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Simple Summary: In canine urothelial carcinoma, the BRAF gene is frequently mutated (V595E).
To detect this mutation, urine or tissue samples are currently tested by PCR. Recent advances in
digital pathology and the power of artificial intelligence (AI) have opened up new possibilities for
the detection of genetic alterations through AI histology. This new approach offers a wide range of
new opportunities in the field of diagnostic and predictive tumour marker detection. The aim of this
study was to test the efficacy of AI histology to predict the presence of the BRAF mutation in canine
bladder carcinomas and to assess its intratumoral heterogeneity. This is the first study to utilise AI
histology to predict BRAF mutational status in canine urothelial cell carcinomas.

Abstract: In dogs, the BRAF mutation (V595E) is common in bladder and prostate cancer and
represents a specific diagnostic marker. Recent advantages in artificial intelligence (AI) offer new
opportunities in the field of tumour marker detection. While AI histology studies have been con-
ducted in humans to detect BRAF mutation in cancer, comparable studies in animals are lacking.
In this study, we used commercially available AI histology software to predict BRAF mutation in
whole slide images (WSI) of bladder urothelial carcinomas (UC) stained with haematoxylin and eosin
(HE), based on a training (n = 81) and a validation set (n = 96). Among 96 WSI, 57 showed identical
PCR and AI-based BRAF predictions, resulting in a sensitivity of 58% and a specificity of 63%. The
sensitivity increased substantially to 89% when excluding small or poor-quality tissue sections. Test
reliability depended on tumour differentiation (p < 0.01), presence of inflammation (p < 0.01), slide
quality (p < 0.02) and sample size (p < 0.02). Based on a small subset of cases with available adjacent
non-neoplastic urothelium, AI was able to distinguish malignant from benign epithelium. This is
the first study to demonstrate the use of AI histology to predict BRAF mutation status in canine UC.
Despite certain limitations, the results highlight the potential of AI in predicting molecular alterations
in routine tissue sections.

Keywords: urothelial carcinoma (UC); BRAF; artificial intelligence (AI); histology; canine; PCR
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1. Introduction

Urothelial cell carcinoma (UC) is the most common malignant tumour affecting the
canine lower urinary tract [1–6]. Since these tumours are not only highly invasive and
metastatic but also typically located at the trigonum of the bladder, treatment options
are limited, and the prognosis remains guarded to poor [4,6,7]. Scottish Terriers are at an
extraordinarily increased risk for developing UC (>20-fold higher than other breeds), and
Shetland sheepdogs, West Highland White Terriers and other terriers are also known to be
predisposed [2]. Other risk factors for the development of UC include female sex and being
spayed or neutered [2,3]. The increased risk for certain breeds to develop UC strongly
suggests an underlying genetic basis [1,2,4–6,8,9]. In recent years, it has been shown that
the V595E mutation in BRAF, the canine homolog to human BRAF V600E, occurs in up to
87% of canine urinary bladder carcinomas, and known high-risk dog breeds are particularly
frequently affected [1,3,10–12]. The BRAF gene encodes the BRAF protein, which plays
a key role in the MAP kinase/ERK signalling pathway and regulates important cellular
functions such as cell growth, differentiation, proliferation, senescence, and apoptosis [13].
In humans, mutations in BRAF frequently occur in various tumour types, such as melanoma,
thyroid carcinoma, and colorectal carcinoma, and it has been shown that the BRAF mutation
can show inter- and intratumoral heterogeneity [1,14–17]. Very recently, it has been shown
that in addition to the high prevalence of BRAF mutation in neoplasia of the lower urinary
tract and the prostate of the dog, the BRAF V595E variant is frequent in canine papillary oral
squamous cell carcinomas [18]. However, it is rarely identified (melanocytoma, peripheral
nerve sheath tumour) or absent in other tumour types of dogs [10]. Of note, the BRAF
mutation is rarely observed in human UC, although UC in dogs and the muscle-invasive
form of UC in humans share many histopathological similarities [2,4–8,19–23]. The reasons
behind this disparity have not yet been elucidated conclusively. Furthermore, the prognostic
relevance of BRAF mutations in canine UC and the identification of driver genes in UC
without BRAF mutations remain to be determined [24].

In dogs, detection of BRAF V595E mutation is typically carried out by PCR testing
and is primarily used as a diagnostic marker to detect carcinomas of the urinary tract or
prostate [25,26]. While PCR testing is considered highly specific, it is important to be aware
of false negative PCR results depending on the quality and heterogeneity of the tested urine
or tissue [25]. The test result also fails to provide spatial information in heterogeneous
tumour tissue and benign adjacent tissue.

