 2003; Dowd and Goldman,
2006), and depression and anxiety (Chaouloff, 2013; Tafet and
Nemeroff, 2016).

Box 1. The HPA/I axis and SAM system

When encountering stressors, individuals activate both the sympathetic
adrenal medullary (SAM) system and the hypothalamic—pituitary—
adrenal/interrenal (HPA/I) axis. Activation of the SAM system involves
activation of the autonomous sympathetic nervous system, and, via
sympathetic neurons, the excretion of adrenaline/noradrenaline from the
adrenal medulla. Activation of the HPA/I axis causes the release of
corticotropin-releasing factor (CRF) from the hypothalamus, which leads
to the release of adrenocorticotropic hormone (ACTH) from the anterior
pituitary, resulting in the release of glucocorticoids from the adrenal
cortex or interrenal tissues. Importantly, the SAM system is a fast-acting
system mediating stress responses within seconds, while the HPA/HPI
vertebrate stress axis acts relatively slowly to stressors, in the range of
minutes to hours. On detection of a stressor, sympathetic activation
mediates a number of effects eliciting a ‘fight or flight' response
(increasing cardiovascular tone, respiratory rate, blood flow to skeletal
muscles and blood glucose; Bauer et al., 2002). In addition, the
connection between the sympathetic nervous system and the adrenal
medulla leads to the release of stored catecholamines, primarily
adrenaline and noradrenaline (Bauer et al., 2002). Typically,
glucocorticoids exert negative feedback on both systems, restoring the
organism to homeostasis. The SAM and HPA systems are anatomically
and physiologically connected in the central nervous system (Sapolsky
et al, 2000). It has been hypothesised that synchronised and
symmetrical action of the two systems is required for optimal
behavioural outcomes (Bauer et al., 2002).

Stressor
SAM system HPA/HPI axis
Autonomic Hypothalamus
nervous
system
l CRF
Spinal cord
Anterior
pituitary
Sympathetic
neurons \ / \ j

ACTH
Adrenal gland

Chromaffin Interrenal

—>| Medulla Cortex

Adrenaline/Noradrenaline Glucocorticoids

Experimental work on social stress in humans has been largely
correlational as a result of ethical constraints, but some replicable
protocols have proven useful. For example, the Trier Social Stress
Test (TSST) was designed to exploit the vulnerability of the stress
response to socially evaluative situations, with participants asked to
perform challenging tasks in front of a non-responsive audience
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Table 1. Descriptions of key social stressors identified and discussed in this Review

Social stressor Definition

Social isolation

Density/crowding
competition for resources

Social hierarchy position

Disconnection from social relationships and interactions with conspecifics
High numbers of individuals, to the point of exceeding the carrying capacity of the habitat, leading to increased

Individuals are ranked according to status in the social group, with higher ranked individuals most commonly

having increased access to resources and reproductive opportunities

Instability in social group
declines

Competition for territories/breeding

opportunities mate (e.g. mate guarding)

Parental separation (PS) and early social
deprivation (ESD)

Reduced parental care or parental
aggression

Instability through changing group membership or changes in social rank; predictability of social encounters

Including ‘social defeat’ laboratory models, territorial incursion, stress of attaining and maintaining a territory/

Temporary separation of the caretaking parent(s) from the dependent offspring (PS); offspring are isolated from
both their caretaking parent(s) and littermates, and temporarily housed in a novel environment (ESD)

Including parental rejection (caretaking parent prevents contact to an offspring), offspring abuse (caretaking
parent slaps, hits, shoves, bites, drags, throws, steps on, sits on or inappropriately carries an offspring) or

fragmented parental care due to insufficient resources, e.g. limited bedding and nesting (LBN)

(Kirschbaum et al., 1993; Allen et al., 2014). Application of the
TSST has demonstrated biological responses to stress in human
subjects, such as changes to glucocorticoid levels, immune
function, cardiovascular function and sympathetic nervous system
activity (reviewed in Allen et al., 2017).

There has been an impetus to understand effects of social stress
on psychopathologies in humans (e.g. depression) through a better
understanding of the underlying neurobiology and physiology
(Chaouloff, 2013). However, the constraints of studying stress in
humans experimentally have meant that laboratory studies using
model organisms have been a key part of this research (Selye, 1956;
Koolhaas et al., 1997). This has led to the development of
experimental models of social stress in rats and mice (Koolhaas
et al., 1997; Masis-Calvo et al., 2018), as well as several
experimental paradigms to manipulate early-life stress (Van
Bogedom et al., 2017; see Table 1). These experimental models
have provided key insights into the role of the hypothalamic—
pituitary—adrenal/interrenal (HPA/HPI) axis (Box 1; Wingfield
et al., 1998, Bernier and Peter, 2001) in mediating social fear and
agonistic interactions, as well as the physiological and behavioural
consequences of chronic exposure to negative social experiences
(reviewed in Masis-Calvo et al., 2018). Rodent models have been at
the forefront of illuminating the potential for social buffering and its
mechanistic underpinnings (Davitz and Mason, 1955; Beery and
Kaufer, 2015). For example, pioneering experimental studies
explored the effect of maternal licking and grooming on offspring
stress reactivity, demonstrating long-lasting epigenetic effects
occurring through increased glucocorticoid receptor expression in
the hippocampus (Liu et al., 1997; Weaver et al., 2004). Primate
models have also proved instructive, particularly in the context of
social buffering through mother—infant bonding (Levine et al.,
1997).

