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A B S T R A C T   

Remnant West African forest patches provide crucial ecosystem functions and services while contributing to 
sustaining the livelihoods of vast numbers of people. The vast majority lie outside of protected areas, although 
relatively few are managed as sacred forests, which limits their access and use. This lack of protection, together 
with a growing demand for arable land and forest resources, have accentuated their fragmentation, degradation, 
and deforestation. There is therefore an urgent need to generate knowledge on their social-ecological charac
teristics and change pressures to support their conservation. This study investigates what are i) the main bio
physical and social-ecological characteristics of remnant forest patches, and ii) the potential change pressures 
and drivers. Within this scope, we apply archetype analysis to discern processes affecting remnant forest patches. 
Biophysical and socio-ecological indicators were selected from a published dataset via expert consultation, and 
nine archetypes were developed by applying a cluster analysis. Evaluating the results in relation to ecoregions 
and landscape features using high resolution imagery, we identify common underlying social-ecological change 
pressures and characteristics. The most common archetype (2) is characterized by being close to protected areas 
and having a low average annual precipitation and cluster along the northern fringe of the study area. The second 
most common archetype (5) is characterized by lying in highly disturbed landscapes, having undergone biomass 
losses, and widely distributed throughout central and western Nigeria. Patches of archetype 8 found predomi
nantly in mangrove and swamp forests, exhibit positive above-ground biomass changes and greening trends; we 
propose that these vegetation changes could benefit conservation measures and carbon sequestration programs. 
In contrast, archetype 10 patches show both forest and biomass losses and gains and are often encompass 
fragmented forests in urban/arable landscapes. Identifying such common patterns of anthropogenic and 
ecological change provides a means of prioritizing regionalized strategies for their conservation and sustainable 
use.   

1. Introduction 

Remnant West African forest patches are home to a wealth of 
biodiversity and provide crucial ecosystem functions and services with 
implications from local to global scales; simultaneously they contribute 
to sustaining the livelihoods of a great number of people across a vast 
area (Fischer et al., 2021; Laurance & Bierregaard, 1997; Neuensch
wander et al., 2015). Although relatively few are managed as sacred 
forests, which severely restricts their access and use and thereby benefits 
biodiversity and ecosystem functioning, many such patches lie outside 
of protected areas. Here, they are embedded in arable or semi-urban 
landscape mosaics where they are subject to a range of degradation 
pressures, chief among them being widespread deforestation and forest 

fragmentation (Neuenschwander & Adomou, 2017; Wingate, Akinyemi, 
Iheaturu, & Speranza, 2022). 

Forests set in arable or semi-urban landscape mosaics are increas
ingly conceived as social-ecological systems (SESs), with various socio- 
cultural, institutional, economic, and ecological factors as well as their 
interactions, determining their characteristics (Fischer, 2018). Thus, 
understanding forests and their outcomes requires an integrative 
social-ecological approach (Vogt, 2020). This enables accounting for the 
many factors affecting forest outcomes in research, and in their gover
nance, management, and sustainable use (Ostrom, 2009). While these 
numerous factors are acknowledged in social-ecological frameworks 
(Ostrom, 2009), an overview of generalizable factors and factor con
stellations driving forest characteristics and outcomes is necessary. This 
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study therefore applies archetype analysis to pinpoint such salient fac
tors to gain a better understanding of west African remnant forest 
patches as social-ecological systems. 

Archetypes are often used in sustainability research to represent 
models of social–ecological interactions. They enable a better under
standing of processes and factors that determine the sustainability of 
SESs and the underpinning recurrent patterns of biophysical variables 
and social-ecological processes, across distinct spatial locations and time 
scales (Oberlack et al., 2019). These include the drivers and outcomes 
pertaining to livelihoods and land-use (Sietz et al., 2019), but also to 
describe biophysical disturbance processes (Balling et al., 2021; Eise
nack et al., 2019). For example, “land system archetypes” have been 
used to represent land-use intensity, environmental conditions, and so
cioeconomic factors that are globally common to all ecosystems 
(Václavík et al., 2013); while “Archetypes of tropical fire-related forest 
disturbances” were proposed to study fire disturbances (Balling et al., 
2021). Thus, results of archetype analysis can reveal diverse sequences 
of underlying social-ecological characteristics and change pressures. 
Subsequently, such results can facilitate the selection of representative 
sample sites for empirical analysis or, help inform studies on land 
management (Karrasch et al., 2019; Sietz et al., 2019; Adenle & Ifejika 
Speranza, 2020). 

This study focuses on the remnant forest patches in the West African 
countries of Togo, Benin, Nigeria, and Cameroon, lying outside of pro
tected areas and spanning the Guineo-Congolian forest and the Guinea 
Savannah biomes (Fig. 1). 

Here, agricultural expansion and urbanization, a raising population 
as well as increased resource extraction pressures, together with vari
able or non-existent conservation strategies, are resulting in wide-spread 
forest losses and accelerating forest fragmentation, while the remaining 
fragments are being increasingly degraded (R. Fischer et al., 2021; 
Poorter et al., 2004). Considering these changes, a knowledge of the 
location, characteristics and types of disturbances and changes remnant 
forest patches are subject to, is key to furthering our understanding of 
their response to environmental change and thereby better support their 
conservation and sustainable use (Wingate, Akinyemi, Iheaturu, & 
Speranza, 2022). 