To address these limitations, digital pathology offers a promising solution. Computer-
assisted analysis of whole slide images (WSI) allows us to efficiently evaluate cancer
tissue sections in an objective, quantitative, and reproducible way. Moreover, it can assess
complex features like spatial interactions, which are challenging to evaluate through routine
light microscopy [27]. Artificial intelligence (AI) has proven to be extremely powerful
for extracting and assessing quantitative information from digital histology [28]. Using
AI as a tool to detect tissue markers and to classify tumours, e.g., based on morphologic
characteristics like tumour grade, level of invasion, and cellular pleomorphism, has resulted
in a rapid evolution and expansion of digital pathology [27]. AI can also be applied to
detect molecular features, such as the presence of specific genetic alterations and their
possible heterogeneity in tissue [29,30].

In veterinary science, the power of AI in pathology and imaging has recently gained
a great deal of attention and continues to do so [31–34]. However, only a few animal
studies in this field are currently available. In order to test the options of AI to predict
specific molecular alterations on routine, HE-stained tissue sections, a specific genetic
mutation, and the associated disease needs to be defined first. In the field of canine cancer,
the most characterised and most frequently tested somatic mutations are c-kit in mast
cell tumours and BRAF in bladder and prostate cancer [3,11,12,35–37]. The use of AI to
predict c-kit mutation has been reported recently [38]. Considering the lack of any AI
histology studies on BRAF in dogs and with the availability of a specific PCR test for this
mutation, we selected this gene for testing the options of AI. In recent years, AI has been
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successfully used to predInict BRAF mutation status with high accuracy in human tumours,
such as melanoma, thyroid carcinoma and colorectal carcinoma from radiological scans or
WSIs [14,16,39–43]. The present study aimed to test AI histology to predict the presence of
the BRAF V595E mutation in canine urinary bladder urothelial carcinomas.

2. Materials and Methods
2.1. Case Selection

The pathology archives of the Institute of Animal Pathology were searched for cases
of primary carcinomas of the canine bladder. Additional cases were provided in collab-
oration with the Institute of Veterinary Pathology in Zurich, Switzerland; Laboklin Bad
Kissingen, Germany; Synlab Vet Animal Pathology Munich, Munich, Germany and the
Small Animal Clinic Hofheim, Hofheim, Germany. Of 157 dogs, 177 haematoxylin and
eosin (HE) stained slides of tumour tissue and/or benign bladder tissue were available for
analysis. For eight dogs, two or more WSI were selected per case, as the different slides
contained either variable amounts of neoplastic and benign tissue or differed significantly
in tumour histomorphology. All slides were scanned using the NanoZoomer S360MD Slide
scanner system (Hamamatsu Photonics, Shizuoka, Japan). Signalment data were obtained
and included breed, sex, neutering status, and age. All cases were reviewed and classified
by a single pathologist as ‘highly valuable’ (defined as transmural bladder sections with
well-preserved histomorphology), ‘standard’ (non-transmural section with well-preserved
histomorphology), or ‘poor’ (small sample size or ill-preserved tissue). Additionally, the
tumours were classified according to their morphology (‘conventional UC’: predominantly
urothelial differentiation; versus ‘non-conventional’: urothelial differentiation minor or
absent); invasion (‘non-invasive’: tumour borders little or non-invasive; versus ‘invasive’:
clear tumour infiltration into lamina propria or lamina muscularis), and associated inflam-
mation (‘inflammatory’: moderate to large numbers of leukocytes infiltrate the tumour
parenchyma focally, multifocally, or diffusely; versus ‘non-inflammatory’: none or low
numbers of infiltrating leukocytes).

2.2. PCR

Extraction of DNA from the paraffin-embedded formalin-fixed (FFPE) samples was
performed using the QIAamp® DNA FFPE Tissue Kit (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s instructions. Isolated DNA was examined for the presence of
the BRAF mutation c.1784T > A by digital droplet polymerase chain reaction (ddPCR)
using a mutation-specific TaqMan® assay as described by Mochizuki et al. [25]. Analysis
was performed using DropletReader (Bio-Rad, Feldkirchen, Germany) and QuantaSoft™
Software (Bio-Rad, Feldkirchen, Germany).

