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Improved interpretation of 18F-florzolotau PET
in progressive supranuclear palsy using a
normalization-free deep-learning classifier

Jiaying Lu,1,2,10 Christoph Clement,2,10 Jimin Hong,2 Min Wang,3,4 Xinyi Li,5 Lara Cavinato,2,6 Tzu-Chen Yen,7

Fangyang Jiao,1 Ping Wu,1 Jianjun Wu,5 Jingjie Ge,1 Yimin Sun,5 Matthias Brendel,8 Leonor Lopes,2

Axel Rominger,2 Jian Wang,5 Fengtao Liu,5,* Chuantao Zuo,1,9,11,* Yihui Guan,1 Qianhua Zhao,5 Kuangyu Shi,2,4

and for the Progressive Supranuclear Palsy Neuroimage Initiative (PSPNI)

SUMMARY

While 18F-florzolotau tau PET is an emerging biomarker for progressive supranu-
clear palsy (PSP), its interpretation has been hindered by a lack of consensus on
visual reading and potential biases in conventional semi-quantitative analysis.
As clinical manifestations and regions of elevated 18F-florzolotau binding are
highly overlapping in PSP and the Parkinsonian type of multiple system atrophy
(MSA-P), developing a reliable discriminative classifier for 18F-florzolotau PET is
urgently needed. Herein, we developed a normalization-free deep-learning
(NFDL) model for 18F-florzolotau PET, which achieved significantly higher accu-
racy for both PSP and MSA-P compared to semi-quantitative classifiers. Regions
driving the NFDL classifier’s decision were consistent with disease-specific to-
pographies. NFDL-guided radiomic features correlated with clinical severity of
PSP. This suggests that the NFDL model has the potential for early and accurate
differentiation of atypical parkinsonism and that it can be applied in various sce-
narios due to not requiring subjective interpretation, MR-dependent, and refer-
ence-based preprocessing.

INTRODUCTION

Interpreting tau positron emission tomography (PET) imaging remains challenging in clinical and research

settings. Visual assessment and semi-quantification analysis are the two main methods applied in clinical

and research scenarios, respectively. The former was mainly restricted by the absence of widely accepted

guidelines, and currently, methods for visual assessment are only available for 18F-flortaucipir, 18F-MK-

6240, and 18F-florzolotau (also known as 18F-PM-PBB3 or 18F-APN-1607) tau PET imaging in Alzheimer’s dis-

ease (AD),1–3 a secondary tauopathy. The disease heterogeneity reflected by the pathological topogra-

phies4–8 also increases the difficulty of visual reading. Additionally, the significant interobserver variability,

a common problem in subjective assessment, requires caution. On the other hand, semi-quantification

analysis is mainly used in research settings as an alternative to visual reading. This involves calculating

tracer uptake in selected regions of interest (ROIs) and dividing it by the signal in the reference region

to obtain semi-quantitative parameters (i.e., standardized uptake value ratios, SUVRs),9 which serve as rela-

tively objective bases for tau PET-imaging interpretation. However, this methodology is limited by the

need for spatial normalization,10 potential inconsistencies in ROI selection, the involvement of the same

ROIs in different diseases, the lack of widely accepted cut-offs for PET parameters,11 and uncertainties

in establishing the most suitable reference areas.12 It is worth noting that selecting an optimal reference

tissue is especially challenging in the most common primary tauopathy, progressive supranuclear palsy

(PSP).13 This is due to the diffused tau depositions with disease progression,4 which have been reported

in commonly used reference regions in PSP, such as the cerebellum and subcortical white matter.4 Addi-

tionally, since initial tau accumulation is often seen in small anatomical areas (i.e., pallido-nigro-luysian

axis in PSP4 or locus coeruleus and entorhinal cortex in AD14), PET-based semi-quantitative assessment

of regional tau burden is prone to noise and artifacts during spatial alignment of brain structures, which

reduces the early diagnostic value of tau PET imaging. Although individual structural magnetic resonance

(MR) image-based spatial normalization is considered the best standard for high-precision spatial
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warping,10 it is important to note that high-resolution MR images can be costly and time-consuming to

obtain and cannot be performed in all patients (i.e., due to implanted electronic devices).

Recent advances in artificial intelligence, particularly in the field of deep learning (DL), have made it

possible to detect complex patterns in large-imaging datasets. While a growing number of DL-based clin-

ical applications have been proposed for PET imaging,15 their use in tau PET imaging has been limited to
18F-flortaucipir and 18F-MK-6240 for AD.16–18 To the best of our knowledge, no studies have investigated

the performance of DL algorithms using raw PET images without spatial and intensity normalization as

input. In the context of PSP, where elevated tracer uptake mainly occurs in small, deep brain structures

such as the subcortical nucleus, Endo et al. recently proposed optimized semi-quantitative parameters

for 18F-florzolotau tau PET. Their approach utilized machine-learning techniques based on traditional im-

aging preprocessing. However, the discriminative performance of this novel method has only been exam-

ined in comparisons between PSP and healthy controls/AD.19 In contrast to AD, where regions with

increased tracer uptake are usually diffused (i.e., inferior lateral temporal, posterior cingulate, and lateral

parietal regions),20 disease hallmark regions with abnormal tracer uptake in PSP are pretty small (i.e.,

globus pallidus and subthalamic nucleus).21,22 It is worth noting that such tiny and deep regions are

more susceptible to inaccurate spatial normalization, making it more challenging for assessors, conven-

tional semi-quantitative indices, and DL models to understand the disease-specific pattern in PSP. Conse-

quently, the potential for DL-based algorithms to effectively differentiate PSP from subjects exhibiting

similar patterns of increased tau tracer uptake remains to be explored.

Pathologically, PSP is the most common primary tauopathy (4-repeat form of tau),13 and is clinically classified as

an atypical parkinsonism syndrome that shares plenty of symptoms with Parkinson’s disease (PD) as well as other

atypical parkinsonism syndromes like the parkinsonian subtype ofmultiple systematrophy (MSA-P), especially at

early stages.23,24 The significant phenotypic overlap and clinical heterogeneity make an early and accurate diag-

nosis of these conditions challenging. New-generation tau ligands with high affinity to both 3-repeat and

4-repeat forms of tau show promise in ameliorating this situation.21,22 First, pilot observation with different

new-generation tau radiotracers, including 18F-PI-262022 and 18F-florzolotau21,25,26 have consistently found

abnormal signals in the pallido-nigro-luysian axis in patients with PSP. Second, the presence of abnormal tau

tracer retention is not limited to tauopathies but may also occur in MSA-P.27–30 Notably, in MSA-P, increased

tracer uptake is predominantly located in the basal ganglia, close to or partially overlapping the core tau depo-

sition areas in PSP (Figure 1). Therefore, differential diagnosis of PSP and MSA-P using tau PET imaging is still

difficult for both visual reading and semi-quantitative analysis.

To this end, to improve the clinical utility of 18F-florzolotau tau PET imaging in the classification of PSP and

MSA-P, we trained a normalization-free DL (NFDL) classifier on a set of tau PET images from patients with

PSP, MSA-P, and controls without incorporating potential confounders such as spatial normalization, refer-

ence region, ROIs, or binary cut-offs. We included the traditional semi-quantitative parameter SUVR and its

Z-transferred score using different reference tissues (cerebellar grey matter (cereGM), whole cerebellum

(WC), subject-specific white matter (subWM), and subject-specific grey matter (subGM))21,22,26,31–33 as a

comparison to evaluate the performance of the NFDL classifier. We investigated the decision mechanism

of the NFDL classifier using an occlusion sensitivity experiment and used NFDL-guided radiomic features

(first-order radiomic features) from the weighted tau PET imaging to assess the model’s ability to reflect

disease severity.