For example, in the Dahomey Gap, which spans the eastern border of 
Ghana across to Benin, humid forests remain restricted to small patches 

containing a rich floral and faunal species diversity originating from 
both the Congo and Guinea block (Robbins, 1978; Sinsin et al., 2010). In 
the Benin part of this region, these remnant forest patches mostly 
comprise about 1000 sacred forest groves of roughly 1 ha, which local 
inhabitants have maintained and limited the use and access over gen
erations (Neuenschwander et al., 2015). Remnant forest patches cover 
only a small fraction of the land surface (in the case of Benin, only 1%). 
They often lie outside of state-protected areas and are found in densely 
populated, agricultural, and peri-urban landscapes, with >200 people 
per km2 (Neuenschwander et al., 2015). Despite this situation, they 
generally harbour a large proportion of endangered species and a high 
species richness (Adomoui et al., 2010; Neuenschwander et al., 2011). 
Thus, knowing the location, condition, and pressures, which these 
remnant forest patches are subject to, can contribute toward designing 
better conservation strategies (Neuenschwander & Adomou, 2017). 
Lastly, due to their rapid rate of change, there is therefore an urgent 
need to implement strategies that maintain ecosystem functions and 
services and promote their sustainable use (Wingate, Akinyemi, Ihea
turu, & Speranza, 2022). 

Conversion of natural land cover leads to fragmentation (Fahrig, 
2003), which also impacts biodiversity similarly to habitat loss. Often, 
habitat fragments have smaller species populations (Connor et al., 
2000), which are isolated from populations in neighbouring fragments 
(Fahrig, 2003; Laurance et al., 2014; Wilson & MacArthur, 1967). The 
increased edge effect results in the loss of specialized species (Laurance 
et al., 2011) and an increase in generalist species (Gascon et al., 2000). 
Together, these impacts generally change the ecosystem functioning of 
fragments (Cardinale et al., 2006) and as a result, the ecosystem services 
they provide (Cardinale et al., 2012). 

To address these issues, we propose creating West African remnant 
forest patch archetypes; this approach is expected to provide a basis for a 
better understanding of the ecological and anthropogenic change pro
cesses they are subject to, while concurrently allowing conservation 
priority regions to be defined, and thereby providing valuable infor
mation for their conservation and sustainable use. We define forest 
patch archetypes (FPAs) as presenting a given combination of social- 
ecological and environmental indicators and occurring recurrently 
across the study area. In mapping FPAs, our overarching aims are to 
identify both their biophysical and social-ecological characteristics, as 

Fig. 1. The study area encompasses the Guineo-Congolian Guinea Savannah biomes in Togo, Benin, Nigeria and Cameroon; forest patches sampled for this study lie 
outside of protected areas; European Space Agency World Cover 2021 map is set as background ((Zanaga et al., 2022). 
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well as describe key factors driving changes in their land-use and land 
cover. Thus, the specific objectives are to i) develop FPAs reflecting (dis) 
similarities between indicators characterising forest patches; ii) describe 
FPAs according to predominant indicators; and iii) evaluate FPAs in the 
context of their geographical situation, including in which biome it is 
found, whether it is close to an urban area, or if it is found at high 
elevation or close to a water body, although we omit an analysis of 
specific adjacent land-uses. We leverage a recently published inventory 
of forest patches which provides a range of indicators describing their 
dynamics (Wingate, Akinyemi, Iheaturu, & Speranza, 2022). A sample 
of these are selected and evaluated using visual interpretation of 
high-resolution aerial imagery. Lastly, we discuss the ecological and 
anthropogenic change processes the FPAs are subject to and their rela
tion to the study area ecoregions (Dinerstein et al., 2017). 

2. Methodology 

2.1. Data 

A total of 7784 forest patches ranging from 1 to 10 km2 were sampled 
at 30 m spatial resolution across the study area (Wingate, Akinyemi, 
Iheaturu, & Speranza, 2022). Forest is defined as having a tree cover ≥
to 30%, and a tree height of ≥5 m (Hansen et al., 2020). A panel of 8 
experts selected 20 indicator variables deemed pertinent as input to 
develop forest patch archetypes (Table 1); these variables were thought 
by the panel to be the most representative biophysical metrics available. 

2.1.1. Social-ecological indicators 
Population growth and density are associated with deforestation, for 

instance, through agricultural expansion (Ngwira & Watanabe, 2019), 
which occurs due to local and external demands on forest resources 
(Geist & Lambin, 2002). Population data in this study is derived from the 
Worldpop dataset, which provides global high-resolution, up-to-date 
data on human population distributions (Linard et al., 2012). Area de
scribes the mapped forest patch areal extent in km2; the size of a forest 
patch may affect differently the capacity of the patch to provide 
ecosystem services, for instance, smaller forest patches may be more 
susceptible to more fragmentation and edge effects (R. Fischer et al., 
2021; Hansen et al., 2020). 