2.3. AI Histology

For the digital histological analysis, commercially available software was used (Visio-
pharm 2022.11, Hørsholm, Denmark). All histological analyses, as well as deep learning
training, were based on the WSI of HE stained tissue sections on glass slides. The slides
were assessed in the following workflow using three different automated analytic programs
designed specifically for this project (Figure 1).
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Figure 1. Workflow of the performed AI training and analysis for BRAF mutation prediction on
WSI of HE-stained canine urothelial carcinomas. The images represent a case of bladder UC from
an 11-year-old female neutered Jack Russell Terrier with positive BRAF PCR. This figure shows the
output of threshold 0.6.

(i) Tissue detection.

Based on training slides (n = 8), decision forest classification at magnification 0.5× was
used to detect any HE-stained tissue on the slide and to outline the generated tissue label
as a region of interest (ROI). Where needed, manual corrections were performed, which
were minor in the majority of cases.

(ii) Tissue and tumour segmentation.

Based on training slides (n = 42) and 540 K iterations, deep learning (U-Net) classifica-
tion at magnification 3× was used to separate tumour parenchyma from the stroma and
non-tumour tissue and to outline the generated parenchyma label as ROI. On all slides,
manual corrections were performed where needed, which were minor in non-invasive and
major in highly invasive or poor-quality tumours. The area of this ROI was then measured
in an automated way to evaluate the sample size.

(iii) BRAF mutation prediction

The case selection was first divided into a training and a validation set (Table 1).
Assuming that the ‘high quality’ cases would be most valuable for AI training, these
samples were preferred for the training set. Otherwise, the division into the two groups
was performed randomly. The training set included cases of bladder UC from 73 dogs
(81 slides) from 30 different breeds. The validation set consisted of 84 cases (96 slides) of
bladder UC from 34 different breeds. Of these validation cases, 34 were classified as high
quality, 19 as standard, and 43 as poor. Fifty were classified as predominantly urothelial
and 46 as minor or absent-urothelial differentiated. Thirty-four tumours were categorised
as infiltrative, 23 as little or non-infiltrative, and for 39 tumours, no classification could be
achieved due to a small sample size or poor quality.
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Table 1. Overview of the n = 177 WSI used for AI training and analysis. Abbreviations: conv.:
conventional (urothelial); NA: not assessable; ROI: Region of interest (i.e., tissue area used for training
or analysis).

Training Set Validation Set

No. of slides 81 96
PCR positive negative positive Negative

37 44 69 27
Mean ROI 256 ± 135 mm2 (entire tissue section) 14 ± 3 mm2 (epithelium only)

Quality high standard poor high standard poor
80 1 0 34 19 43

PCR positive 37 0 0 27 15 27
PCR negative 43 1 0 7 4 16
Differentiation conv. non-conv. conv. non-conv.

71 10 50 46
PCR positive 36 1 40 29
PCR negative 35 9 10 17

Invasion present absent NA present Absent NA
44 36 1 34 23 39

PCR positive 22 15 0 23 19 27
PCR negative 22 21 1 11 4 12
Inflammation present absent NA present Absent NA

32 49 0 39 56 1
PCR positive 15 22 0 28 40 1
PCR negative 17 27 0 11 16 0

Based on the 81 training slides and 277 K iterations, deep learning (U-Net) classification
at magnification 2× was used to predict BRAF mutation as either positive or negative. For
the training, the entire tissue section was either labelled as positive or negative, depending
on the corresponding PCR result. Based on the generated deep learning feature, we then
used three different threshold classifications to predict BRAF mutation for each pixel in the
previously defined tumour parenchyma ROI of validation cases:

(1) Threshold 0.6: positive (≥0.6 probability), negative (≥0.6 probability) or uncertain
(<0.6 positive and <0.6 negative);

(2) Threshold 0.7: positive (≥0.7 probability), negative (≥0.7 probability) or uncertain
(<0.7 positive and <0.7 negative);

(3) Threshold 0.5: positive (≥0.5 probability) or negative (≥0.5 probability).

The analytic programs generated the following outputs for the validation set: area
of assessed tumour parenchyma (mm2) (multiple tissue fragments were summarised);
absolute (mm2) and relative (%) tumour area predicted as BRAF positive, negative and, for
thresholds 0.7 and 0.6, uncertain (Figure 1). The final AI-BRAF prediction was defined as
either positive or negative based on the predominant label (e.g., tumour labelled as 47%
BRAF positive, 45% BRAF negative, 8% uncertain is overall predicted as AI-BRAF positive).
In order to assess whether the AI-BRAF prediction was correct, the corresponding PCR
result available for each tumour was used as a gold standard and compared with the AI
values. If the AI-BRAF assessment and the corresponding PCR result did not match, the
case was interpreted to be incorrect by AI-based BRAF prediction.