RESULTS

Demographics

As shown in Table 1, 228 participants (mean age, 63.9years G7.5 [SD]; 107 women) and 35 subjects (mean

age, 65.3years G8.2 [SD]; 22 women) in Cohort I and II were enrolled, respectively. No significant differ-

ences were observed in demographic and clinical variables across folds in Cohort I (Table S1).

The optimal NFDL classifier

The highest mean validation F1 score of 0.948 was achieved by applying intensity scaling and a combina-

tion of three random data augmentations (random Gaussian smoothing, random coarse dropout regulari-

zation,34 and random elastic transformations) to the input images, the 3D DenseNet121 network,35 cross-

entropy loss, and Adam optimizer.36 This classifier was selected as the most appropriate for further analysis

(Figure 2A).
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The semi-quantitative classifiers

For SUVR-based classifiers, the optimal cut-off values that defined positivity based on regional SUVR values

were determined by maximizing Youden’s statistic in the training/validation sets, as shown in Tables 2

and S2. For Z-score-based classifiers, the regional positivity cut-off was 2, as described in the STAR

Methods section (Figure 2B).

Classification performance in test sets

For the Test1 set (Figure 3A), the accuracies for all labels using the NFDL, SUVR, and Z score classifiers were

0.92, 0.79–0.87, and 0.50–0.95, respectively. That is, given the availability of MR images for traditional semi-

quantitative metrics, the NFDL classifier outperformed all semi-quantitative classifiers except the Z score

using subWM as the reference region for intensity normalization (accuracy = 0.95). Similar findings were

found when assessing the classification performances for each label separately (Table 3).

For the additional Test2 set (MR images were absent; Figure 3C), the NFDL model consistently outper-

formed all semi-quantitative classifiers. The accuracies for all labels using the NFDL, SUVR, and Z score clas-

sifiers were 0.86, 0.60–0.66, and 0.43–0.49, respectively. The details for the classification performances of

each label are presented in Table S3.

Consistency with the application of different spatial normalization approaches for the

conventional semi-quantitative analysis

At the group level in the training/validation sets, the consistency between the SUVRs varied among ROIs as

well as reference regions (intraclass correlation coefficients (ICC) = 0.75–0.93), as the Bland-Altman plot

(Figure 4A) shows. The one-sample t-test for the mean difference of SUVRs found significant differences

in all ROIs (p < 0.03) except the subthalamic nucleus with WC as the reference region (p = 0.055).

Figure 1. Characteristic 18F-florzolotau-binding patterns in different clinical entities

(A and B) (A) Mean SUVR maps (reference region: cerebellar grey matter), and (B) mean heatmaps (Z score) based on our

previously reported data.21,27 Abbreviations: PSP, progressive supranuclear palsy; MSA-P, multiple system atrophy,

parkinsonian type; SUVR, standardized uptake value ratio.
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Table 1. General characteristics of the study participants

Clinical

diagnosis

Number of

cases

Age,

years

Proportion of

women

MMSE

score

PSPrs

score MDS-UPDRS-III score

H&Y

scale

Disease duration,

years

Proportion

of PSP-RSa
Level of diagnostic certainty (probable/

possible/suggestive)a

Cohort I split (training/validation sets)

PSP 123 65.5 (6.8) 0.46 23.3 (5.5) 30.5 (13.5) 41.2 (15.3) 3.3 (0.8) 3.9 (2.7) 0.54 101/17/5

MSA-P 37 61.3 (6.7) 0.54 24.6 (4.5) – 54.3 (11.2) 3.5 (0.8) 2.4 (1.3) – –

Control 30 59.1 (9.2) 0.63 28.1 (1.5) – – – – – –

Entire set 190 63.7 (7.6) 0.51 24.3 (5.2) – – – – – –

Cohort I split (Test0 & Test1 sets)

PSP 25 66.6 (6.6) 0.32 23.4 (5.7) 33.1 (15.7) 41.4 (13.3) 3.4 (0.8) 3.4 (2.2) 0.68 23/2/0

MSA-P 7 63.4 (5.7) 0.29 26.0 (2.3) – 45.4 (10.6) 2.8 (0.8) 2.8 (1.2) – –

Control 6 61.7 (6.1) 0.17 27.6 (0.5) – – – – – –

Entire set 38 65.3 (6.5) 0.29 24.4 (5.1) – – – – – –

Cohort II (Test2 set)

PSP 18 66.8 (8.2) 0.50 21.4 (7.9) 35.0 (20.9) 42.4 (22.5) 3.1 (1.0) 2.6 (1.9) 0.67 15/2/1

MSA-P 8 64.5 (5.7) 0.75 – – – – 2.3 (1.8) – –

Control 9 63.1 (10.2) 0.78 28.3 (1.5) – – – – – –

Entire set 35 65.3 (8.2) 0.63 – – – – – – –

Data are expressed as mean (standardized deviation) unless otherwise stated.

Abbreviations: PSP, progressive supranuclear palsy; PSP-RS, PSP with Richardson’s syndrome; MSA-P, multiple system atrophy, parkinsonian type; MMSE, Mini-Mental State Examination; PSPrs, progressive

supranuclear palsy rating scale; MDS-UPDRS-III, Movement Disorders Society Unified Parkinson’s Disease Rating Scale, part III; H&Y, Hoehn and Yahr.
aData applicable to PSP only.
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At the individual level in test sets (head-to-head comparisons of PET images that had undergone MR-

dependent (Test1) versus MR-free (Test1add) spatial normalization; Figure 4B), a moderate agreement for

diagnostic labels was found (Cohen’s kappa coefficient = 0.67–0.78).37 Compared to those in Test1, the

classification performances of semi-quantitative parameters consistently deteriorated in the Test1add set

(Figure 3B and Table S4). Specifically, the accuracies for all labels using the SUVR and Z score classifiers

in Test1add were 0.58–0.76 and 0.66, respectively. The only exceptions were SUVR (WC) for MSA-P (accu-

racy = 0.90 for Test1, and 0.92 for Test1add), Z score (cereGM) for MSA-P (accuracy = 0.87 for Test1, and

0.90 for Test1add), and Z score (WC) for MSA-P (accuracy = 0.84 for Test1, and 0.87 for Test1add). In general,

the MR-dependent semi-quantitative parameters in Test1 outperformed MR-free ones.

Figure 2. Design of different classifiers

(A) The design of the normalization-free deep-learning classifier.

(B) The design of the traditional semi-quantitative classifiers. Abbreviations: NFDL, normalization deep learning; PSP,

progressive supranuclear palsy; MSA-P, multiple system atrophy, parkinsonian type; cereGM, cerebellar gray matter; WC,

whole cerebellum; subWM, subject-specific white matter; subGM, subject-specific gray matter; SUVR, standardized

uptake value ratio; ROIs, regions of interest; RN, red nucleus; STN, subthalamic nucleus; Ra, raphe nuclei; GP, globus

pallidus; PU, putamen.
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Interpretation of the NFDL model

The occlusion-sensitivity experiments revealed that the midbrain, thalamus, and globus pallidus were the

most discriminating regions for PSP, while the putamen and globus pallidus were the most discriminating

regions for MSA-P (Figure 5). For controls, subcortical regions, including midbrain, thalamus, globus pal-

lidus, and putamen, provided the optimal discrimination ability for excluding positivity on tau PET images.