2.1.2. Proximity indicators 
Distance to protected areas is included as an indicator of how pro

tected the landscape surrounding the patch is, and we assume that a 
landscape with few protected areas could benefit from more formal 
protection, while protected area benefit species conservation by 
providing corridors and refuges (Brennan et al., 2022; Donaldson et al., 
2021; Saura et al., 2018; Ward et al., 2020). It is the distance (m) to the 
nearest protected area, as mapped by the World Database on Protected 
Areas (WDPA) (UNEP-WCMC). 

Similarly, roads act as barriers to species movement and fragment 
forests (Kleinschroth et al., 2019; Marcantonio et al., 2013). Proximity 
to roads can be an indicator of deforestation (Akinyemi & Ifejika Sper
anza, 2022; Kleinschroth et al., 2019; V. Wingate et al., 2016). Distance 
to roads is the distance (m) to the nearest road, as mapped by the Global 
Roads Open Access Data Set, Version 1 (gROADSv1) (Ubukawa et al., 
2014). Settlements may be indicators of anthropogenic disturbances 
(Cotillon & Tappan, 2016), hence, Distance to settlements was computed 
from the World Settlement Footprint (WSF) 2015, which is a 10 m res
olution dataset mapping the extent of human settlements globally 
(Marconcini et al., 2020). The global Human Modification dataset (gHM) 
provides a cumulative measure of human modification of terrestrial 
lands globally at 1 km2 resolution (Kennedy et al. 2019, 2020). 

2.1.3. Change metrics 
Tree cover gain or loss indicates improvements or degradation of 

forest patches. Tree cover loss/gain refers to the areal extent of loss and 
gain as computed in the Hansen Global Forest Change v1.9 (2000–2021) 
dataset (Hansen et al., 2013). Theil-Sen refers to trend statistics 
computed using the Theil-Sen slope which shows whether canopy 
greenness of individual forest patches is increasing or decreasing, and is 
applied to a Landsat 5, 7 and 8 harmonized NDVI time-series, for which 
growing season maximum NDVI images were computed by temporal 
compositing (Wingate, Akinyemi, Iheaturu, & Speranza, 2022). 

Changes in forest biomass are key contributors to the global carbon 
balance (Houghton, 2005). Biomass Change comprises the difference in 
AGB measured in 2010 and 2018 as measured by Santoro and Cartus 
(2021) (Santoro & Cartus, 2021). This dataset was calculated as the 
difference between estimates of forest above-ground biomass for the 
years 2018 and 2010, which were derived from Copernicus Sentinel-1 
mission, Envisat’s Advanced Synthetic Aperture Radar instrument and 
the Japan Aerospace Exploration Agency Advanced Land Observing 
Satellite (ALOS-1 and ALOS-2). The product consists of four AGB 100m 
spatial resolution maps for the periods 2010, 2017, 2018 and 2020 
(Santoro & Cartus, 2021). 

2.1.4. Biophysical variables 
Forest patches are characterised by a variable forest structure, 

resulting from their diverse management strategies and is therefore key 
to their characterisation (Neuenschwander & Adomou, 2017). Remote 
sensing-derived biophysical metrics known to be indicators of forest 
structure and condition were included; we use the Enhanced Vegetation 
Index (EVI) 2021, which refers to the mean annual EVI value derived 
from the MODIS MYD13A1 product (https://lpdaac.usgs.gov). Leaf Area 
Index (LAI) 2021 refers to the mean LAI derived from the GCOM-C/SGLI 
L3 Leaf Area Index (V3), which is the sum of the one-sided green leaf 
area per unit ground area (Honda et al., 2006). 

Environmental conditions such as precipitation and elevation are 
controls of forest type, hence, precipitation climatologies and elevation 
were included (Cotillon & Tappan, 2016). Precipitation mean refers to the 
mean annual rainfall for the period from 1981 to 2020, while the Pre
cipitation anomaly refers to the difference in mean rainfall for 2021 
relative to the average 1981–2020 period; the anomaly was computed 
for 2021 since patches were mapped then, and anomalies are expect to 
affect map results. The data is derived from the Climate Hazards Group 
InfraRed Precipitation with Station data (CHIRPS), which is an over 
30-year global rainfall dataset, incorporating 0.05◦ resolution satellite 

Table 1 
The indicators used in the archetype analysis, and available for each forest 
patch.   

Abbreviation Description 

1 Area Area of the forest patch in m2 

2 Biomass_18 Average AGB Mg ha− 1 in 2018 (Santoro & Cartus, 2021) 
3 BiomassDif Difference in AGB Mg ha-1 2018–2010 (Santoro & Cartus, 

2021) 
4 D_IUCN Distance (m) to a protected area (UNEP-WCMC, 2019) 
5 D_roads Distance (m) to roads (Warszawski et al., 2017) 
6 D_settle Distance (m) to settlements (Marconcini et al., 2020) 
7 D_water Distance (m) to water JRC Global Surface Water Mapping 

Layers, v1.4 (Pekel et al., 2016) 
8 Elevation Elevation in meters above sea level (m.a.s.l) (Farr et al., 2007) 
9 Gain_area Total area of forest gain (Hansen et al., 2013) 
10 gHM Global Human Modification (gHM) (C. M. Kennedy et al., 