Once labelled, the slides were reviewed in order to detect any correlation between
AI-based BRAF prediction and histomorphology.

In 15 cases, benign urothelium adjacent to the tumour was present on the WSI. For
these cases, we subdivided the slide into benign only and tumour only and performed the
AI analyses for these two areas separately.

2.4. Statistical Analysis

A two-sample t-test was performed to compare the sample size (i.e., assessed tissue
area defined as the region of interest) with the correct or incorrect prediction of the AI tool.
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The chi-square test was used to test for associations between AI-based BRAF prediction
and quality (poor, standard, excellent), morphology (conventional urothelial versus non-
conventional differentiation), inflammation (present or absent), and invasion (present or
absent). For both tests, p values < 0.05 were considered to indicate a statistically significant
difference. Statistical analysis was performed with NCSS 2022 (v22.04, Kaysville, UT, USA).

3. Results

Histologic analysis of the validation set confirmed the presence of well-preserved
(standard and high quality) tissue in 53 out of 96 (55%) bladder UC tissue slides (Table 1)
examined. For a large proportion (34/53; 64%), tissue samples consisted of transmural
bladder sections, which were defined as high-quality histology sections. The remaining
slides were of reduced tissue quality, with the presence of tissue artefacts (most commonly
tissue folds, suboptimal tissue fixation) or a very small sample size of a few mm2 or
less. Tumour differentiation was conventional urothelial in approximately half of the
cases (50/96), whereas the other half were defined as non-conventional UC based on
histomorphology. Invasion into underlying lamina propria or tunica muscularis was
evident in the majority (34/57; 60%) of assessable tumour slides, whereas the remaining
cases were non- or poorly invasive with primarily pushing and smooth tumour borders.
Stromal inflammation was present in 39 out of 95 (41%) assessable cases, characterised by
mild to moderate, predominantly lymphoplasmacytic infiltrates.

After the initial histomorphological examination, the designed AI tool was used
to predict BRAF mutation on all available (n = 96) WSI. The PCR testing identified the
majority of cases as positive (69/96, 72%, versus 27/96, 28%). The three different (0.5, 0.6
and 0.7 deep learning classifier probability) threshold analyses for mutation prediction
yielded different tissue areas predicted to be mutation positive, negative, or uncertain (for
thresholds of 0.6 and 0.7). However, the final prediction of the entire WSI remained the
same when running these three analytical programs. Thus, the three threshold analyses
identically predicted the respective tumours as mutation-positive or negative overall, even
though the relative positive vs. negative areas differed for each threshold.

When comparing the AI-based BRAF prediction of each WSI with the corresponding
PCR result, 57 out of 96 (59%) showed identical results, which was interpreted as the correct
prediction (Table 2). False positive predictions were observed in approximately one-third
of the negative tested cases (10/27; 37%), while false negative predictions occurred in 42%
of the positive cases (29/69). Overall, the specificity (SP) of the AI mutation prediction was
63%, and the sensitivity (SE) was 58%.

Table 2. Comparison of the AI-based BRAF prediction of each case with the corresponding PCR result.

AI Prediction PCR Result: BRAF
Positive

PCR Result: BRAF
Negative Total No. Cases

BRAF positive 40 10 50
BRAF negative 29 17 46
Total no. cases 69 27 96

The sensitivity increased significantly when the WSI of reduced quality (i.e., ill-
preserved histomorphology or small sample size) were excluded (Table 3 and Supplemental
Table S1). The best AI prediction performance was achieved for the high-quality samples
(n = 34) with a sensitivity of 89% and specificity of 43%. Sensitivity was reduced to 47%
and 33% for standard (n = 19) and poor quality (n = 43) WSI, respectively. In contrast,
specificity was higher in WSI of reduced quality, ranging from 69% (poor quality) to 75%
(standard sample).



Animals 2023, 13, 2404 7 of 16

Table 3. Comparison of AI-based BRAF mutation prediction with confirmed PCR result based on
specific histomorphological features. Shown in brackets is the number of cases where the PCR result
matched the AI result. Abbreviations: SE: sensitivity; SP: specificity; stand: standard.