The correlation analysis found significant associations between NFDL-guided radiomic features extracted

from the individually weighted tau PET imaging and scores of clinical disease severity in PSP (i.e., quantile

25%: PSP rating scale (PSPrs), p = 0.010; MDS Unified Parkinson’s Disease Rating Scale-part III (MDS-

UPDRS-III), p = 0.041; Mini-Mental State Examination (MMSE), p = 0.028; Table 4). Additionally, significant

associations were identified between NFDL-guided radiomic features and SUVRs (i.e., median: SUVRs

(cereGM) across all investigated ROIs, p = 0.001–0.016; Tables S5 and S6).

Table 2. Cut-off SUVRs for 18F-florzolotau positivity at regional level using the MR-dependent spatial normalization method

ROIs Optimal cut-off point Area under curve Sensitivity (%) Specificity (%)

SUVR (cerebellar gray matter)

Distinguishing patients with PSP from others

Red nucleus 1.52 0.85 69.9 88.1

Subthalamic nucleus 1.58 0.89 73.2 94.0

Raphe nuclei 1.51 0.85 67.5 94.0

Distinguishing patients with PSP and MSA-P from controls

Globus pallidus 1.40 0.92 93.3 79.4

Putamen 1.16 0.77 70.0 78.7

SUVR (whole cerebellum)

Distinguishing patients with PSP from others

Red nucleus 1.43 0.86 69.9 95.5

Subthalamic nucleus 1.44 0.91 79.7 94.0

Raphe nuclei 1.33 0.85 66.7 97.0

Distinguishing patients with PSP and MSA-P from controls

Globus pallidus 1.29 0.93 90.0 85.0

Putamen 1.09 0.78 70.0 79.4

SUVR (subject-specific white matter)

Distinguishing patients with PSP from others

Red nucleus 1.42 0.87 76.4 85.1

Subthalamic nucleus 1.45 0.92 82.1 94.0

Raphe nuclei 1.40 0.88 75.6 89.6

Distinguishing patients with PSP and MSA-P from controls

Globus pallidus 1.28 0.96 100 90.0

Putamen 1.10 0.91 83.3 91.2

SUVR (subject-specific gray matter)

Distinguishing patients with PSP from others

Red nucleus 1.43 0.81 71.5 85.1

Subthalamic nucleus 1.46 0.87 82.1 91.0

Raphe nuclei 1.40 0.82 73.2 88.1

Distinguishing patients with PSP and MSA-P from controls

Globus pallidus 1.33 0.85 90.0 83.1

Putamen 1.14 0.73 63.3 78.7

The optimal cut-off values for defining 18F-florzolotau positivity based on regional SUVR values were those that maximized Youden’s statistic in the training/vali-

dation set. Abbreviations: PSP, progressive supranuclear palsy; MSA-P, multiple system atrophy, parkinsonian type; ROIs, regions of interest.
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Figure 3. Classification performance in Test sets

Each classifier’s name is displayed in gray text, with the numbers inside the confusion matrices representing the count of

subjects. The highest number of subjects within a diagnostic group for each dataset is utilized to establish the color

scale’s maximum value.

(A) Confusion matrices in test1 set: spatial normalization of all PET images was carried out based on concurrent MR

images, following the MR-dependent approach.

(B) Confusion matrices in test1add set: this includes the same subjects as the test1 set, but the PET images were spatially

normalized using the unified algorithm from Statistical Parametric Mapping 12, following the MR-free approach.

(C) Confusion matrices in test2 set: this set contained different subjects compared to test1 set, and no concurrent MR

images were available. Consequently, PET images were spatially normalized using the MR-free approach. Abbreviations:

PSP, progressive supranuclear palsy; MSA-P, multiple system atrophy, parkinsonian type; NFDL, normalization-free deep

learning; SUVR, standardized uptake value ratio; cereGM, cerebellar gray matter; WC, whole cerebellum; subWM,

subject-specific white matter; subGM, subject-specific gray matter.
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DISCUSSION

Wedeveloped an NFDL classifier for 18F-florzolotau PET images that does not require spatial normalization

or reference region-based intensity normalization and is capable of discriminating between PSP, MSA-P,

and control. The regions with the highest discriminative power for diagnostic purposes were consistent

with disease-specific tau topography4 and/or previous pilot observations.21,27 Since our model does not

rely on spatial normalization, it has the potential to be used in extended clinical scenarios where structural

MR images are unavailable. Albeit preliminary, the significant associations betweenNFDL-guided radiomic

features and scores of clinical severities in PSP indicate its potential in disease severity evaluation.

Spatial normalization10 and reference-region-based intensity normalization12,38 are two essential prepro-

cessing steps in the semi-quantitative analysis of brain PET images. While the interpretation of 18F-fluoro-

deoxyglucose PET scans does not necessarily require the correspondingMR images during spatial normal-

ization, this approach is not ideal for amyloid and tau PET imaging. To investigate this issue further, we

compared standard MR-dependent versus MR-free spatial normalizations at both group and individual

levels. The presence of non-negligible variations in several study participants, along with moderate

classification agreement, suggested that MR-free spatial normalization should not be recommended for
18F-florzolotau PET. With the development of tracer-specific templates for amyloid (18F-florbetapir and

Table 3. Classification performance of different classifiers for each label in Test1 set

Classifier Ground truth label Area under curve Accuracy (%) Sensitivity (%) Specificity (%)

NFDL PSP 0.95 94.7 96.0 92.3

MSA-P 0.97 94.7 85.7 96.8

Control 0.88 94.7 83.3 96.9

SUVR (cereGM) PSP 0.83 84.2 84.0 84.6

MSA-P 0.85 86.8 85.7 87.1

Control 0.81 86.8 50.0 93.8

SUVR (WC) PSP 0.83 84.2 84.0 84.6

MSA-P 0.87 89.5 85.7 90.3

Control 0.84 89.5 66.7 93.8

SUVR (subWM) PSP 0.93 92.1 92.0 92.3

MSA-P 0.94 89.5 100 87.1

Control 0.85 92.1 50.0 100

SUVR (subGM) PSP 0.83 86.8 92.0 76.9

MSA-P 0.66 94.7 71.4 100

Control 0.87 92.1 83.3 93.8

Z score (cereGM) PSP 0.82 78.9 72.0 92.3

MSA-P 0.81 86.8 57.1 93.5

Control 0.89 81.6 100 78.1

Z score (WC) PSP 0.88 86.8 80.0 100

MSA-P 0.93 84.2 71.4 87.1

Control 0.91 92.1 100 90.6

Z score (subWM) PSP 0.97 97.4 96.0 100

MSA-P 0.98 97.4 85.7 100

Control 0.97 94.7 100 93.8

Z score (subGM) PSP 0.74 68.4 52.0 100

MSA-P 0.69 79.0 14.3 93.6

Control 0.70 52.6 83.3 46.9

The highest diagnostic performance parameters for the same ground truth label are marked in bold.