The opportunity to test these ideas in free-living animals was
presented by an emerging body of behavioural ecology and socio-
biology studies (Stuhrmann, 2022) that included significant work on
social systems (e.g. Crook, 1970; Clutton-Brock, 1974; Clutton-
Brock and Harvey, 1976; Gittleman, 1989) and the evolution of
group living and cooperation, e.g. cooperative breeding (see
Glossary) (e.g. Solomon and French, 1997; Stacey and Koenig,
1990; Hatchwell and Komdeur, 2000). This led to a boom in the
study of social stressors in non-model organisms, including captive
primates (Kappeler, 1993) and fish (Serensen et al., 2013), as well as
studies in the wild (e.g. baboons; Sapolsky and Mott, 1987).

Although our understanding of the physiological consequences of
social stressors in wild animals lags behind the work on laboratory
rodents, the increased feasibility to accurately and relatively non-
invasively measure, for example, endocrine profiles of wild animals
in natural systems, has facilitated research linking social stress to
animal physiology, in particular to HPA axis activity (Creel, 2001).
Indeed, the comparative ease with which steroid hormones can be
quantified relative to, for example, sympathetic catecholamines,
coupled with the appealing spectrum of glucocorticoid effects on a
range of physiological and behavioural parameters, have made them
potentially an over-relied-upon metric of stress to date. Therefore, the
bulk of vertebrate ‘stress’ research, including that on social stress, has
focused on HPA axis activity alone (MacDougall-Shackleton et al.,
2019; Sapolsky, 2021). However, recent years have seen an increase
in more integrative studies including a broader range of measures of
animal health (Snyder-Mackler et al., 2020; Lemonnier et al., 2022).

Studies of free-living systems have also considered social stress
effects on key ecological phenomena, such as population cycling (see
Glossary) through density effects (reviewed in Creel et al., 2013).
More recently, ideas that maternal stress — including social stress —
could adaptively programme offspring (as opposed to resulting in
negative outcomes) in wild systems have gained traction (Sheriff
et al., 2017). For example, an experimental increase in perceived
density in red squirrel populations, and the associated stress response
in breeding females, results in increased offspring growth, which is
potentially adaptive if it allows young to outcompete conspecifics at
high population densities (Dantzer et al., 2013).

Social stress across the lifespan

Early life

‘Early-life social stress’ refers to social stress experienced during the
early postnatal period, when physiological systems are developing and
are highly sensitive to perturbation. During early life, the brain
undergoes a period of intense plasticity and maturation with long-term
impacts on brain function and synaptic plasticity (Alves et al., 2022).
The precise beginning and end of ‘sensitive periods’ differs among
organisms and depends on juveniles’ environmental experience
(Michel and Tyler, 2005; Panchanathan and Frankenhuis, 2016).
Here, we mostly focus on social stress occurring shortly after birth, but
generally consider the period until the onset of sexual maturation.
Although early-life social stress most often has immediate effects on
behaviour and physiology, effects can also persist into the later juvenile
stage or adulthood (Snyder-Mackler et al., 2020). We focus primarily
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on these long-term effects, given that they are likely to be relevant to
eco-evolutionary dynamics.

Relevant early-life social stressors can be categorised as relating
to variation in parental care or to variation in the number of social
interactions with family or group members, both of which are
discussed in more detail below (see Fig. 1). We also discuss
potential programming of social behaviour in response to early-life
social stress.

Variation in parental care

Multiple experimental paradigms have been developed for
mammalian laboratory models to induce aversive early social
environments and study their effects on phenotypes (e.g. Sandi and
Haller, 2015, Van Bogedom et al., 2017). Studies have focused on
manipulating the quality and quantity of maternal care to mimic
naturally relevant variation in care and to induce stress in dependent
offspring. Even within a single species, there is variation in the
amount or quality of parental care: in Norway rats (Ratfus
norvegicus), for example, there is considerable variation in the
quality of maternal care provided, measured as licking and
grooming and arched-back (as opposed to normal posture)
nursing (Meaney, 2001). Offspring of mothers providing lower
quality maternal care (reduced licking/grooming and normal posture
nursing) express a lifelong higher stress reactivity compared with
those from mothers who provide higher quality care (Liu et al.,
1997). As adults, they become mothers which themselves provide

lower quality care, thereby transmitting the effect of their own early-
life experience to the next generation (Francis et al., 1999;
Champagne and Meaney, 2007).

In rodent and primate models, a range of studies have shown that
the ‘quality’ of maternal care affects a suite of later behaviours in
offspring. Experimentally separating rodent offspring from their
mothers (‘separation’) or mothers and broodmates (‘deprivation’)
for short periods simulates interrupted maternal care or maternal
neglect (Zimmerberg and Sageser, 2011; Van Bogedom et al.,
2017). Short maternal separations of up to a few hours typically
increase fearful behaviour and impair memory performance
(Tractenberg et al., 2016; Sachser et al., 2018), whereas longer
periods of separation can enhance fear memory and synaptic
plasticity in adult offspring (Oomen et al., 2010). Similarly,
deprivation can induce a submissive phenotype in adults, which is
inferior to more dominant phenotypes in competition over critical
resources (Benner et al., 2015). In rhesus macaques (Macaca
mulatta), effects of maternal rejection — whereby mothers deny
contact to offspring — were investigated by cross-fostering infants of
mothers that had historically rejected their infants with mothers that
had not displayed rejection (Maestripieri et al., 2007). In adulthood,
females exhibited rejection rates similar to those of their foster
mothers; however, contact-seeking behaviour with their daughters
more closely resembled that of their biological mother (Maestripieri
et al., 2007), suggesting that both early-life social stress and genetic
background contribute to behavioural phenotypes as mothers.
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Intergenerational effects of social stressors
experienced during adulthood of offspring

Fig. 1. Social stressors in animals at different life stages and across generations. Some social stressors are experienced only in certain life stages (e.g.
stress relating to maternal care is experienced only in early life, breeding competition is only experienced in adulthood). Stressors experienced during
adulthood may influence the next generation through parental (intergenerational) effects. Blue circles represent individuals, and arrows depict the direction of
stress. Silhouettes are from PhyloPic (https:/www.phylopic.org/; Creative Commons).