AI Prediction No. Cases

Quality High Stand Poor

BRAF positive 28 (24) 8 (7) 14 (9)
BRAF negative 6 (3) 11 (3) 29 (11)

SE [%]: 89 SE [%]: 47 SE [%]: 33
SP [%]: 43 SP [%]: 75 SP [%]: 69

Urothelial differentiation Present Absent
BRAF positive 42 (34) 8 (6)
BRAF negative 8 (2) 38 (15)

SE [%]: 85 SE [%]: 21
SP [%]: 20 SP [%]: 88

Invasive tumour front Present Absent
BRAF positive 10 (8) 19 (16)
BRAF negative 24 (9) 4 (1)

SE [%]: 35 SE [%]:84
SP [%]: 82 SP [%]: 25

Inflammation Present Absent
BRAF positive 11 (8) 39 (32)
BRAF negative 28 (8) 17 (9)

SE [%]: 29 SE [%]: 80
SP [%]: 73 SP [%]: 56

When comparing the performance of the AI prediction with tumour histomorphology,
the level of urothelial differentiation was highly relevant (p < 0.01) (Table 4). WSI of
conventional UC with evident urothelial morphology (n = 50) had a high sensitivity of 85%,
which dropped to 21% in cases with ill-defined or absent urothelial differentiation (n = 46).
The opposite was true when comparing the specificity, which was significantly higher in
non-conventional (88%) compared to conventional (20%) UC. With regard to the level of
tumour invasiveness, the AI prediction was highly sensitive (SE 84%) for non-invasive
tumours and highly specific (SP 82%) for invasive UC. Sensitivity and specificity were,
however, low for invasive (n = 34; SE 35%) and non-invasive (n = 23; SP 25%) tumours,
respectively. The remaining cases were not assessable for the level of invasion due to their
small size or reduced quality. Considering tumour inflammation, the AI test sensitivity
was low (SE 29%) for inflamed UC (n = 39), whereas the opposite was true for those with
associated inflammation (n = 56) (SE 80%). The specificity was higher (SP = 73%) for
inflamed UC when compared to non-inflamed tumours (SP 56%). In one case, the level of
inflammation was not assessable due to poor quality.

Table 4. Assessing the AI tool’s reliability for correct BRAF mutation prediction based on specific
features across different sample cohorts. A Chi-square test was performed for categorical data
(urothelial differentiation, inflammation, slide quality, invasive growth, and mutation status) and
a two-sided t-test for continuous data (sample size). p values of <0.05 were considered significant
(in bold).

Feature All Samples
Standard and
High-Quality
Samples Only

High-Quality
Samples Only

Urothelial differentiation <0.01 >0.1 >0.9
Inflammation <0.01 <0.03 >0.7
Slide quality <0.02 NA NA

Sample size (ROI) <0.02 >0.08 >0.3
Invasive growth >0.08 >0.3 >0.2

Mutation status (PCR) >0.6 >0.1 <0.02
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Independent of the histomorphological quality, sample size played a significant role
in the AI test reliability (p < 0.02) (Table 4). This effect was most evident and beneficial
when investigating BRAF mutation-positive cases where a larger sample size correlated
with a higher level of correct prediction (p < 0.003) (Supplemental Table S2). In contrast,
BRAF-negative tumours had a tendency for false positive AI predictions with increasing
sample size (p > 0.3). Test reliability also depended significantly on tumour differentiation
(p < 0.01), presence of inflammation (p < 0.01), slide quality (p < 0.02) and sample size
(p < 0.02).

In addition to the relative and overall BRAF mutation prediction, the AI assessment
enabled the visualisation of the intratumour mutation heterogeneity, which allowed the
investigation of the correlation of BRAF mutation with tumour histomorphology. As seen
above for the different tumour classes, positive BRAF mutation prediction was associated
with tumour regions characterised by papillary growth, a smooth and pushing rather than
invasive tumour front, and urothelial differentiation (Figures 2 and 3). Histomorphological
characteristics which tended to correlate with a negative BRAF mutation prediction were
the following: solid tumour growth or divergent non-urothelial differentiation, invasive
growth, pronounced tumour inflammation, and poor tissue quality, including artefacts due
to squeezing, inadequate preservation, and tears (Figure 3). Tumour areas predicted to be
uncertain if the mutation is present or absent were commonly observed at the interface
of areas predicted as positive and negative and frequently showed a variety of different
features of both the aforementioned groups.
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Figure 2. A papillary poorly invasive conventional urothelial carcinoma of a 9-year-old female
neutered Scottish Terrier positive for BRAF mutation by PCR that was accurately predicted by
AI histology. Labelling: red: BRAF positive; blue: BRAF negative; yellow: uncertain. Threshold
classification 0.6. Bar indicates 1 mm.