Abbreviations: PSP, progressive supranuclear palsy; MSA-P, multiple system atrophy, parkinsonian type; NFDL, normaliza-

tion-free deep learning; SUVR, standardized uptake value ratio; cereGM, cerebellar gray matter; WC, whole cerebellum;

subWM, subject-specific white matter; subGM, subject-specific gray matter.
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Figure 4. Consistency with the application of different spatial normalization approaches for the conventional

semi-quantitative analysis

(A) Consistency at the group level (training/validation sets) evaluated through Bland-Altman analysis. The x axis of the plot

displays the average SUVR of the MR-dependent and MR-free spatial normalization methods, and the y axis displays the

difference in SUVRs between them (MR-free minus MR-dependent). Dots indicate individual SUVR. The solid line

represents the average difference in SUVR between them, while the two dashed lines represent the 95% confidence

interval limits for the average difference. The intraclass correlation coefficient (ICC from the Bland-Altman analysis is

represented as ‘‘ICC’’, and ‘‘P’’ stands for the outcome of a one-sample t-test evaluating the mean difference in SUVRs.

(B) Consistency at the individual level assessed through predicted labels. Each semi-quantitative classifier displays two

rows of predicted labels: the first row represents the labels from the test1 set (MR-dependent), and the second row

corresponds to the labels from the test1add set (MR-free).Abbreviations: NFDL, normalization-free deep learning; PSP,

progressive supranuclear palsy; MSA-P, multiple system atrophy, parkinsonian type; SUVR, standardized uptake value

ratio; cereGM, cerebellar gray matter; WC, whole cerebellum; subWM, subject-specific white matter.
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18F-florbetaben) and tau (18F-flortaucipir and 18F-florzolotau) PET imaging, two recent studies in AD

demonstrated high concordance between semi-quantitative results obtained with the MR-free strategy

and those of MR-dependent normalization.39,40 However, it remains unclear whether this strategy is appli-

cable to the analysis of 18F-florzolotau PET imaging in PSP. The areas of tau accumulation in PSP are smaller

than in AD, which makes it more susceptible to inaccurate spatial normalization when measuring semi-

quantitative parameters of tau deposition in PSP. Unlike traditional semi-quantitative approaches and pre-

vious DL models in this field, our NFDL classifier achieved optimal classification performance without

requiring spatial normalization. Therefore, our proposed method has the potential for wider application

in practice, independent of structural MR images.

Reference-region-based intensity normalization is one of the pivotal confounding factors in the semi-quantita-

tive analysis of tau PET images and is particularly challenging in PSP due to the diffused tau distribution during

progression.4 Inappropriate reference areas can lead to underestimation of tau deposition. Our initial findings

Figure 5. Representative occlusion sensitivity maps for all labels

The color scale indicates the impact of the region in terms of classification.Abbreviations: PSP, progressive supranuclear

palsy. MSA-P, multiple system atrophy, parkinsonian type.
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indicate that the subject-specific reference region subWM surpassed atlas-based methods in terms of differen-

tiation. This observation aligns with earlier research on AD, which showed that SUVRs derived from parametric

estimation of reference signal intensity (PERSI) exhibit superior discriminative capabilities.31,32,41 It is crucial to

highlight that the fundamental rationale behind the efficacy of PERSI in PSP andMSA-P varies from its effective-

ness in AD. In PSP and MSA-P, the primary advantage stems from the removal of potential specific binding

events in the cerebellum. Conversely, in AD, the benefit arises from the enhanced stability of quantification

values attributed to the more expansive PERSI reference voxels in comparison to those in the cerebellum. How-

ever, the subject-specific reference region subGM in the current study exhibited unsatisfactory performance

comparing to the subject-specific reference region subWM. This discrepancy may be attributed to the progres-

sion of tau deposition in gray matter regions, such as the frontal lobe in PSP. Therefore, the utilization of subGM

as a reference region based on PERSI in PSP for interpreting tau PET imaging warrants further investigation.

Notably, the classification performances of all reference region-based semi-quantitative indices were inferior

to the reference-free NFDL model. The only exception was Z score (subWM) which was slightly superior to

theNFDLmodel.However, thegeneralizability of this approach in practice is relatively limiteddue to the reliance

on the individual MR image.

Another problem is the use of binary cut-offs for defining positive regions. While dichotomization is rele-

vant for patient-level diagnosis, values below the cut-off do not necessarily imply the absence of patholog-

ical tau accumulation. Previous studies in PSP have shown that the use of different cut-offs and inconsistent

criteria for classifying regional tau positivity can impact accuracy results.21,22 In this study, the NFDL model

demonstrated a lower false-negative rate (i.e., 4.0% and 5.6% for PSP, 14.3% and 25.0% for MSA-P in Test1
and Test2) than conventional methods without MR images (i.e., 24.0–36.0% and 5.6–61.1% for PSP, 28.6–

57.1% and 75.0–100% MSA-P in Test1add and Test2), indicating its potential for identifying tau deposition

below the detection thresholds of visual and/or semiquantitative analyses. Ultimately, this offers the pos-

sibility of identifying early stage disease.

Moreover, the differential diagnosis would be challenging for semi-quantitative parameters when an

elevated signal is present in overlapping regions (i.e., putamen and globus pallidum in PSP and MSA-P).

In the current study, a non-negligible percentage of patients with MSA-P were misdiagnosed as PSP by

semi-quantitative indices, especially when using the MR-free approach. This situation was significantly

improved when applying the proposed NFDL model. Notably, the patterns of tracer accumulation ex-

tracted from the model were consistent with both previous data obtained in MSA-P27 and the recon-

structed dynamic maps of tau propagation reported in postmortem studies in PSP.4 Although the reasons

underlying the retention of a tau PET tracer in an a-synucleinopathy remain unclear, this imaging modality

shows promise for improving the differential diagnosis between MSA-P and PSP.

Convolutional neural networks (CNNs) are well-established DL algorithms and have been widely applied in

medical-imaging classification. One advantage of CNNs is their ability to learn filters during the

Table 4. Correlations betweenNFDL-guided radiomic features derived from individually weighted tau PET images and clinical severity scores in PSP

patients

Median Mean

Standard

deviation Variance Minimum Maximum Skew Kurtosis Range Quantile_25 Quantile_75

MMSE R �0.111 �0.046 �0.027 �0.036 �0.008 �0.066 �0.068 �0.092 �0.066 �0.204* �0.012

P 0.236 0.622 0.774 0.701 0.935 0.481 0.471 0.326 0.480 0.028 0.897

MDS UPDRS-

III

R 0.095 0.138 0.122 0.135 �0.054 0.137 0.026 0.027 0.139 0.187* 0.124

P 0.305 0.135 0.187 0.144 0.561 0.137 0.778 0.775 0.133 0.041 0.179

H&Y scale R 0.045 0.069 0.073 0.112 �0.09 0.101 0.107 0.102 0.103 0.103 0.043

P 0.628 0.457 0.428 0.222 0.326 0.273 0.245 0.269 0.263 0.262 0.644

PSPrs R 0.157 0.042 0.002 �0.003 �0.035 0.066 �0.037 0.021 0.067 0.236* 0.013

P 0.089 0.649 0.986 0.971 0.71 0.479 0.691 0.818 0.473 0.010 0.892

The correlation between variables was evaluated using Pearson’s correlation coefficient. Statistically significant p values and corresponding correlation coeffi-

cients (R) are denoted with an asterisk (*, p < 0.05).