>
(@)}
i
je
(2]
©
o+
c
(]
£
=
()
o
x
NN
Y—
(©)
©
c
e
>
(®)
_



https://www.phylopic.org/
https://www.phylopic.org/

REVIEW

Journal of Experimental Biology (2023) 226, jeb245829. doi:10.1242/jeb.245829

Social stressors involving reduced maternal care typically result
in stronger responses of the HPA axis towards stressors experienced
during later life (Sandi and Haller, 2015; Van Bogedom et al., 2017,
Banerjee et al., 2012). This hyper-reactivity is caused by increased
production of stress-induced corticosteroids, typically mediated by
increased corticotropin-releasing hormone signalling and reduced
negative feedback through glucocorticoid receptors (Van Bogedom
etal., 2017). However, there is also contradictory evidence showing
that the HPA axis is downregulated after early social deprivation in
both rodents (Sandi and Haller, 2015; Van Bogedom et al., 2017)
and birds (Goerlich et al., 2012). The baseline activity of the
vertebrate stress axis can also be affected permanently by early-life
social stress, as shown in the cichlid Neolamprologus pulcher,
which has lower baseline cortisol levels in adulthood after being
socially deprived of parents and helpers in early life (Antunes et al.,
2021).

An extreme early-life social stressor that also exhibits natural
variation is aggression towards dependent offspring from caregivers
or other group members (Kinnally et al., 2010). This is particularly
striking in the form of naturally occurring abusive behaviour by
mothers (Table 1). Occurrences of abusive behaviour are often
preceded by stressful social events such as intra-group aggression
(Maestripieri, 1994). Abuse by rodent mothers can be
experimentally induced by the repeated presence of a male
intruder (Nephew and Bridges, 2011). Such abuse then induces
fearful behaviour in offspring, which develop abnormal maternal
behaviour later in life (Carini and Nephew, 2013; Murgatroyd and
Nephew, 2013). In rhesus macaque offspring, experiencing abusive
maternal behaviour has been associated with subsequent increased
responses to threat (Mandalaywala et al., 2014), increased fearful
behaviour (Howell et al., 2014, 2017) and increased contact-seeking
behaviour (McCormack et al., 2006). A cross-fostering experiment
showed that offspring abused by adoptive mothers in early life are
more likely to abuse their own infants, regardless of the abusive
behaviour of the biological mother (Maestripieri, 2005). Although
the consequences of abusive parental behaviour in mammalian
offspring are mostly considered to be maladaptive, potential
adaptive consequences of parental aggression have also been
documented. For example, male stickleback, which guard and tend
eggs and small offspring, chase away their offspring a few days after
hatching in habitats with predators (but not in the absence of
predators), which is thought to prime anti-predator responses in the
young (Huntingford et al., 1994). Similarly, pup ‘shoving’ by
naked mole-rat parents increases in experimentally disturbed
environments, and shoved pups are subsequently more likely to
flee from danger, a possibly adaptive consequence (Stankowich and
Sherman, 2002).

Social interactions with other group members

Parents do not form the only source of social stress in early life, and
other aspects of the social environment can shape the stress response
and affect later phenotype. Social stress can be elicited by increasing
group density, for example, which enhances resource competition.
Brood size enlargements are a common experimental paradigm for
considering downstream effects of the early social competitive
environment. For instance, zebra finches reared in experimentally
enlarged broods have reduced growth and cell-mediated
immunocompetence (Naguib et al., 2004), and brood size is also
commonly associated with nestling glucocorticoid levels across avian
species (e.g. Gil et al., 2008; Vitousek et al., 2017). Increased rearing
density also affects later behaviour in guppies, leading to poorer social
learning skills when locating food and reduced shoaling tendency

(Chapman et al., 2008), both of which are assumed to negatively affect
fitness.

Social abilities can also be affected by reduced opportunities for
social contact during early development. Mice can be reared in
communal nests (in which there are multiple mothers and broods) or
in single-mother nests. In single-mother nests, pups receive less
maternal care and fewer peer-to-peer interactions than in communal
nests; in adulthood, these mice are less resilient to social stress
induced by social instability (see Table 1; Branchi et al., 2013).
Opportunities for social interactions can also be decreased by
reducing the number of carers. For instance, in zebra finches, birds
raised only by a father instead of a pair show a stronger physiological
stress response to isolation in adulthood (Banerjee et al., 2012).
Likewise, deprivation of peers during the juvenile period reduces the
ability of rhesus monkeys to express adequate social behaviours:
deprived monkeys show more submissive and socially anxious
behaviour, and socially incompetent, aggressive behaviour in non-
threatening social situations (Kempes et al., 2008, 2009). Offspring
of cooperatively breeding cichlid fish, N. pulcher, reared only among
their siblings generally have fewer social interactions among peers
during rearing, and in the late juvenile phase and during adulthood
they behave less appropriately in competitive contexts compared
with offspring reared with parents and helpers (Arnold and
Taborsky, 2010; Nyman et al., 2017; Taborsky et al., 2012).