In addition to the direct correlation of AI-based BRAF mutation prediction and tu-
mour histomorphology, the spatial visualisation of mutation prediction was also valuable
for the comparative investigation of benign and neoplastic urothelium. For n = 15 WSI
of the validation set, benign urothelium adjacent to the tumour was available. All but
one case was PCR tested mutation positive. The majority (11/14; 79%) of these cases
were correctly predicted to bear the mutation based on AI. In six of these PCR-confirmed
and AI-predicted positive cases, AI classified benign urothelium as mutation-negative
(Figure 4). One such case represented a conventional papillary UC from a Scottish Terrier,
where the AI prediction correctly labelled the tumour as mutation-positive and furthermore
classified small foci of dysplasia in the adjacent urothelium as positive, while morpho-
logically unremarkable benign urothelium remained negative (Figure 3). The interface of
the mutation-positive dysplastic foci and the mutation-negative benign urothelium was
labelled as BRAF-uncertain. The ability of the AI tool to distinguish malignant from benign
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urothelium was confirmed in another case of BRAF-mutated UC of a Flat Coated Retriever,
where the positive prediction was limited to neoplastic growth (Figure 5).
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Figure 3. AI prediction of BRAF mutation on two cases of UC with different mutation status as con-
firmed by PCR. The labelling is indicated separately for the three different threshold classifications
(0.5 to 0.7). Note that BRAF mutation negative labelling is changing to an uncertain label with an
increasing threshold. (A) Non-invasive papillary UC with predominant positive labelling correctly
predicted as mutation positive. Bar indicates 1 mm. (B) Adjacent benign tissue of (A). Bar indi-
cates 0.5 mm. Benign flat urothelium is labelled negative, whereas Brunn nests are labelled positive.
(C) Transmural highly invasive UC with predominant negative labelling correctly predicted as mutation
negative. Bar indicates 1 mm. Labelling: red: BRAF positive; blue: BRAF negative; yellow: uncertain.Animals 2023, 13, x FOR PEER REVIEW  10  of  17 
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Figure 4. Error bar chart with columns representing mean group values and an indication of the
standard error of the mean (SEM). In a small series (n = 14) of BRAF-mutated UC with adjacent benign
urothelium, the level of mutation prediction (indicated as a percentage of BRAF positive labelling)
differs, and AI is able to distinguish between tumour (BRAF positive) and benign (presumably BRAF
negative) tissue. As a mean, benign tissue is correctly labelled as mutation negative (i.e., <50% BRAF
positive) when using 0.6 and 0.7 AI threshold classifiers.
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Figure 5. A papillary urothelial carcinoma of a 9-year-old Flat-coated Retriever that tested positive for
BRAF mutation by PCR and was correctly predicted by AI histology. The mutation is predicted to be
present in the neoplastic growth, whereas adjacent benign urothelium is labelled mutation-negative
(threshold classification 0.6). Labelling: red: BRAF positive; blue: BRAF negative; yellow: uncertain.
Bar indicates 1 mm.

4. Discussion

Although AI and machine learning (ML) offer various promising advantages when
compared to the routine histopathological examination of tumour tissue by a single pathol-
ogist, there are a number of significant challenges to their implementation in practice. In
contrast to the defined and reproducible histomorphological parameters (e.g., level of
invasion, cell or nuclear size, mitotic activity), the features which are relevant for AI-based
decisions often remain unknown. This can pose a challenge to the interpretation and
reproduction of results generated by AI. In the context of histology, it is key not to rely
solely on AI results, but to consider them together with histomorphology. It is well known
that the performance of AI models increases with the size and diversity of the training set.
However, on occasions, the available dataset may only be relatively small, especially when
dealing with rare tumours and/or subtypes. Another crucial factor is the division of the
collection of WSIs into a training set and a validation set, and a large discrepancy between
these two sets (such as an imbalance in the distribution of histological subtypes) can lead
to poor results. In addition to the level of tissue section preparation, the quality of HE
staining (staining depth, uniformity, and presence of dye impurities) and the imaging scan
of the section are also factors affecting AI training and interpretation [44–46]. Therefore, the
selection of one or multiple different slide scanners, scan resolution, and staining quality is
relevant for AI-based histology studies [42,47–49]. For the present study, the AI tool was
designed based on the conditions of a single institution (Institute of Animal Pathology,
University of Bern), with one specific scanner (NanoZoomer S360MD, Hamamatsu Pho-
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tonics), a defined (20×) scan resolution, and tissue slides with highly variable HE staining,
histomorphology, sample size and quality. Studies using AI histology based on a single
institution and the use of a single scanner have already been described in comparable
human studies [50]. With respect to the prediction of the BRAF mutation in human cancer,
various AI approaches have been described in the literature, and each has its strengths and
weaknesses [14,17,43].