2019) 
11 LAI_2021 Leaf Area Index (V3) (Kobayashi et al., n.d.). 
12 Loss_area Total area of forest loss (Hansen et al., 2013) 
13 MannKendal Mann-Kendall trend statistic (Wingate, Akinyemi, Iheaturu, & 

Speranza, 2022) 
14 population WorldPop (Linard et al., 2012) 
15 Precp_anom Precipitation anomaly climatology CHIRPS (Funk et al., 2015) 
16 Precp_mean CHIRPS (Funk et al., 2015) 
17 Precp_sum CHIRPS (Funk et al., 2015) 
18 TheilSen Theil-Sen trend statistic (Wingate, Akinyemi, Iheaturu, & 

Speranza, 2022) 
19 treecover Average percentage tree cover (Hansen et al., 2013) 
20 treeheight Average tree height GEDI (Potapov et al., 2021a)  
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imagery with in-situ station data, resulting in a gridded rainfall 
time-series for trend analysis and seasonal drought monitoring (Dinku 
et al., 2018). Elevation (meter above sea level) is derived from the Shuttle 
Radar Topography Mission (SRTM) (Farr et al., 2007); this dataset 
provides elevation models on a near-global scale and is provided by 
NASA JPL at a resolution of approximately 30 m. Tree cover mean (%) 
refers to the average tree cover derived from the Hansen dataset (Hansen 
et al., 2013). Tree height mean (m) refers to the mean tree height for each 
forest patch as derived from the most recent high-resolution Global 
Ecosystem Dynamics Investigation (GEDI) dataset (Potapov et al., 
2021b). 

2.2. Analysis 

To develop a map of forest patch archetypes the following workflow 
is applied (Fig. 2). The data were first scaled with “centering” using the 
scale function in R, to allow for comparing different datasets measured 
in distinct ways; here, the normalizing is undertaken using the mean 
value and standard deviation values (Peres-Neto & Jackson, 2001; Scott, 
1990). To identify the optimal number of clusters that best characterise 
the resulting dataset, we apply the “Total Within sum of Squares” 
method which revealed an optimal number of 10 clusters (Gordon & 
Henderson, 1977; Schubert & Rousseeuw, 2019). We then applied the 
Partitioning Around Medoids (PAM) algorithm, based on the k-mean 
clustering algorithm (Schubert & Rousseeuw, 2019) using a vector of 
integer indices specifying initial medoids. This unsupervised, 
data-driven method was selected as it enables effective clustering of 
large multidimensional datasets with no need to define expert rules or 
pre-defined classification thresholds. The resulting clusters were then 
transferred to geographical space, with each forest patch being assigned 
to a given cluster. 

Lastly, we describe and characterise the archetypes, by identifying 

the most prominent variables in each cluster, namely the variables with 
the highest or lowest medoid values. These variables are taken to 
comprise the primary predictors of each archetype. Specifically, the 
weights of each variable are described by the medoid value, and this in 
turn indicates the similarity or dissimilarity to the other archetypes. 
Correspondingly, to further facilitate the interpretation of the arche
types, we reduce the number of archetypes by qualitative merging based 
on expert opinion those which have a) specific variables in common, and 
b) which have variables which would logically combine, or which are 
associated with one another in the literature; for example, low tree 
height and low mean annual precipitation are associated with each other 
in tropical latitudes (Shackleton and Scholes 2011). 

3. Results 

3.1. Archetype evaluation 

The resulting map of remnant West African forest patch archetypes 
shows geographically grouped patterns, based on social-ecological in
dicators (Fig. 3). Their geographical location allows for identifying 
common underlying anthropogenic pressures and ecological character
istics, in relation to the major ecoregions (Dinerstein et al., 2017; Olson 
et al., 2001). For example, archetype 2 clusters along the northern 
boundary of the study area, which is sub-humid and consists mainly of 
savannah vegetation; in contrast, archetype 9 clusters along the Nigerian 
coastline, which is humid and comprises mostly mangrove forest. 

The 10 archetypes are characterized by a given combination of in
dicators (variables); for instance, we find that in cluster 10 (Fig. 4), the 
variables with the highest and lowest medoid values –therefore the 
variables defining the archetype – are “Gain_area”, and “LAI_2021”, 
respectively. Thus, forest patches grouped into this archetype exhibit a 
particular combination of especially high or low values of these vari
ables, relative to other archetypes. 

To assess the performance of the archetype classification, we 
randomly sampled a single forest patch from each archetype and visu
ally evaluated it in relation to the predominant landscape features and 
adjacent forest patches using Bing Aerial imagery (Bing Maps, 2021). 
Specifically, we assessed the geographical location, relation to other 
archetype clusters, vegetation type, and visible anthropogenic features, 
such as proximity to urban areas. Concurrently, we evaluated the values 
of the defining predictor variables (i.e., if the variable AGB was prom
inent, the value for the said forest fragment is reported). Reporting the 
indicator values observed for each forest patch was found to help with 
defining the archetypes and discussing their implications. The results are 
presented in the 10 plates (A-J) of Fig. 5. 

