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Abstract

In histopathology, histologic elements are not randomly located across an image but orga-
nize into structured patterns. In this regard, classification tasks or feature extraction from
histology images may require context information to increase performance. In this work,
we explore the importance of keeping context information for a cell classification task on
Hematoxylin and Eosin (H&E) scanned whole slide images (WSI) in colorectal cancer. We
show that to differentiate normal from malignant epithelial cells, the environment around
the cell plays a critical role. We propose here an image augmentation based on gamma
variations to guide deep learning models to focus on the object of interest while keeping
context information. This augmentation method yielded more specific models and helped
to increase the model performance (weighted F1 score with/without gamma augmentation
respectively, PanNuke: 99.49 vs 99.37 and TCGA: 91.38 vs. 89.12, p < 0.05).

Keywords: digital pathology, gamma correction, image augmentation, contrast enhance-
ment, image classification

1. Introduction

Digital Pathology whole slide images (WSI) are large images that need to be divided into
smaller patches in order to apply deep learning methods for classification of histologic
elements (Lee K and AC, 2021; Janowczyk and Madabhushi, 2016). When performing
classification of small tissue fractions, such as cells, the optimal crop size around the region
of interest (ROI) can be difficult to estimate. The object of interest can be difficult to
classify by itself and might need contextual tissue information to make the proper decision.
For that reason, the crop size should be optimized to find the correct balance between
the amount of information coming from the object of interest and surrounding context
information. In this work, we show that for cell-based classification, the context of the cells
matters and use epithelial cell classification in colorectal tissue as an example. We first
evaluated different patch sizes around the ROIs and showed that performance increased
with larger patch sizes. However, the information originating from the object of interest
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might be diluted when taking patches much larger than the object itself. To address this
undesired effect, we propose here an image augmentation based on gamma variations to
increase the contrast in the region of the object to be classified and decrease the brightness
of its surroundings (Nateghi et al., 2021). We show that by using this gamma focusing, the
classification accuracy significantly improve while guiding the model to focus on that area
of interest even when using large patch sizes.

2. Materials and Methods

The dataset was composed of epithelial cells extracted from Lizard dataset, as well as
epithelial cells annotated by experts on TCGA and our Institute’s cohort (Graham et al.,
2021). This resulted in 66’034 normal cells and 119’013 malignant cells for training and
validation. Cells extracted from TCGA and PanNuke (subset from Lizard) were kept as
unseen test data with 12’751 normal cells and 17’717 malignant cells. All the images were
used at 20X (0.5 µm/pixel) and were cropped around cell centroids to extract cell patches.

ResNet18 and MobileNet were trained for normal versus malignant epithelial cell clas-
sification (He et al., 2015; Sandler et al., 2019). As the morphology of malignant cells can
vary in size, the smallest patch size used was 32×32px in order to get the complete cell in
the patch. The models were trained for different patch sizes around the cells: 32×32px,
64×64px and 128×128px. All models were trained using a 5 fold cross-validation. Table 1
shows the model’s performance for the different patch sizes. As the highest F1 score was
achieved using 128×128px patches, these results were analysed with GradCam and further
improved using the GammaFocus augmentation. Finally, ViT16 was trained to compare
the performance using a model made to retain spatial structural information (Dosovitskiy
et al., 2021). Models were compared using the statistical McNemar test for paired samples.

GammaFocus: The GammaFocus (GF) augmentation rely on the gamma correction to
adjust contrast in image analysis (Somasundaram and Kalavathi, 2012; Rahman et al.,
2016). This correction is a non-linear transformation that encodes the brightness of the
image. It is based on the following power law expression:

Iout = Iγin

where γ encodes the changes in brightness. γ > 1 implies a gamma expansion and thus
increases the contrast, as γ < 1 is a gamma compression and reduces the contrast. For
RGB images, the gamma augmentation is applied per-channel.
In our experimental setup, the brightness in the center 64×64px of the 128×128px input
patches was increased, as the bightness surrounding this central region was decreased. For
that we used γ = 1.5 and γ > 0.5 respectively. GF augmentation on H&E cell patches can
be seen in Figure 1.

During the training process, multiple other image augmentations were applied (rotation,
flip, stain variations) before applying the GF transform.

GradCam: GradCam method was used to highlight regions impacting most the model’s
decision when trained with and without GammaFocus (Selvaraju et al., 2019; Gildenblat
and contributors, 2021). GradCam heatmaps overlayed on the input images can be seen in
Figure 1.
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Figure 1: GradCam heatmap over cell
patches from PanNuke and
TCGA, with/without GF for
ResNet18. Black dotted circles
highlight the cell of interest.

Patch size (px) PanNuke TCGA

32×32 91.00 ± 0.006 68.12 ± 0.01
64×64 96.99 ± 0.002 81.43 ± 0.016
128×128 98.58 ± 0.04 89.12 ± 0.12

Table 1: ResNet18 weighted F1 score for
different patch sizes around the
epithelial cells for normal vs.
malignant binary classification.

Method PanNuke TCGA

ViT16 99.10 ± 0.004 89.47 ± 0.004
ViT16 + GF 99.31 ± 0.003 88.55 ± 0.01

MobileNet 99.37 ± 0.004 89.39 ± 0.01
MobileNet + GF 99.49 ± 0.002 90.13 ± 0.01

ResNet18 98.58 ± 0.04 89.12 ± 0.12
ResNet18 + GF 99.13 ± 0.08 91.38 ± 0.17

Table 2: Weighted F1 score for different
methods with and without Gam-
maFocus (GF) for normal vs.
malignant binary classification.

3. Results

Classification accuracy increased with the patch size, Table 1. However, GradCam heatmaps
show that the model did not necessarily use the cell of interest for the classification decision.
Upon GF augmentation, the model paid more attention to the cells of interest, see Figure
1, and the classification F1 score also increased, performing significantly better than models
trained without GF, as can be seen in Table 2, p < 0.05 for ResNet18 and MobileNet. Best
results were obtained by applying GF during training and inference.

4. Discussion and Conclusion

The GF augmentation method allows to take larger crops around the ROI while guiding
the model to focus mainly on the object to be classified and increase models’ performances.
The behaviour of ViT16 with GF is not as clear as ResNet18 and Mobilenet and should be
explored further in future work.
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