In our study, sample size, i.e., the area of neoplastic urothelium on the corresponding
WSI, was confirmed to be important for the AI test performance. Large samples of mutation
PCR-positive UC were often correctly predicted as such, whereas the opposite was true for
mutation-negative cases with large sizes. When comparing the mean size of PCR BRAF-
positive UC with their negative counterpart, it was apparent that mutated tumours were
approximately twice as big in our validation set (mean BRAF mutation-positive: 16 mm2

versus mean BRAF negative: 9 mm2; p > 0.1). A possible explanation for the larger average
size of BRAF-mutated tumours is a sampling bias. Alternatively, if this correlation is true
that BRAF mutated tumours tend to be larger at the time they are biopsied, then their
frequent papillary and poorly invasive growth most likely explains the larger size when
compared to flat UC [2]. Being aware that sample size affects AI prediction, training sets
need to be standardised for this criterium to increase the reliability of this or any other AI
test. This was not done for this study and therefore represents a limitation, which needs
to be addressed for future AI studies. A minor (not statistically significant) difference in
sample size was indeed observed in the training set with larger tissue sections for mutated
(261 mm2) compared to non-mutated UC (251 mm2). However, it is important to note
that the sample size of training and validation slides cannot be compared directly as their
tissue samples were defined differently. The sample of the training slide was defined
as all available tissue, i.e., tumour parenchyma as well as stroma and surrounding non-
neoplastic tissue, whereas the tissue sample for BRAF prediction was restricted to the
tumour parenchyma of the UC. When comparing sample size with slide quality, it was
evident that a larger sample size was associated with higher quality (with 31.93 mm2 for
high quality, 6.57 mm2 for standard quality, and 2.37 mm2 for poor quality) as sample size
was a criterion to define quality. We therefore, concluded that the AI possibly used the size
of the tumour as a criterion for BRAF prediction, which would also explain why tumours
of smaller size, like those of poor quality, were often misinterpreted by AI as negative
when actually PCR BRAF positive while large PCR BRAF negative UC was frequently
misinterpreted as positive. This correlation was to be expected since large specimens were
usually transmural sections and therefore defined as high quality. Small samples were
often squeezed, difficult to orient and/or had other artefacts that negatively affected the
assessment and were therefore classified as poor quality. For future studies, it would be
conceivable that training labels should be of similar size, independent of the size of the
tissue section on the WSI. For this purpose, one or several regions with a specific size
and shape (e.g., a square of 1 mm2) could be defined, and training labels created only in
these regions.

Our study found that the level of tumour inflammation markedly affected the sen-
sitivity of the AI-based BRAF prediction, which was low for inflamed UC and high in
those without associated inflammation. In contrast, the specificity was higher in inflamed
than non-inflamed UC. There was no considerable difference in the ratio of inflamed to
non-inflamed UC when comparing the training group with the validation group or when
comparing different mutation statuses. However, in contrast to the high quality of the
UC within the training set, the inflamed UC in the validation set were also often of poor
quality (21/39), which could explain the poor sensitivity of the AI-based BRAF prediction
for this category.

Another factor we identified as being critical determinate for the accuracy of the AI
test reliability was the level of urothelial differentiation. For UC with evident urothelial
morphology (conventional UC), the mutation was detected by AI with a high level of
sensitivity. However, the rate of false positives was high for these tumours. For UC with
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only subtle or absent urothelial morphology (non-conventional UC), the AI prediction was
highly specific for the mutation-negative cases; however, the rate of false negative cases
was high. The large discrepancy between sensitivity and specificity for non-conventional
UC cases may have been influenced by the imbalance in the training set: 71/81 cases in
the training showed conventional urothelial morphology and only 10 were of divergent
differentiation. In addition, none of the latter were PCR negative for BRAF. Thus, the
training set only included one non-conventional UC with positive BRAF PCR, which could
explain the poor sensitivity of our AI tool for this category.