3.2. Archetype description 

Archetype 1 – Found in sparsely modified landscapes distant from 
protected areas; with 960 individual forest patches (12%), this arche
type comprises fragments which are distant from any protected area 
(High D_IUCN), and far from anthropogenic land-use/land cover dis
turbances (Low gHM), and with increasing greenness (high Theil-Sen 
trend statistic). Geographically, the patches cluster mainly along the 
north-eastern part of Cameroon (Fig. 3). Fig. 5 Plate A (Cameroon, 
Adamaoua) shows a densely wooded, riparian or gallery forest patch, 
bordering a river; very little human modification is apparent in the 
landscape (few small-scale arable fields), in accordance with a low gHM 
(0.2), and it is 60 km from a protected area, and exhibits a positive 
greening trend. 

To evaluate the greening trend further, Fig. 6A plots the average 
Theil-Sen trend statistic value for each archetype; here we find that ar
chetypes 7 and 9 also exhibit elevated greening trend statistic values. 
Fig. 6B then plots these values for each ecoregion; it is apparent from the 
results that the Central African mangrove and Niger Delta swamp forest 
(Fig. 6C) exhibit the most pronounced greening trends. 

Fig. 2. Workflow diagram highlighting the main processing steps taken to 
archetype forest patches. 
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Archetype 2 – Savanah landscapes close to protected areas with low 
rainfall; with 1342 mapped forest fragments (17%), this archetype is the 
most common throughout the study area. It is characterized by patches 
being primarily close to protected areas (Low D_IUCN) and having a low 
average annual precipitation (Low Precp_mean), although we find it to 
be highly variable due to the spatially widespread nature of the 

archetype. Geographically, the patches cluster mainly along the north
ern fringe of the study area (Fig. 3); this region is also expected to have a 
lower precipitation mean (Maidment et al., 2014). The forest patch in 
Fig. 5 Plate B (Nigeria, Ekiti) is only 18 km from a protected area (Low 
D_IUCN), and its average annual precipitation is 1475 mm (Low Pre
cp_mean). Human influence is mainly in the form of small-scale 

Fig. 3. Remnant forest patch archetypes, their main characteristics and geographical distribution; the map serves to highlight patches with spatially grouped patterns 
of social-ecological interactions. 

Fig. 4. Identifying the most prominent variables in each cluster (archetype), namely the variables with the highest medoid value. Here for example, cluster 10 has an 
especially high medoid value for the variable “Gain_area”, and as such, this variable serves to characterise the archetype. 
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agriculture and is apparent across the landscape surrounding the forest 
patch, which itself appears to be heavily utilized and degraded, and is in 
fact classified as degraded forest (Cotillon & Tappan, 2016). The patch is 
in a mosaic arable and wooded savannah landscape, bordering a lake. 
Medoid values for most indicators of this archetype (except D_water and 
LAI_2021) are negative, signifying that the actual values of each indi
cator are relatively low compared to the remaining patches. Since forest 
patches of this archetype are most often found on the northern fringes of 
the study area, which are drier, it is expected that they exhibit lower 
values for biophysical indicators (i.e., NDVI) and climatological rainfall 
measures (i.e., mean precipitation). 

Archetype 3 – Remote from settlements and low human landscape 
modification; with 834 fragments (11%), this archetype encompasses 
forest patches which are mainly characterized as being distant from 
settlements (High D_settle) and concurrently exhibiting a low human 
disturbance (Low gHM). The patches cluster in a geographically similar 
way to archetype 1, in the north-eastern portion of Cameroon, but also in 
the central-eastern part of the country (Fig. 3). Fig. 5 Plate C (Cameroon, 
Adamaoua) shows a forest fragment comprising a gallery forest, adja
cent to open woodland savannah with no signs of human land-use except 
potential burn scars. The closest settlement is over 22 km away (High 
D_settle), and the gHM is 0.1 (Low gGM). 

Archetypes 4 and 6 – Relatively high elevations in the sub-humid 
Guinea savannah; comprising 602 fragments (8%), patches of this 
archetype are relatively few; they are characterized as being found in 
highlands (High_elevation) and exhibiting a low average tree height 
(Low_treeheight). Geographically, they are located along the border 
between Cameroon and Nigeria (Fig. 3). The forest patch in Fig. 5 Plate 
D (Cameroon, Adamaoua) reveal a sparely forested, open woodland 
savannah valley forest patch in a montane area, and the patch appears 
surrounded by small-scale arable fields and is highly fragmented, sug
gesting it is exploited for timber or charcoal. In addition, the region has 
clear signs of arable farming, roads, and villages. The fragment has an 
elevation of 1492 m above sea level (a.s.l) (High_elevation), and its 
average tree height of 8 m (Low_treeheight). 

Archetype 6, with 980 mapped patches (13%), is characterized as 
being found in the highlands (High_elevation) and experiencing pro
nounced rainfall anomalies (High Precp_anom). Geographically, the 

forest fragments are found in the north-western part of Cameroon 
(Fig. 3). The fragment in Fig. 5 Plate F (Cameroon, Ouest) consists of 
gallery/valley forests in a sparely forested montane landscape, 
comprising mainly open savannah and gallery forest with little or no 
human activity. The elevation is 1748 m a.s.l, (High_elevation), and the 
rainfall anomaly is − 20 mm (High Precp_anom). 