Early life social stress and adaptive plasticity

The long-term effects of early-life social stress on behaviour and
physiology strongly suggest that the phenotype of an individual can
be ‘programmed’ during the earliest stages of development (e.g.
Spencer, 2017; Taborsky et al., 2021). For instance, HPA/HPI axis
programming can be induced by direct exposure to either cortisol or
a glucocorticoid receptor blocker during early life; in the cichlid N.
pulcher, this has been shown to result in differential abilities to
express adequate social behaviour as juveniles (Reyes-Contreras
et al., 2019) and to solve a learning task in adulthood (Reyes-
Contreras and Taborsky, 2022). From an evolutionary perspective,
programming of the social behavioural phenotype in response to
early-life social stress (resulting in, for example, increased social
fearfulness and reduced social competence, social learning skills
and sociability or even the development of abusive behaviour
towards their own offspring) may negatively impact fitness. The
‘cumulative stress hypothesis’ posits that individuals are more likely
to suffer from fitness reduction as adversity accumulates over
life (Nederhof and Schmidt, 2012). However, several related
hypotheses propose that developmental plasticity in response to
stress can be adaptive; for example, by preparing individuals for
future stressful challenges in their environment in a way that
maximises fitness (Hales and Barker, 1992; Gluckman et al., 2005;
Love and Williams, 2008). This kind of adaptive behavioural
adjustment should also be expected to occur in the social domain
where animals undergoing early-life stress show enhanced fitness
when coping with later-life stressors; however, examples relating to
the social domain remain scarce.

Adulthood

Adulthood, often defined in animals by the onset of sexual maturation,
is a critical stage for realising reproductive potential and is therefore
important in determining ultimate individual fitness. Here, we focus on
several well-studied social stressors that are particularly or exclusively
pertinent in adulthood, such as competition with conspecifics for
breeding resources and interactions related to the social hierarchy (see
Fig. 1).
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Competition

Social defeat and territoriality

Much of the early work on social stress during adulthood has been
led by research in laboratory rodent models following the ‘social
defeat’ protocol (Miczek, 1979). This protocol mimics territorial
incursion in natural settings, being based on the establishment of a
territory by a resident individual and the introduction of an intruder
(Miczek et al. 1990). Social defeat induces significant physiological
effects in rodent models, including changes to blood pressure and
body temperature, and activation of the HPA axis, as shown by
increases in plasma levels of adrenocorticotropic hormone (ACTH)
and corticosterone (Bohus et al., 1987; Koolhaas et al., 1997,
Miczek et al., 1990). Research on social defeat in laboratory systems
has also demonstrated how prior experience of social stress can
determine future social behaviour (Kudryavtseva, 1991, 2000),
which is likely to be through the effects of chronic stress on
dysregulation/hyperactivation of the HPA axis (Sapolsky, 2002)
and breakdown of inhibitory feedback mechanisms (Jacobson and
Sapolsky, 1991; Bartolomucci et al., 2003, 2004).

Consequences of territory incursion have been studied in free-
living animal systems, from the non-social to the highly
cooperative. Simulated territorial incursion experiments in wild
birds — for example, using playback of unfamiliar song — have
demonstrated consistent positive effects of perceived intrusion on
baseline glucocorticoid levels (Silverin, 1993; Landys et al., 2010;
Pinxten et al., 2004). The social stress of territorial incursion may
scale up to group level in species with more complex social
environments; for example, simulated incursion in cooperatively
breeding white-browed sparrow weavers (Plocepasser mahali)
results in increased aggressive behaviours from all group members
(Wingfield and Lewis, 1993). Additionally, the stress of between-
group conflict can lead to reduced fitness: groups of N. pulcher
cichlids that are experimentally ‘intruded’ upon appear to reduce
their investment in eggs and suffer reduced offspring survival
(Goncalves and Radford, 2022). Furthermore, between-group
conflict can feed back to intragroup dynamics; for example,
allogrooming (see Glossary) can occur at a higher rate following
conflicts of greater intensity (Schino et al., 1998; Radford, 2008).

Competition during breeding

Competition during breeding is another prominent social stressor
during adulthood. Breeding is linked to peaks in population density
in many non-group-living species, which is combined with an
increase in mate competition and direct agonistic encounters. Early
work in captive small mammal systems found associations between
peaks in density with aggressive interactions and an increase
in adrenocortical activity (Christian, 1950, 1971). Similar
relationships between population density and adrenocortical
activity have since been demonstrated in wild mouse and vole
populations (Boonstra and Boag, 1992; Novikov and Moshkin,
1998; Harper and Austad, 2004); however, no effects of density
(Microtus pennsylvanicus; Edwards et al., 2023) or opposite effects
(density negatively correlates with glucocorticoids) have also been
seen (Microtus ochrogaster; Blondel et al., 2016).

Cues that signal the presence of rivals can also act as social
stressors, generating physiological responses without the need for
physical interaction. In green treefrogs (Hyla cinerea), as in many
anurans, acoustic signalling is a key part of sexual behaviour; in this
species, corticosterone levels are elevated by hearing a chorus
(Burmeister and Wilczynski, 2000), and they are higher in males
that lose vocal contests in natural choruses compared with contest
winners (Leary, 2014), with consequences for subsequent

reproductive success (Leary and Crocker-Buta, 2018). In addition,
agonistic signals spanning multiple sensory modalities stimulate the
production of stress hormones in rival males in several other species
(Dunlap et al., 2013; Schubert et al., 2009; Yang and Wilczynski,
2003).