Abbreviations: MMSE, Mini-Mental State Examination; MDS-UPDRS-III, Movement Disorders Society Unified Parkinson’s Disease Rating Scale, part III; PSPrs,

progressive supranuclear palsy rating scale; H&Y, Hoehn and Yahr.
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preprocessing phase automatically. By directly inputting raw PET images into the model, significant sour-

ces of potential bias, such as spatial normalization, reference regions, selection of ROIs, and optimal cut-

offs, are eliminated. Therefore, the NFDL classifier described in our study meets the growing need for an

objective interpretation of tau PET images for clinical and research applications. Our model can also be

successfully applied in settings where experienced readers and MR imaging facilities are lacking.

One of the prominent advantages of in vivo tau PET imaging is that it serves as both a qualitative biomarker for

disease diagnosis and a quantitative biomarker for severity monitoring. Although the primary aim of the pro-

posed NFDL model was classification, the preliminary findings indicate that NFDL-guided radiomic features

significantly correlate with clinical scores, suggesting its potential additional role in disease severity assessment.

Further studieswith larger sample sizes are essential to validate and strengthen the reliability of thesepreliminary

findings. Future exploration with larger data incorporating clinical and pathological phenotypes may further

improve the results, and longitudinal data will be collected to validate its efficiency in the near future.

Midbrain atrophy, as observed on structural MRI, is regarded as a supportive imaging finding for diag-

nosing PSP42 and holds potential for the distinguishment of PSP and MSA-P.43 However, it is essential to

recognize that midbrain atrophy in PSP is thought to be a late-stage outcome of earlier molecular pro-

cesses and could occur in diseases other than PSP. Moreover, normal elderly individuals may also exhibit

midbrain atrophy.44 Recent research indicates that 18F-PI-2620 tau PET has the potential to enhance the

differentiation of PSP from age-matched healthy controls through both visual and quantitative evalua-

tions.45 Given the importance of cost-effectiveness in daily practice, it is crucial to compare the discrimina-

tive performance of these two imaging modalities in PSP and MSA-P cases.

In conclusion, the proposed NFDL method can serve as a practical and efficient assistant for the interpre-

tation of 18F-florzolotau PET imaging in PSP, as it allows simple and qualitative analysis without complex

procedures such as PERSI and related programs.

Limitations of the study

There are several limitations to this study. The single-center design and the focus on one PET tracer may

limit the external validity of the results. Another caveat is that diagnoses were made on clinical grounds,

and no postmortem findings are available. Although the clinical misdiagnosis rates of MSA as PSP (i.e.,

0%,46 2.9%47) and vice versa (i.e., 0%,46 3.9%,48 10.0%47) were relatively low, it is crucial to exercise caution

when interpreting the findings of this study. Despite the random augmentation procedure, overfitting is

still a concern due to the small sample size. In addition, we did not include visual readings due to the

lack of consensus among assessors. Finally, in analyzing different forms of atypical parkinsonism, we did

not include Lewy body dementia since tau deposition in Lewy body dementia can be attributed to AD-

related pathology.49 Furthermore, we did not include corticobasal degeneration because it is clinically

challenging to distinguish corticobasal degeneration from corticobasal syndrome associated with other

distinct pathologies.50

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

d METHOD DETAILS

B Clinical assessment

B Imaging acquisition

B Imaging preprocessing

B Normalization-free deep learning classifiers

B Conventional semi-quantitative classifiers

d QUANTIFICATION AND STATISTICAL ANALYSIS

d ADDITIONAL RESOURCES

ll
OPEN ACCESS

12 iScience 26, 107426, August 18, 2023

iScience
Article



SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.107426.

ACKNOWLEDGMENTS

We extend our sincere gratitude to all the participants and their families for their invaluable contribution to

this study. We would also like to express our appreciation to APRINOIA Therapeutics Co., Ltd. (Suzhou,

China) for providing the tosylate precursor of 18F-florzolotau. This work was supported by the National

Natural Science Foundation of China (grants 82272039, 82021002, 81971641, 82171252, 81701250,

82071200, and 81902282), the China Scholarship Council (grant 202006100181), the Research Project of

Shanghai Health Commission (grant 2020YJZX0111), the Clinical Research Plan of SHDC (grants

SHDC2020CR1038B and SHDC2020CR4007), the Science and Technology Innovation 2030 Major

Project of China (grant 2022ZD0211600), National Key R&D Program of China (grants 2022YFC2009902,

2022YFC2009900), Medical Innovation Research Project of Shanghai Science and Technology Commission

(grant 21Y11903300).

AUTHOR CONTRIBUTIONS

Conceptualization, C.Z., K.S., F.L., J.L., and C.C.; Methodology, C.C., J.L., M.W., J.H., L.C., and L.L.; Formal

Analysis, C.C. and J.L.; Investigation, J.L., X.L., F.J., P.W., J.Wu, J.G., Y.S., J.Wang, C.Z., F.L., Q.Z., and Y.G.;

Resources, C.Z. and J.Wang; Writing—Original Draft, J.L. and C.C.; Writing—Review & Editing, C.Z., K.S.,

T.-C.Y., F.L., Q.Z., M.B., and A.R.; Visualization, J.L. and C.C.; Supervision, C.Z., K.S., and F.L.; Project

Administration, C.Z., K.S., F.L., Y.G., and A.R.; Funding Acquisition, C.Z., F.L., Q.Z., J.L., and J.G.

DECLARATION OF INTERESTS

T.-C.Y. is an employee of APRINOIA Therapeutics Co., Ltd. (Suzhou, China). K.S. and A.R. received research

support from Novartis and Siemens Healthineers. M.B. received speaker honoraria from GE Healthcare,

Roche, and Life Molecular Imaging and is an advisor of Life Molecular Imaging. All other authors declare

no competing interests.

Received: March 30, 2023

Revised: May 28, 2023

Accepted: July 17, 2023

Published: July 20, 2023

REFERENCES
1. Sonni, I., Lesman Segev, O.H., Baker, S.L.,

Iaccarino, L., Korman, D., Rabinovici, G.D.,
Jagust, W.J., Landau, S.M., and La Joie, R.;
Alzheimer’s Disease Neuroimaging Initiative
(2020). Evaluation of a visual interpretation
method for tau-PET with 18F-flortaucipir.
Alzheimers Dement. 12, e12133. https://doi.
org/10.1002/dad2.12133.

2. Seibyl, J.P., DuBois, J.M., Racine, A., Collins,
J., Guo, Q., Wooten, D., Stage, E., Cheng, D.,
Gunn, R.N., Porat, L., et al. (2023). A visual
interpretation algorithm for assessing brain
tauopathy with 18-F MK-6240 positron
emission tomography. J. Nucl. Med. 122,
264371. https://doi.org/10.2967/jnumed.122.
264371.

3. Lin, H.-C., Lin, K.J., Huang, K.-L., Chen, S.-H.,
Ho, T.-Y., Huang, C.-C., Hsu, J.-L., Chang,
C.-C., and Hsiao, I.-T. (2023). Visual reading
for [18F]Florzolotau ([18F]APN-1607) tau PET
imaging in clinical assessment of Alzheimer’s
disease. Front. Neurosci. 17, 1148054.
https://doi.org/10.3389/fnins.2023.1148054.

4. Kovacs, G.G., Lukic, M.J., Irwin, D.J.,
Arzberger, T., Respondek, G., Lee, E.B.,
Coughlin, D., Giese, A., Grossman, M., Kurz,

C., et al. (2020). Distribution patterns of tau
pathology in progressive supranuclear palsy.
Acta Neuropathol. 140, 99–119. https://doi.
org/10.1007/s00401-020-02158-2.