Archetypes 4 and 6 were merged as they have in common the vari
able “elevation”; in addition, the variables “high precipitation anoma
lies” (archetype 4) and “low tree height” (archetype 6) are indicators 
which can readily be associated with one another (Shackleton and 
Scholes 2011). Moreover, both archetypes are geographically adjacent. 
Finally, a visual examination of high-resolution aerial imagery suggests 
they both comprise comparable gallery or riparian forests in open 
savannah or arable landscapes. 

Archetype 5 – Highly human-modified landscapes with biomass 
losses; harbouring 1180 forest patches (15%), this archetype is the 
second most common and is widespread throughout the study area. This 
archetype is characterized by being found in highly disturbed land
scapes (High_gHM), having undergone changes in AGB in the period 
2010–2018 (High_BiomassDiff), and being in low-lying areas (Low_
elevation). Geographically, they are widely distributed throughout 
central and western Nigeria (Fig. 3). Fig. 5 Plate E (Nigeria, Osun) re
veals a fragmented and sparely forested patch, in a highly human- 
modified arable landscape with numerous villages and roads, and near 
a major urban centre. It has a gHM index value of 0.7 (High_gHM), and a 
negative BiomassDiff value of − 46 Mg ha− 1 (High_BiomassDiff) while its 
elevation is 310 m (a.s.l) (Low_elevation). Such values may be expected 
as we anticipate that highly human-modified landscapes could result in 
forest biomass losses. 

Archetype 7 – Lowland, high biomass, humid forest landscapes; 
consisting of 897 forest fragments (12%), this archetype is characterized 
as having a high AGB (High abg_2010), high average and cumulative 
precipitation (High Precp_mean, high Prcep_sum), and a low elevation 
(Low_elevation). Geographically, the archetypes cluster in south-eastern 
Nigeria in a region of extensive swamp forests (Fig. 3). The fragment in 
Fig. 5 Plate G (Nigeria, Akwa Ibom) presents a densely wooded fragment 
of riparian swamp forest. It borders a large water body (river) and is 
adjacent to a village in an arable farmed landscape. Deforestation signs 

Fig. 5. To evaluate the performance of the archetype classification, a random sample of 10 forest patches from archetypes 1–10, were visually evaluated in relation 
to the landscape; results are presented in plates A-J. 
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are prevalent in adjacent riparian forests, suggesting these forests are 
increasingly exploited for timber. The average AGB in 2010 was 66 Mg 
ha− 1 (High abg_2010), and the average and cumulative precipitation are 
2818 mm and 2664 mm, respectively, (High Precp_mean, high Prcep_
sum), while the elevation is only 16 m a.s.l. 

Archetype 8 – Lowland, positive biomass changes, humid forest 
landscapes; with only 514 classified fragments (7%), this archetype is 
the third smallest. It is characterized as having a high AGB in 2018 (High 
Biomass_18), having undergone positive AGB changes (Biomass_Dif), 
and experienced negative precipitation anomalies (Low Precp_anom). 
Geographically, they are mostly located adjacent to and north-west of 
archetype 7, and often found in the Niger Delta swamp forests and are 
often riparian (Fig. 3). The forest patch in Fig. 5 Plate H (Nigeria, Rivers) 
is located in a mangrove forest (Cotillon & Tappan, 2016) adjacent to a 
small village and surrounded by waterways and rivers, with other 
little-visible anthropogenic disturbances. Its AGB in 2018 was 153 Mg 
ha− 1 (High Biomass_18), it exhibited a positive AGB difference between 
2010 and 2018 of 0.5 Mg ha− 1 and the precipitation anomaly was − 361 
mm. 

Archetype 9 – Remote, lowland, humid forests with often low Leaf 
Area Index; consisting of 420 patches (5%), this archetype is the second 
least common. It is characterized by a high distance to roads (High 
D_roads) and pronounced average and cumulative rainfall (High Pre
cp_mean, High Prcep_sum) and a low LAI (low LAI_2021). Geographi
cally, this archetype is located mainly in the Central African mangrove 
forests of Nigeria (Fig. 3). The forest patch in Fig. 5 Plate I (Nigeria, 
Delta), lies in a densely forested mangrove landscape with numerous 
and dense rivers and waters ways, and only minimal visible human 
infrastructure. The distance to the nearest road is 20 km (High D_roads), 
and the mean and cumulative rainfall are 2911 mm and 3251 mm, 
respectively; finally, the average LAI in 2012 was only 382 units (low 
LAI_2021), potentially due to the extensive flooding occurring in the 
region. Since rainfall climatologies seem to play a key role in charac
terizing this archetype, we evaluate average rainfall further. Fig. 7 A 
plots average rainfall (Prcp_mn) (mm yr− 1) for all archetypes; we find 

significantly different (ANOVA) values for average rainfall between ar
chetypes, with an average value of 2985 mm yr− 1 for archetype 9. 
Similarly, Fig. 7 B plots average precipitation values for each archetype 
and every ecoregion; here we see that archetype 9 exhibits high mean 
rainfall values especially in the Central African mangrove ecoregion. 