Once attained, retaining and restricting access to mates can be a
further stressor. Mate guarding is associated with increased
glucocorticoid levels in several primate species (Bergman et al.,
2005; Girard-Buttoz et al., 2014). In invertebrates, mate guarding is
thought to incur costs — for example, Japanese beetles (Popillia
Jjaponica) appear to suffer energetic and thermoregulatory costs
(Saeki et al., 2005); however, in invertebrates, there has been less
focus on hormonal markers of stress. Finally, being constrained to
pair with a poor-quality mate may also be a source of social stress:
female Gouldian finches (Erythrura gouldiae) experimentally
paired with poor-quality mates have 3—4 times higher circulating
corticosterone levels than those observed in females that are paired
with preferred mates (Griffith et al., 2011).

Social hierarchy

Social hierarchies are of particular importance during adulthood
because of their consequences for breeding and survival. Primate
researchers began reporting correlations between biomarkers of
stress, such as glucocorticoid hormones and social rank, in non-
human primates in the 1980s (Eberhart et al., 1983; Sapolsky,
1989), and investigation of hierarchy effects in a broad range of
group-living species has followed, including continuing work
across (but not limited to) primates (reviewed in Abbott et al., 2003;
Simons and Tung, 2019), humans (reviewed in Sherman and Mehta,
2020) and fish (e.g. Ejike and Schreck, 1980; Dara et al., 2022;
Bessa et al., 2021).

Early work matched intuitive expectations that low-ranking
individuals suffer greater effects of social stress related to hierarchy
position (such as hyperactivity of glucocorticoid system, enlarged
adrenals and impaired sensitivity to negative-feedback regulation:
Eberhart et al., 1983, Sapolsky, 1989, 2005). In addition to
glucocorticoids, there has been experimental exploration of effects
of social hierarchy-related stress on a variety of health parameters
(e.g. heart disease in monkeys: Petticrew and Davey Smith, 2012;
wound healing in baboons; Archie et al., 2012). Neurobiological
changes resulting from hierarchy position have also been observed,
such as apical dendritic atrophy of hippocampal CA3 pyramidal
neurons in subordinate tree shrews (Magarifios et al., 1996) and
increased neurogenesis in dominant rats in certain brain regions
(Kozorovitskiy and Gould, 2004). Differences between individuals
in health outcomes as a result of social rank may be linked to tissue-
specific changes in gene regulation, such as in genes related to
inflammation (Tung et al., 2012; Simons and Tung, 2019). For
example, in rhesus macaques, social rank predicts immune cell
proportions, and gene expression response to immune challenge
such that low-ranking females display a stronger inflammatory
response to bacterial challenge (Snyder-Mackler et al., 2016).

We now understand that social stress effects related to hierarchy
position are considerably context dependent, being affected by
factors such as dominance style, hierarchy stability and availability
of social support (Sapolsky, 2005). In general, when hierarchies are
relatively stable, maintained through non-physical intimidation, and
subordinate individuals are exposed to relatively high-frequency
stressors and cannot evade dominant individuals, subordinate
individuals show higher levels of physiological stress (Eberhart
et al.,, 1983; Abbott et al., 2003). Across 22 fish species, for
instance, subordinate individuals had higher basal cortisol than
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dominant fish, and this effect was stronger in small versus large
groups (Bessa et al., 2021). However, when dominant individuals
must repeatedly and aggressively assert their rank, as is the case, for
example, in cooperative breeders and in species with transient
periods of rank instability, dominant individuals show higher levels
of physiological stress (Abbott et al., 2003; Sapolsky, 2005; Creel,
2022). A study of captive rhesus macaques showed that high-ranked
monkeys with more ambiguous status had higher levels of
inflammation than low-ranked monkeys (Vandeleest et al., 2016).
In humans, unstable high status is associated with greater cortisol
reactivity and slower recovery to baseline levels than observed in
those with stable high status (Knight and Mehta, 2017).

Sex differences in the link between social hierarchy and stress
have also been found. A systematic review of stress, social
hierarchies and heart disease in monkeys found that in females, a
more dominant status seems to buffer individuals from the negative
consequences of stress, whereas the reverse is true in males
(Petticrew and Davey Smith, 2012). Likewise, in some cooperative
carnivores, hierarchy effects on basal and stress-induced
glucocorticoid levels are dependent on sex. Basal urinary/faecal
glucocorticoids are positively correlated with rank position in
female dwarf mongooses and African wild dogs, while in males
there is no correlation, or a weaker relationship (Creel, 2022). At the
same time, stress-induced glucocorticoid levels are higher in
dominant female dwarf mongooses, while the reverse is true in
males (subordinate levels exceed those of dominants; Creel, 2022).

Finally, social buffering is also important in mediating the effects
of social stress associated with hierarchical position. A meta-
analysis of hierarchy effects across primates demonstrated that
opportunities for social support significantly influence the
relationship between social rank and stress physiology (Abbott
etal., 2003). Specifically, subordinates experiencing more stressors
have higher relative levels of cortisol, yet this effect is diminished
when they have social support (i.e. when social contact is available)
(Abbott et al., 2003).