5. Vogel, J.W., Young, A.L., Oxtoby, N.P., Smith,
R., Ossenkoppele, R., Strandberg, O.T., La
Joie, R., Aksman, L.M., Grothe, M.J., Iturria-
Medina, Y., et al. (2021). Four distinct
trajectories of tau deposition identified in
Alzheimer’s disease. Nat. Med. 27, 871–881.
https://doi.org/10.1038/s41591-021-01309-6.

6. Young, C.B., Winer, J.R., Younes, K., Cody,
K.A., Betthauser, T.J., Johnson, S.C., Schultz,
A., Sperling, R.A., Greicius, M.D., Cobos, I.,
et al. (2022). Divergent cortical tau positron
emission tomography patterns among
patients with preclinical Alzheimer disease.
JAMA Neurol. 79, 592–603. https://doi.org/
10.1001/jamaneurol.2022.0676.

7. Lu, J., Zhang, Z., Wu, P., Liang, X., Zhang, H.,
Hong, J., Clement, C., Yen, T.-C., Ding, S.,
Wang, M., et al. (2023). The heterogeneity of
asymmetric tau distribution is associated with
an early age at onset and poor prognosis in
Alzheimer’s disease. Neuroimage. Clin. 38,

103416. https://doi.org/10.1016/j.nicl.2023.
103416.

8. Liu, F.-T., Lu, J.-Y., Sun, Y.-M., Li, L., Yang,
Y.-J., Zhao, J., Ge, J.-J., Wu, P., Jiang, J.-H.,
Wu, J.-J., et al. (2023). Dopaminergic
dysfunction and glucose metabolism
characteristics in parkin-induced early-onset
Parkinson’s disease compared to genetically
undetermined early-onset Parkinson’s
disease. Phenomics 3, 22–33. https://doi.org/
10.1007/s43657-022-00077-8.

9. Lu, J., Wang, M., Wu, P., Yakushev, I., Zhang,
H., Ziegler, S., Jiang, J., Förster, S., Wang, J.,
Schwaiger, M., et al. (2023). Adjustment for
the age- and gender-related metabolic
changes improves the differential diagnosis
of Parkinsonism. Phenomics 3, 50–63. https://
doi.org/10.1007/s43657-022-00079-6.

10. Zhang, T., Wu, S., Zhang, X., Dai, Y., Wang, A.,
Zhang, H., and Tian, M. (2022). Spatial
normalization and quantification approaches
of PET imaging for neurological disorders.
Eur. J. Nucl. Med. Mol. Imaging 49, 3809–
3829. https://doi.org/10.1007/s00259-022-
05809-6.

ll
OPEN ACCESS

iScience 26, 107426, August 18, 2023 13

iScience
Article

https://doi.org/10.1016/j.isci.2023.107426
https://doi.org/10.1002/dad2.12133
https://doi.org/10.1002/dad2.12133
https://doi.org/10.2967/jnumed.122.264371
https://doi.org/10.2967/jnumed.122.264371
https://doi.org/10.3389/fnins.2023.1148054
https://doi.org/10.1007/s00401-020-02158-2
https://doi.org/10.1007/s00401-020-02158-2
https://doi.org/10.1038/s41591-021-01309-6
https://doi.org/10.1001/jamaneurol.2022.0676
https://doi.org/10.1001/jamaneurol.2022.0676
https://doi.org/10.1016/j.nicl.2023.103416
https://doi.org/10.1016/j.nicl.2023.103416
https://doi.org/10.1007/s43657-022-00077-8
https://doi.org/10.1007/s43657-022-00077-8
https://doi.org/10.1007/s43657-022-00079-6
https://doi.org/10.1007/s43657-022-00079-6
https://doi.org/10.1007/s00259-022-05809-6
https://doi.org/10.1007/s00259-022-05809-6


11. Weigand, A.J., Maass, A., Eglit, G.L., and
Bondi, M.W. (2022). What’s the cut-point?: a
systematic investigation of tau PET
thresholdingmethods. Alzheimer’s Res. Ther.
14, 49. https://doi.org/10.1186/s13195-022-
00986-w.

12. Young, C.B., Landau, S.M., Harrison, T.M.,
Poston, K.L., andMormino, E.C.; ADNI (2021).
Influence of common reference regions on
regional tau patterns in cross-sectional and
longitudinal [18F]-AV-1451 PET data.
Neuroimage 243, 118553. https://doi.org/10.
1016/j.neuroimage.2021.118553.

13. Boxer, A.L., Yu, J.T., Golbe, L.I., Litvan, I.,
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42. Höglinger, G.U., Respondek, G., Stamelou,
M., Kurz, C., Josephs, K.A., Lang, A.E.,

ll
OPEN ACCESS

14 iScience 26, 107426, August 18, 2023

iScience
Article

https://doi.org/10.1186/s13195-022-00986-w
https://doi.org/10.1186/s13195-022-00986-w
https://doi.org/10.1016/j.neuroimage.2021.118553
https://doi.org/10.1016/j.neuroimage.2021.118553
https://doi.org/10.1016/S1474-4422(17)30157-6
https://doi.org/10.1016/S1474-4422(17)30157-6
https://doi.org/10.1126/science.1255555
https://doi.org/10.1126/science.1255555
https://doi.org/10.1007/s00259-019-04374-9
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref16
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref16
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref16
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref16
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref16
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref16
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref16
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref16
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref16
https://doi.org/10.1186/s12859-020-03848-0
https://doi.org/10.1002/dad2.12264
https://doi.org/10.1002/dad2.12264
https://doi.org/10.1002/mds.29173
https://doi.org/10.1002/mds.29173
https://doi.org/10.1007/s00259-021-05673-w
https://doi.org/10.1007/s00259-021-05673-w
https://doi.org/10.1002/mds.28672
https://doi.org/10.1001/jamaneurol.2020.2526
https://doi.org/10.1001/jamaneurol.2020.2526
https://doi.org/10.1111/ene.13412
https://doi.org/10.1007/s43657-022-00051-4
https://doi.org/10.1007/s43657-022-00051-4
https://doi.org/10.1016/j.neuron.2020.09.042
https://doi.org/10.1016/j.neuron.2020.09.042
https://doi.org/10.1007/s00259-022-06104-0
https://doi.org/10.1007/s00259-022-06104-0
https://doi.org/10.1002/mds.29159
https://doi.org/10.1002/mds.29159
https://doi.org/10.1002/mds.26857
https://doi.org/10.1002/mds.26857
https://doi.org/10.3389/fnagi.2019.00249
https://doi.org/10.1002/mds.27029
https://doi.org/10.1002/mds.27029
https://doi.org/10.2967/jnumed.117.200006
https://doi.org/10.2967/jnumed.117.200006
https://doi.org/10.3389/fnins.2021.598234
https://doi.org/10.3389/fnins.2021.598234
https://doi.org/10.1016/j.neuroimage.2022.119763
https://doi.org/10.1016/j.neuroimage.2022.119763
https://doi.org/10.48550/arxiv.1708.04552
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref35
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref35
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref35
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref35
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref35
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref37
http://refhub.elsevier.com/S2589-0042(23)01503-1/sref37
https://doi.org/10.1016/j.neuroimage.2016.09.031
https://doi.org/10.1016/j.neuroimage.2016.09.031
https://doi.org/10.1002/alz.12668
https://doi.org/10.1002/alz.12668
https://doi.org/10.1007/s00330-023-09571-7
https://doi.org/10.1007/s00330-023-09571-7
https://doi.org/10.21037/QIMS-20-110
https://doi.org/10.21037/QIMS-20-110


Mollenhauer, B., Müller, U., Nilsson, C.,
Whitwell, J.L., et al. (2017). Clinical diagnosis
of progressive supranuclear palsy: The
movement disorder society criteria. Mov.
Disord. 32, 853–864. https://doi.org/10.1002/
mds.26987.