Archetype 10 – Changing forests undergoing forest and biomass loss 
and gain; consisting of only 55 forest patches (1%), this archetype is 
primarily characterized by high forest gain values (km2) (High Gain_
area) and a positive biomass difference between 2010 and 2018 (Bio
massDiff), and finally high Loss_area values. Geographically, this 
archetype is sparsely distributed across the Nigerian lowland forests of 
western Nigeria (Fig. 3). The fragment in Fig. 5 Plate J (Nigeria, Ondo), 
consists at least partly of plantation forest, which may explain why this 
forest patch has a positive gain value of 1 km2 (High Gain_area), and a 
positive biomass difference value of 38 Mg ha− 1. However, this arche
type is also characterized by High Loss_area. In effect, when plotting 
mean forest loss (km2) per archetype, we find that most forest loss is 
significantly higher in archetype 10 than in the remaining archetypes, 
with an average value of 1.76 km2 (Fig. 8 A); and when examining these 
results in terms of ecoregion (Fig. 8 B, C), it is apparent that forest loss is 
most pronounced for archetype 10 in the Nigerian lowland forests and 
Cross-Niger transition forest. 

4. Discussion 

4.1. Common underlying characteristics 

Mapping landscape features, such as forest patches, into archetypes 
of social-ecological interactions to inform conservation and sustainable 
management, is an important challenge in the domain of land system 
science (Oberlack et al., 2019; Sietz et al., 2019; Václavík et al., 2013). 
In effect, classifications based only on biophysical variables with little 
attention to social-ecological indicators may be inadequate to holisti
cally characterise coupled social–ecological systems (Verburg et al., 
2009). Addressing these deficiencies is critical since the sustainable 

Fig. 6. (A) Significantly different (ANOVA) values (signified by letters) for the Theil-Sen trend statistic, compared to other archetypes, with an average value of 
(0.0000120). (B) Plot of trend values for each ecoregion; results suggest that the Central African mangrove and Niger Delta swamp forest (C) exhibit the most 
pronounced greening trend. 
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management of forests is one of the nine response options with the po
tential for medium to large benefits for climate change mitigation, 
adaptation, desertification, land degradation and food security (Shukla 
et al., 2019). As such, this study attempts to present an integrated view 
of remnant forest patches at a regional level, by considering the various 

dimensions of socio-ecological, proximity, land cover change and bio
physical indicators, which affect them. Here, through classifying forest 
patches into archetypes, we identify and examine various regional pat
terns of underlying anthropogenic and ecological change pressures, 
which offer deeper insights than would an analysis based on only 

Fig. 7. (A) Significantly different (ANOVA) values (signified by letters) for average rainfall (Prcp_mn) (mm yr− 1), compared to other archetypes, with an average 
value of 2985 mm yr− 1 for archetype 9. (B) Average precipitation values for each archetype and every ecoregion are plots, archetype 9 exhibits high mean rainfall 
values especially in the Central African mangroves ecoregion (C). 

Fig. 8. (A) Significantly different (ANOVA) values (signified by letters) for Loss area (km2) compared to other archetypes, with an average value of 1.76 km2. (B) 
Forest loss is most pronounced for archetype 10 in the Nigerian lowland forests and Cross-Niger transition forests (C). 
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biophysical land cover land-use metrics. Specifically, the analysis shows 
that distinctive groupings of forest patches can be identified based on 
their social-ecological contexts. Hence, (dis)similarities between forests 
need to be considered when researching them or when designing policy 
measures. Importantly, the grouping of forest patches at regional scales 
allows common characteristics of major underlying anthropogenic and 
ecological change pressures to be identified. In turn, these may allow 
targeted policy actions to be developed while raising awareness among 
stakeholders. For instance, we suggest that remnant forest patches of 
Archetype 1 may comprise a high priority for conservation and sus
tainable use, since they lie in a landscape with little anthropogenic 
disturbances, show an NDVI greening trend, and are often far from any 
formally protected areas. Below, we discuss several additional specific 
examples in more detail. 

4.2. Dynamic forests patches 

Remnant forest patches belonging to archetype 10 (Changing forests 
undergoing forest and biomass loss and gain) often comprise planta
tions, and fragmented forest patches in arable or (semi)urban land
scapes. Plantations are included in the forest patch inventory dataset 
since they conform to the definition of forest used, namely, a tree cover 
>30% and tree height >5 m (Wingate, Akinyemi, Iheaturu, & Speranza, 
2022). The intentional management of shade trees with agricultural 
crops (agroforestry) has high potential for providing habitats outside of 
protected areas (PAs), by both connecting PAs and providing a buffer to 
natural resource use pressure; hence agroforestry plays a major part in 
forest conservation in human-dominated regions (Bhagwat et al., 2008). 
In addition, these fragments were often characterised as undergoing 
forest and biomass loss and/or gain. Thus, fragments of this archetype 
could be considered as both dynamic, changing forests, and experi
encing a high degree of anthropogenic land-use change pressures, 
relative to other archetypes. In effect, their geographical location within 
the Nigerian lowland forests and Cross-Niger transition forests ecor
egions, are areas which are densely populated relative to other 

ecoregions of the study area (i.e., mangrove), and which would therefore 
suggest a high degree of land-use change pressures requiring local 
strategies to address these. 