Adulthood social stress and adaptive plasticity

Adulthood is generally not considered as sensitive a period for
plasticity as early life (or juvenile development); nevertheless, there
is still scope for adaptive plasticity in response to social stressors in
adulthood. For example, physiological changes induced by social
stress contribute to hierarchy maintenance or establishment, thus
determining the long-term social circumstances of an individual.
This is illustrated in rodents, in which the stress of social defeat
results in substantial, permanent changes in brain neurochemistry
(Blanchard et al., 2001). Laboratory studies of rats have shown that
in dyadic contests, stress experienced by one of the individuals
before their first encounter influences both the rank achieved during
the encounter and the capacity to retain long-term memory for the
achieved hierarchy (Cordero and Sandi, 2007; Timmer and Sandi,
2010). This supports the idea that social stressors can induce
adaptive changes to behaviour through neuronal plasticity. Testing
this in more ecologically relevant systems and non-model
organisms is challenging, but potentially a rich area for further
study (Lemonnier et al., 2022).

Intergenerational effects of social stress

‘Intergenerational social stress’ occurs when the social environment
and experiences of the parental or grandparental generation
influence the phenotype of the offspring (Perez and Lehner,
2019). The earliest studies of intergenerational effects of social
stress date back to the 1960s, when Keeley (1962) reported that the

density (or crowding) of mothers influenced offspring behaviour in
rodents. Social stress in a cross-generational context has been
subsequently studied in relation to parental crowding/density, social
isolation, social confrontation or changing social hierarchy/social
group. A key feature of most studied stressors to date is social
instability, which leads to low predictability of the social
environment (Kaiser and Sachser, 2005). Because of the limited
number of studies, here, we have generalised over different types of
social stressors in our discussion of intergenerational social stress.

Maternal social stress

Most of the intergenerational social stress research to date has
focused on maternal social stress, and has been largely dominated
by studies in humans and captive model species (Kaiser and
Sachser, 2009). The general conclusion from these studies is that
offspring from prenatally socially stressed mothers display
markedly greater ACTH and glucocorticoid responses to physical
(e.g. immune challenge) and psychological (e.g. restraint and
elevated platform exposure) stressors in adulthood compared with
control offspring (Abe et al., 2007; Bosch et al., 2007; Brunton and
Russell, 2011). Yet, for basal glucocorticoid levels, the data are
equivocal: maternal social stress has been reported to cause both
decreased and increased basal glucocorticoid levels in offspring,
and also to have no effects (Babb et al., 2014). Data from social
stress in production animals show similar patterns. For example, in
pigs, offspring from socially stressed mothers display increased and
more prolonged cortisol responses compared with those of controls
(Jarvis et al., 2006), and higher maternal stocking densities in goats
increases offspring fearfulness (Chojnacki et al., 2014). Prenatal
social stress in mothers can be mediated by direct transfer of
glucocorticoids (or other hormones) through the eggs or placenta, as
is known to be the case for other stressors (Groothuis et al., 2019).
However, there may be taxonomical differences, caused by, for
example, differences in placenta structure between species (e.g.
Chojnacki et al., 2014). A putative mechanism by which maternal
(and paternal) social stress may affect offspring phenotypes is
through epigenetic changes (in sperm or ova), such as changes in
DNA methylation, small RNAs or histone modifications. Maternal
social stress has been found to increase glucocorticoid receptor gene
methylation in offspring, resulting in reduced glucocorticoid
receptor density (i.e. higher levels of circulating glucocorticoids)
(e.g. psychosocial stress associated with war-related events:
Mulligan et al., 2012; meta-analysis: Palma-Gudiel et al., 2015;
review in humans: Martin et al., 2022).

There are fewer data on intergenerational social stressors in non-
mammals; in birds, the effects of maternal social stress on offspring
stress physiology and behaviour are inconclusive. For example,
Langen et al. (2019) showed that in Japanese quail (Coturnix
Japonica), maternal group size has no effect on offspring
glucocorticoid response, whereas in gulls (Larus fuscus), parental
density affects offspring social behaviour (Salas et al., 2022).
Furthermore, zebra finch offspring from parents where mothers
experienced pair separation and re-pairing are less behaviourally
responsive to isolation (vocalisations and perch hops: Schweitzer
et al., 2014), and, in quail, maternal social instability increases
offspring emotional reactivity (e.g. increased latency to emerge
from a shelter, stronger reaction to separation: Guibert et al., 2010).
The effects of transgenerational social stress may also be sex
dependent: in chickens, male, but not female, offspring of females
experiencing social isolation in early life show a dampened
glucocorticoid response (Goerlich et al., 2012). In piscine models,
it is well known that parental crowding influences offspring
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phenotype, such as size (e.g. McCormick, 1998, 2006). Yet, the
effects on fish physiological stress responses are relatively less
studied so far: in a rare study, dominance hierarchies in zebrafish
(Danio rerio) mothers led to the larvae of dominant mothers
exhibiting significantly lower baseline cortisol levels and
expression of HPI-related genes than offspring of subordinate
females (Jeffrey and Gilmour, 2016). To our knowledge, data on the
intergenerational effects of social stressors on offspring behaviour
or stress responses in reptiles or amphibians are not available,
although other maternal stressors are known to influence offspring
stress physiology and behaviour through increased corticosterone
deposited in eggs (e.g. Warner et al., 2009; Ensminger et al., 2018;
Polich et al., 2018). In invertebrates, density appears to influence
intergenerational social stress; for example, in locusts, eggs from
solitary animals show higher expression of (cold) stress-related
genes compared with those from gregarious animals (Wang et al.,
2012), yet data on social effects on stress responses in invertebrates
are very scarce.