43. Heim, B., Krismer, F., and Seppi, K. (2021).
Differentiating PSP from MSA using MR
planimetric measurements: a systematic
review and meta-analysis. J. Neural. Transm.
128, 1497–1505. https://doi.org/10.1007/
s00702-021-02362-8.

44. Morelli, M., Arabia, G., Messina, D., Vescio,
B., Salsone, M., Chiriaco, C., Perrotta, P.,
Rocca, F., Cascini, G.L., Barbagallo, G., et al.
(2014). Effect of aging onmagnetic resonance
measures differentiating progressive
supranuclear palsy from Parkinson’s disease.
Mov. Disord. 29, 488–495. https://doi.org/10.
1002/mds.25821.

45. Messerschmidt, K., Barthel, H., Brendel, M.,
Scherlach, C., Hoffmann, K.T., Rauchmann,
B.S., Rullmann, M., Marek, K., Villemagne,
V.L., Rumpf, J.J., et al. (2022). 18F-PI-2620 Tau
PET improves the imaging diagnosis of
progressive supranuclear palsy. J. Nucl. Med.
63, 1754–1760. https://doi.org/10.2967/
jnumed.121.262854.

46. Joutsa, J., Gardberg, M., Röyttä, M., and
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study protocol was approved by the institutional review board of Huashan Hospital, a leading tertiary

care center in Shanghai, China. All participants or legal guardians provided written informed consent. The

study subjects were consecutively registered in the Progressive Supranuclear Palsy Neuroimage Initia-

tive.26 Clinical diagnoses were made by experienced movement disorder specialists according to currently

accepted guidelines (the 2017 MDS diagnostic criteria for PSP;42 the second consensus statement on the

diagnosis of MSA51) and in a blinded fashion with respect to tau PET imaging. The levels of diagnostic cer-

tainty (probable, possible, suggestive) and clinical predominance types (i.e., PSP with Richardson’s syn-

drome (PSP-RS), PSP with predominant gait freezing (PSP-PGF), PSP with predominant parkinsonism

(PSP-P)) were determined in patients with PSP according to the 2017 MDS diagnostic criteria.42 Controls

were cognitively unimpaired and had no significant neurological or psychiatric illnesses. They were a mix

of research volunteers recruited through advertisements without cognitive or movement complaints and

persons visiting the memory clinic with cognitive complaints but normal performance at neuropsycholog-

ical testing (i.e., ‘‘subjective cognitive decline’’52) with negative findings on amyloid PET imaging.53,54 The

details of controls are presented in Table S7.

The dataset was divided into two cohorts, depending on the availability of corresponding MR imaging

(Cohort I with MR images, Cohort II without MR images). Cohort I, which consisted of 148 patients

with PSP, 52 patients with MSA-P, and 45 controls, was subsequently divided into six splits (five for
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training/validation and one for testing (Test1)). The split was implemented with label stratification to mini-

mize intergroup differences in terms of clinical diagnoses, demographic characteristics, and disease

severity (see Table S1). Cohort II, which was used for additional testing (Test2), comprised 18 patients

with PSP, 8 patients with MSA-P, and 9 controls.

METHOD DETAILS

Clinical assessment

Patients with PSP andMSA-P who were taking antiparkinsonian medication were assessed after at least 12h

from the last dose. Cognitive function was assessed using theMMSE. The severity of motor dysfunction was

assessed using the MDS-UPDRS-III and the Hoehn and Yahr (H&Y) for patients with PSP and MSA-P. Dis-

ease severity in PSP was also characterized by PSPrs.

Imaging acquisition
18F-florzolotau was prepared in Huashan Hospital using a nucleophilic substitution reaction followed by

acid hydrolysis, utilizing with an 18F-multifunction synthesizer (Beijing PET Technology Co., Ltd., Beijing,

China). APRINOIA Therapeutics Co., Ltd (Suzhou, China) provided the tosylate precursor required for

the radiosynthesis.

PET images were acquired on a Siemens mCT Flow PET/CT scanner (Siemens, Erlangen, Germany) in

3-dimensional (3D) mode. A low-dose CT transmission scan was performed for attenuation correction.
18F-florzolotau was administered intravenously (370 MBq). 18F-florzolotau PET imaging was performed

over a 20-minute acquisition time (90–110 minutes). The images were reconstructed using a 3D ordered-

subset expectation maximization algorithm (6 iterations; 21 subsets; Gaussian filter, 3.5 mm; zoom, 2).

The reconstructed images had a matrix size of 256 3 256 3 148 and an effective voxel size of 1.59 3

1.59 3 1.50 mm.

High-resolution T1-weighted images were acquired in a 3.0-T horizontal magnet (Discovery MR750; GE

Medical Systems, Milwaukee, WI) using the following parameters: TE = 3.2 ms, TR = 8.2 ms, TI = 450 ms,

flip angle = 12�, acquisition matrix = 256 3 256 3 152, and voxel size = 1 3 1 3 1 mm.

Imaging preprocessing

For the development of the NFDLmodel, reconstructed PET images were directly used. For the semi-quan-

titative classifiers, spatial normalization and reference region-based intensity normalization were applied

for preprocessing. For subjects in Cohort I, reconstructed 18F-florzolotau PET scans were spatially normal-

ized to the Montreal Neurosciences Institute (MNI) standard space. This was achieved through Statistical

Statistical Parametric Mapping 12 (SPM12), implemented within MATLAB 9.5, using two distinct methods:

MR-dependent and MR-free. While for subjects in Cohort II, only the MR-free approach was applied due to

the absence of concurrent MR scans. More specifically, the MR-dependent preprocessing involved seg-

menting individual MR images into grey matter (GM), white matter (WM), and cerebrospinal fluid. After-

ward, the reconstructed 18F-florzolotau PET scans were resampled in the common space of the corre-

sponding MR images and subsequently normalized to the MNI standard space by utilizing the

transformation matrix derived from the MR segmentation.55 In theMR-free spatial normalization approach,

the unified algorithm in SPM12 (tissue probability map) was applied to the reconstructed PET images. All

spatially normalized PET images were then smoothed using a Gaussian kernel with a full-width at half-

maximum of 6 mm.26

In the next step, reference region-based intensity normalization was performed to obtain the SUVR maps.