4.3. Biomass gain 

The variable Biomass Difference is prominent in characterising 
Archetype 8; moreover, when looking at all forest patches of that 
archetype simultaneously, we find that almost all exhibit positive 
biomass changes during the period 2010–2018. In effect, applying the 
Analysis of Variance (ANOVA) and Tukey’s test, they show significantly 
different Biomass Difference values compared to other archetypes, with 
an average value of 56.9 Mg ha− 1 (Fig. 9 A). 

Thus, not only has the archetyping analysis identified groups of 
fragments which have significantly different biophysical values (in this 
case BiomassDiff), compared to other archetypes, but it has also allowed 
these to be spatially mapped and grouped into ecoregions; for instance, 
in Fig. 9 B, we find that positive biomass differences are most pro
nounced in the “Central African mangrove” and “Northwest Congolian 
lowland forests” (Fig. 9 C). Moreover, results from Fig. 6 B show that 
fragments in these two ecoregions also exhibit a positive NDVI greening 
trend. 

Results suggest that forest fragments of these ecoregions are under
going positive AGB changes combined with a greening trend; further 
research would be required since it counters findings of widespread AGB 
loss across forests of this region (R. Fischer et al., 2021). Further, these 
results imply that widespread vegetation changes are occurring which 
could potentially benefit targeted policy actions, such as conservation 
measures and carbon sequestration programs. This is illustrated in 
Fig. 10 (supplementary material), which shows patch archetypes over
laid on the biomass change detection analysis. In addition, a polynomial 
regression analysis between the natural log of average fragment size and 
the percentage and total biomass change per size class, is included for 
each archetype (Fig. 11, supplementary material). This analysis high
lights how biomass change is cumulative positive for small size classes of 

Fig. 9. (A) Significantly different (ANOVA) Biomass difference values (Mg ha− 1) (signified by letters) compared to other archetypes, with an average value of 56.9 
Mg ha− 1 for archetype 8. (B) A positive biomass difference is most pronounced in forests belonging to archetype 8, located mostly in the “Central African mangrove” 
and “Northwest Congolian lowland forests” (C). 
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archetype 8, but negative when taken as a percentage of total biomass 
change per size class. 

4.4. Remote forest patches 

For fragments belonging to archetype 3 (Remote from settlements 
and low human landscape modification), little to no visible human im
pacts could be identified on the landscape, and areas far from human 
settlements can be assumed to exhibit relatively little human landscape 
modification. In contrast, patches belonging to archetype 10 (i.e., 
Changing forests undergoing forest and biomass loss and gain), were 
often fragmented or comprised plantations which exhibited a high de
gree of change. 

4.5. Synthesis 

The archetypes described in this study are novel and have not been 
described in the literature. The key outcome of this archetyping analysis 
is the identification of common underlying ecological change pressures 
and characteristics, which may contribute to better informing targeted 
policy and conservation actions on remnant forest patches, for instance, 
such as the prioritization biomass gain forest patches for further 
research. Pressures on the natural resources of the study countries are 
rising rapidly, and the consequent alarming loss of biodiversity, which is 
also measure for assessing these pressures, is at a critical juncture (Beier 
et al., 2002; Fischer et al., 2021; Norris et al., 2010); hence, the pro
tection and sustainable use of the widely dispersed remnant forests is 
increasingly urgent. Patches in Benin are often small, sacred forests, 
which are widely studied (Adomoui et al., 2010; Nagel et al., 2004; 
Neuenschwander & Adomou, 2017). In contrast, most patches in the 
remaining area of this study are widely scattered across a vast and 
generally remote area, encompassing diverse ecoregions, ranging from 
mangrove to montane (Wingate, Akinyemi, Iheaturu, & Speranza, 
2022). They are probably rarely studied, have little or no formal or 
informal conservation status or management plan, are subject to mul
tiple change pressures, and are found in a biodiversity hotspot region; as 
such, they present manifold opportunities for research and conservation 
(Myers et al., 2000). 

5. Conclusions 

Understanding the context and condition of remnant forest patches is 
critical for tailoring approaches to ensure their sustainable manage
ment; hence, this study classified remnant West African forest patches 
into 9 archetypes using 20 indicators and described their dominant 
characteristics. Importantly, the regional archetyping analysis contrib
uted a method to identify common underlying anthropogenic and 
ecological change pressures and characteristics. In doing so, it may 
facilitate the development of local strategies and help informing tar
geted policy actions to address these changes. We assessed the perfor
mance of the archetype classification and find that the indicators 
characterising the archetypes can readily be associated with one 
another; for instance, moderate rainfall and reduced tree cover, while 
others including low gHM, can readily be visually identified using high 
resolution aerial imagery. This work improves our knowledge of the 
change pressures affecting remnant forest patches and provides a 
foundation for researching their multiple services and functions. In 
particular, this study provided novel insights into the condition of 
remnant forest fragments in relation to the study area ecoregions, for 
instance, that greening, and biomass gains occur mainly in mangrove 
and swamp forests. This study provides a first approximation of how 
remnant forest patches group into archetypes based on a set of indicators 
and may be improved as more accurate and pertinent data become 
available. Such a dataset would contribute to subsequent field studies by 
ensuring representative sampling of field sites, and better characterising 
forest patches in inventory databases. 
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