Paternal social stress

While consequences of maternal social stress are extensively studied,
it is only in the last decade that the potential role of paternal social
stress on offspring stress axis and behaviour has been investigated.
The first observations of effects of the paternal social environment
came from studies of children of survivors of the Second World War
(Rosenheck, 1986). However, these studies cannot often separate
postnatal from prenatal effects. A recent review (Cunningham et al.,
2021; see Table 1) summarises current knowledge on the effects of
paternal social stress on offspring in mammals (humans and rodent
models), and concludes that social stress in the form of paternal
early-life social isolation and paternal social defeat can influence
offspring stress physiology; the effects are mostly seen on male
offspring and tend to depend on the father’s exposure duration (e.g.
Franklin et al., 2010; Dietz et al., 2011; Gapp et al., 2014; Gapp and
Bohacek, 2018). Paternal density was found to influence offspring
fitness in semi-wild rodents, but the underlying mechanisms are not
fully understood (van Cann et al., 2019).

In sum, both maternal and paternal social environment can have
long-lasting carry-over effects on offspring behaviour and
physiology, yet the relative strength of maternal or paternal social
stress on offspring has not been investigated. Paternal chronic stress,
in terms of both social and non-social stressors, influences paternal
sperm microRNAs, and reduces HPA axis responsivity in offspring
(Rodgers et al., 2013). Kong et al. (2021) recently reported how
paternal social instability, which is known to cause sex-specific
effects on anxiety in mice, leads to systematic changes in DNA
methylation of four key genes (Bdnf, Adora, GATA and Itpr3) in
paternal sperm, in the blastocyst and in offspring hypothalamus.
These genes are known to be linked to stress and anxiety.

Intergenerational social stress and adaptive plasticity

A key question arising from the studies discussed above is whether
intergenerational plasticity in stress responses can increase offspring
fitness (e.g. predictive-adaptive response hypothesis: Gluckman
et al.,, 2005). Despite much interest, conclusive evidence for
adaptive effects remains scant. A series of elegant studies in guinea
pigs and in wild cavies (reviewed in Kaiser and Sachser, 2009;
Siegeler et al., 2011, 2017; Sangenstedt et al., 2018) demonstrated
that social instability during pregnancy causes behavioural and
neuroendocrine masculinisation in daughters and a less pronounced
expression of male-typical traits in sons. It was further hypothesised
that such behavioural effects of maternal social stress may be

adaptive: social instability is likely to occur in high-density
populations, in which highly competitive (masculinised) females
would cope better, whereas in the same high-density populations,
less-competitive males that could delay reproduction might achieve
higher success in the long run (match-mismatch hypothesis; see
Glossary). The hypothesis was tested for both female and male
offspring (Siegeler et al., 2017; Sangenstedt et al., 2018), and the
results suggest that offspring have lower cortisol levels and higher
weight gain in social environments matching their maternal social
environment. However, the design of this experiment was not fully
factorial, as offspring from unstable and stable maternal
environments were only reared in stable postnatal environments.
Therefore, we cannot exclude the potential for a ‘silver spoon’
effect, which occurs when offspring of mothers in good condition
(those coming from a stable maternal environment) have fitness
benefits over those of offspring of mothers in poor condition.
Furthermore, the generality of such effects in different taxa needs to
be further studied.

A framework for future research

Our Review highlights several challenges that have thus far limited
our knowledge and interpretations of social stressors and their
effects throughout the lifetime. Here, we describe these challenges
in more detail and, where possible, suggest a course for future work
to address them.

Despite the rich history of studying the effects of environmental
stressors across a wide variety of species, defining ‘stress’ itself has
been called ‘a futile exercise’ (Levine, 2005) because of
inconsistencies in terminology (e.g. McEwen, 2005; Koolhaas
etal., 2011), clashing frameworks (e.g. Day, 2005; Kiiltz, 2020) and
an over-reliance on taxon-specific physiological markers that are not
synonymous with ‘stress’, i.e. the glucocorticoid hormones
(MacDougall-Shackleton et al., 2019). Given the prevalence of
social stressors across taxa, these challenges arise when trying to find
a common framework applicable across groups, particularly when
linking vertebrates with invertebrates. Definitions and frameworks
that enable us to draw comparisons across a broader range of
taxonomic groups are necessary (though difficult to achieve).

Data from a broad range of social and non-social species (i.e.
species with different life histories) are needed to understand the full
complexity of the effects of social stressors. Such data could also
provide the basis for formal comparative analyses on the evolution
of the stress response system across taxa, and link this to levels of
social organisation. Although data from humans and captive model
species are abundant, and can inform us on the mechanistic
underpinnings of social stress, species that exhibit different levels
of sociality should be explored (e.g. group living, biparental
polygamous or biparental, solitary). Laboratory rodent data are also
generally biased towards males, but there is evidence for sex-
specific effects (e.g. Beery and Kaufer, 2015). However, we
acknowledge that a taxonomically diverse approach comes with the
difficulty of identifying species-specific stressors and determining
responses to social stressors; the physiological responses across
taxa, especially when comparing vertebrates and invertebrates,
differ hugely (see above).

Even within the field of vertebrate stressors, more work in natural
systems is needed, and extrapolating results from model organisms
to the natural world should be done cautiously. Importantly,
laboratory models often refer to chronic stress protocols, whereas in
the natural world, the existence of similar chronic stress has been
debated (Creel et al., 2013; Boonstra, 2013b). Furthermore, under
laboratory conditions, variation in the strength or severity of
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stressors has been often ignored: available data from model
organisms refer almost exclusively to the effect of strong social
stressors, and the severity of social stress is rarely considered as a
variable (Zelena et al., 1999). Recent studies have included ‘mild’
stress protocols to increase the variability, yet in natural populations
a wide range of social stressors exists (e.g. the level of competition,
harassment or parental care quality). Therefore, in future studies,
experimental designs that vary the severity, temporal pattern (e.g.
acute versus chronic) and type of social stress should be considered.
Finally, the behavioural paradigms used in laboratory models (e.g.
the social defeat model of territorial incursion) are potentially
restrictive and limited in their ecological validity. We need to
develop more ecologically relevant protocols and perform critical
evaluation of the currently available evidence.