In detail, four different reference regions, cerebellar gray matter (cereGM), whole cerebellum (WC), sub-

ject-specific white matter (subWM), and subject-specific grey matter (subGM) were selected. The cereGM

and WC regions were derived from the automated anatomical atlas three template (AAL3).56 These two

reference regions are widely used in AD12 since the cerebellum is considered to contain minimal tau fibrils

in AD. In PSP, the cereGM is a routinely selected reference region,21,22,25 while WC is rarely used due to the

potential deposition of tau in the dentate nucleus and cerebellar white matter as the disease advances.4

The subWM region and subGM region were defined using PERSI,31,32,41 a data-driven approach for count

normalization that identifies subject-specific reference regions. These two approaches leverage the advan-

tages of the lower variability of large reference regions while mitigating potential partial-volume effects.
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The subWM region has been effectively utilized in AD research31,32,41 while a recent study in PSP suggested

that GMmay offer more accurate semi-quantification in tau PET imaging compared toWM.33 To generate a

binary WM image, a threshold of 0.9 was applied to the WM probabilistic segmentation derived from in-

dividual T1 structural MR images. The spatially normalized PET images were then masked using each indi-

vidual’s binary WM image. Within this WM region, voxels were plotted as a histogram and fitted to a

bimodal Gaussian distribution using a non-linear trust region reflective method. The PERSI method is em-

ployed to identify voxels with contamination in higher-intensity peaks based on counts from adjacent

cortical tissues that exhibit confirmed 18F-florzolotau uptake. In contrast, lower-intensity peaks represent

a stable reference signal intensity. By excluding voxels found in higher-intensity peaks, the remaining vox-

els in lower-intensity peaks were utilized to establish a subject-specific reference region (subWM).31,32,41

The process for acquiring a subject-specific reference region (subGM) is fundamentally similar, with only

a minor variation. Instead of using WM probabilistic segmentation, GM probability probabilistic segmen-

tation is employed, derived from individual T1-weighted MR images. As PERSI is dependent on MR, its

application was limited exclusively to Test1.

Normalization-free deep learning classifiers

The training pipeline was implemented using PyTorch Lightning,57 whereas data transformations and

network architectures were developed with MONAI.58 Five-fold cross-validation was used to evaluate

different design and hyperparameter options, and the model characterized by the highest validation F1

score was selected as the most appropriate classifier. The development process for the deep learning-

based classifier unfolded as described below.

Training pipeline

The training pipeline was implemented using PyTorch Lightning.57 With a child class of the LightningDa-

taModule, the training, validation, and test datasets with their respective data transforms and augmenta-

tions were set up, and the corresponding DataLoaders were initialized. With a child class of the Lightning-

Module, the network architecture, loss, metrics, and optimizer were set up, and the training, validation, and

test steps were defined. We used MONAI,58 a PyTorch based framework for medical imaging, for data

transformations and implementing network architectures.

Optimal hyperparameter selection

To identify the optimal classifier with the highest F1 score (the harmonic mean of precision and recall), we

evaluated different design and hyperparameter choices.

First, we tested two options for the intensity transform that was applied to the samples before feeding them

into the network. The first option was intensity scaling where the input was scaled to values between 0.0 and

1.0. The second option was intensity normalization where themean of the input is subtracted from the input

and the result is divided by standard deviation of the input, leading to an output with a mean of 0.0 and a

standard deviation of 1.0.

Second, to overcome overfitting on the training data, we compared the influence of several random data

augmentations on the network’s validation performance. The following random data augmentations were

tested: addition of random Gaussian noise, random bias fields,59 random contrast adjustment, random

Gaussian smoothing, application of random affine or elastic transformations, and random coarse shuffle

regularization.60

Third, we evaluated network architectures using different depths from the family of the DenseNets,35

EfficientNets,61 and Squeeze-and-Excitation Networks,62 which were adapted for 3D inputs.

Finally, we tested three different optimizers, Adam,36 AdamW,63 and Novograd64 implemented in

MONAI.58

In addition to the previously described design options, we used the following fixed parameters during each

run: a batch size of eight, a learning rate of 3e-4 and a weight decay of 1e-8. For each option, five-fold cross-

validation was run to get more accurate results. The experiments were conducted on a server equipped

with an AMD Ryzen Threadripper 3990X 64-core CPU, 256 GB RAM, and an NVIDIA GeForce RTX 3090

Graphics Card.
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Occlusion sensitivity maps

Occlusion sensitivity maps65 were computed to visualize which regions in the image are important for the

model’s classification decision. Additionally, NFDL-guided radiomic features (first-order statistical fea-

tures), including median, mean, standard deviation, minimum, maximum, quantile, range, variance,

skew, and kurtosis, were extracted from the individually weighted tau PET images calculated bymultiplying

the raw SUV image with the individual occlusion sensitivity map.

Conventional semi-quantitative classifiers

Regional level criteria for positive findings on 18F-florzolotau PET imaging

The red nucleus, subthalamic nucleus, raphe nuclei, globus pallidus, and putamen were utilized to identify

PSP.4,21,26 The raphe nuclei was generated from AAL3,56 and the others were defined according to MNI

PD25 template.66 The last two ROIs (globus pallidus, putamen) were also applied for MSA-P.27 Receiver

operating characteristic (ROC) curve analysis and Youden’s J statistic (J=sensitivity+specificity-1) were

used to determine the optimal cut-off points (i.e., the SUVR value corresponding to the maximum J value)

for 18F-florzolotau positivity at the regional level in the training/validation datasets. Patients with PSP and

MSA-P were merged to define 18F-florzolotau positivity in the globus pallidus and putamen,21,27 while

MSA-P and control were merged to define 18F-florzolotau negativity in all other ROIs. Regional SUVR

Z-scores were calculated based on controls included in the training/validation sets of Cohort I using the

following formula: [(individual SUVR - mean SUVR in controls)/standard deviation of the SUVR in controls],

and a regional Z-score R 2 was considered positive as suggested by prior research.11,21,26

Criteria for individual classification

Previously reported criteria for global 18F-florzolotau positivity21,22,26 were applied based on optimal cut-

off SUVRs or a Z-score R 2 for classification. Subjects were classified as PSP when regional positivity was

found in at least one of the following three ROIs, that is red nucleus, subthalamic nucleus, and raphe nuclei.

Subjects were classified as MSA-P when regional positivity was only observed in either the globus pallidus

or the putamen or both. When all five ROIs were found to be negative, subjects were classified as controls.

QUANTIFICATION AND STATISTICAL ANALYSIS

Chi-square test, Kruskal-Wallis test and one-way analysis of variance (ANOVA) were used to examine the

demographic and clinical variables differences among the training/validation sets and test set in Cohort

I. Based on the individual classification labels derived from the methods mentioned earlier, we assessed

the classification performance of each method by calculating the area under the ROC curves, accuracy,

sensitivity, specificity, and confusion matrices. Specifically, ROC curve analyses were conducted to distin-

guish PSP from the combined group of MSA-P and controls, MSA-P from the combined group of PSP and

controls, and controls from the combined group of PSP and MSA-P.

The discrepancy between semi-quantitative measures obtained with different spatial normalization

methods was first examined in the training/validation sets at the group level using (1) ICC, and (2) the

one-sample t-test for the mean difference of SUVRs. It was also examined in the test sets in a head-to-

head manner at the individual level using Cohen’s kappa coefficients for the classification (Test1 and

Test1add). The Test1add set consisted of the same subjects in the Test1 set but with MR-free spatial

normalization.

The correlations between NFDL-guided radiomic features and clinical scores for severity, as well as the as-

sociations between NFDL-guided radiomic features and the SUVR values were assessed using Pearson’s

correlation analysis. The analyses were carried out in IBM SPSS Statistics for Windows, version 23 (IBM

Corp., Armonk, NY, USA), and a P value smaller than 0.05 was considered significant.

ADDITIONAL RESOURCES

Not applicable.
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