There are multiple areas where ecological studies could be
developed based on evidence from laboratory studies. In wild
populations, studies have largely focused on describing associations
between different social stressors and the HPA axis. However, to
understand the fitness consequences, eco-evolutionary research
needs to take a broader view of different physiological pathways
associated with social stressors (Lemonnier et al., 2022).

There are three ways in which a broader perspective on the links
between social stress and animal physiology could be achieved. First,
HPA axis research should be further expanded from simple measures
of circulating hormones to also consider binding globulins and
receptors, and their possible epigenetic modifications, which could
generate long-term effects of stressors (e.g. Liu et al., 1997; Weaver
etal., 2004). Second, the function of the HPA/HPI stress response and
that of the fast-acting SAM system seem to be intricately connected;
thus, the two stress response systems should be considered
concurrently (Box 1; Bauer et al., 2002). The SAM system has
rarely been considered in the context of social stress, especially in
studies of natural populations. Furthermore, the HPA/I axis and SAM
systems also interact with other endocrine and neurohormone systems,
such as nonapeptide pathways (Smith and Vale, 2022), and therefore
understanding the systems-level interactions is crucial. The ongoing
development of omics approaches is a potential way to address such
questions. Third, we need to study a wider range of physiological,
neurological and behavioural mechanisms in wild populations. Such
mechanisms have been thoroughly studied in model organisms, where
it has been shown how cellular metabolism, oxidative stress, cellular
senescence, immunity, brain function and the regulation of biological
rhythms are key physiological responses affected by social stress,
sometimes independently of the HPA axis response (Lemonnier et al.,
2022). Broadening our approach in this way would help us to better
understand the pathways mediating the effects of social stress and
buffering on individual health and population demography. Although
several of these measurements are challenging in wild populations for
practical or ethical reasons, technical advancements in bio-logger
technologies for behavioural responses now provide new frontiers for
behavioural and physiological research in the field of social stress.

Additionally, both laboratory and wild population studies tend to
focus on measuring mean values of responses to social (or non-social)
stressors; individual variation and reaction norm (see Glossary)
approaches (e.g. Hau et al., 2016) have rarely been applied. In other
fields of stress physiology, the flexibility of the endocrine axes is
increasingly being addressed (Lemonnier et al., 2022), and it provides
important knowledge regarding adaptations. Such an approach would
be a fruitful avenue for social stress research.

The predictability or reliability of the social environment as a cue
may differ across taxa; this will influence the adaptive value of
social cues and the evolution of responses to social stressors.

Moreover, data on these important factors in natural environments
are scarce (Taborsky et al., 2021). Although the lack of data on
predictability also exists for many non-social environmental factors,
obtaining such data in natural systems in the social domain is
inherently challenging: an individual’s responses to social stressors
depend on the behaviour of other individuals in a society, which will
be to some degree unpredictable, and which can either enhance or
buffer stress responses.

The outcomes of social stressors or social buffering, even within
species, depend on environmental context, social organisation and
the characteristics of the group or individual (e.g. novel or familiar
conspecifics; Beery and Kaufer, 2015). Thus, thorough and complex
experimental designs are needed to tease out their effects.
Furthermore, the field would benefit from better integration with
ecology to aid us in understanding the outcomes of social stress on
populations and their demography or growth trajectories (for
example, through theoretical modelling of social stress). Previous
studies have considered animal intergroup conflicts, dating back to
the classical hawk—dove models (Maynard Smith and Price, 1973),
but the models mainly refer to social conflicts, and the effects of
social buffering are less studied (reviewed in Rusch and Gavrilets,
2020). Density-dependent negative feedback (independent of
resource availability or the presence of predators; e.g. Boonstra
et al., 1998; Edeline et al., 2010; Creel et al., 2013; Mugabo et al.,
2017) or positive feedback (Dantzer et al., 2013) through effects on
features such as fecundity and body size have been widely studied
with population models including social behaviour (e.g. Grimm
etal., 2003; Zeigler and Walters, 2014), but the effects of other types
of social stressors at the population level have been less considered.

Conclusions

Here, we have presented an overview of social stress research,
giving both a historical perspective and consideration of what we
know about social stress throughout the life. This Review has
highlighted how the complex social environment can both induce
and buffer the stress responses of individuals across multiple time
scales: from early life, at adulthood and across generations. There is
a rich literature base of examples of such effects of social stress on
the stress response itself, as well as on other aspects of phenotype
and behaviour (such as social behaviour, learning and anti-predator
responses); these effects are underlain by diverse physiological
mechanisms and have potential adaptive explanations.

When considering the field of social stress research, it is apparent
that a number of outstanding issues remain. In particular, in the
future it will be important to more fully integrate studies from
laboratory models with field data. We hope that the framework
presented above will inform future studies that aim to address these
issues. In addition, the field will benefit from new technological
advances to measure stress, as well as from developing new
theoretical models. Stress responses can allow animals to adapt to
rapidly changing environments, and the social environment is a key
mediator of these responses in animals across varying degrees of
social complexity. Thus, we see this area as ripe for future study and
believe that it will benefit from strong integration of experimental
biology with eco-evolutionary field and modelling studies.
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