Similar to the extent of urothelial differentiation, the level of tumour invasiveness was
closely associated with the AI test reliability. UC with a clearly invasive tumour border
tended to be predicted as mutation negative on AI, which resulted in a high specificity but
low sensitivity, whereas the non-invasive tumours had a high sensitivity and low specificity.
The reason for the large discrepancy between the sensitivity and specificity of invasive and
non-invasive UC cases was not obvious. However, 39 of 96 cases could not be assessed for
their level of invasion due to sample size and/or quality. Thus, there were far fewer cases
available for assessment of invasion than for other tumour characteristics, which limited
the interpretation of this factor.

In human cancers with frequent (V600E) BRAF mutation, it is widely recognised that
intratumoral heterogeneity exists; however, intratumoral BRAF mutation heterogeneity
has not yet been described in canine cancer. In this study, we show that BRAF mutation
prediction correlated with defined morphologic features. For example, areas with papillary
growth, smooth and pushing tumour fronts and urothelial differentiation were often
predicted as being BRAF V595 positive (i.e., BRAF mutated). In contrast, areas with a more
solid tumour growth pattern, divergent urothelial differentiation and invasive growth were
often predicted as mutation negative. Pronounced tumour inflammation also led to BRAF-
negative prediction. Additionally, artefacts like squeezing or poor tissue preservation were
usually also interpreted to lack a BRAF mutation. Locations with ‘uncertain prediction’
were usually identified at the interface between positive and negative tumour areas. Thus,
genetic heterogeneity within the tumour needs to be factored in when making a diagnosis,
especially if the treatment involves therapeutic strategies that depend on the presence
or absence of BRAF mutation. Indeed, studies have shown that BRAF mutation status
influences the treatment response in human cancers [51,52], and there is evidence for a
different therapeutic response when comparing BRAF mutated vs. non-mutated canine
cancers [35,53,54].

The BRAF mutation is found in malignant urothelium and not benign bladder or
in urine from healthy dogs [10,11,55], making it a highly-specific marker for UC, with
additional advantages of being non-invasive and inexpensive if performed on urine. In
cases where UC is suspected and the BRAF mutation is not detected by PCR in urine, a
bladder biopsy is needed to confirm or exclude UC. Not uncommonly, histologic evaluation
can be difficult when dealing with early forms of UC or only small endoscopic biopsies. In
this situation, the pathologist needs to have a high level of experience to reach a definite
diagnosis, and the risk of missing small cancerous lesions exists. The power of AI for
supporting the pathologist in detecting early and small cancer foci has been demonstrated
for bladder and other cancers in humans [56–58]. Even though limited to a small series
(n = 14) of BRAF-mutated UC, the present study confirms that AI was able to distinguish
between malignant and adjacent benign urothelium in six cases. Considering that the
separation of benign and malignant tissue was not the main aim of this study, the training
was not specifically set up to perform this task. Nevertheless, AI has shown that benign
urothelium more closely resembles BRAF mutation negative rather than positive tumours,
as benign regions were labelled as such in the present study. With optimised training and
based on the promising results from human studies, it can be expected that AI will be able
to reliably differentiate benign urothelium from neoplastic bladder tissue in dogs [59,60].
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5. Conclusions

This is the first study to demonstrate the use of AI histology to predict BRAF mutation
status in canine UC. Despite certain limitations, which we were able to define, the results
highlight the potential of AI in predicting molecular alterations in routine tissue sections.
Important potential confounding factors are sample size and quality, as well as tumour
histomorphology. Once optimised for these features, AI is able to reliably predict BRAF
mutation, detect intratumoral mutation heterogeneity and differentiate between malignant
and benign urothelium.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ani13152404/s1, Table S1: Comparison of AI-based BRAF mutation
prediction with confirmed PCR result based on sample quality and specific histomorphological
features; Table S2: Extension of Table 4.

Author Contributions: Conceptualisation, methodology, digital pathology, validation: L.K., S.d.B.,
C.P., S.R.; PCR: A.K.; Analysis: L.K., S.d.B., C.P., D.F., A.K., L.v.d.W., W.v.B.; Writing-original
draft preparation: L.K.; Writing-review and editing: S.d.B., W.v.B., H.A.-L., J.M.S., D.F., F.G., K.J.,
L.v.d.W., S.R.; Supervision: S.d.B., S.R. All authors have read and agreed to the published version of
the manuscript.

Funding: Funding for this study was provided by institutional grants of the University of Bern
(Promotion of Early Career Researchers and Gender Equality; Bern University Research Foundation;
and the Specialization Commission of the Vetsuisse Faculty) and the Albert Heim Foundation (grant
number 148).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding authors, L.K. and S.d.B., upon reasonable request.

Acknowledgments: The authors would like to thank Astrid Chanfon for scanning all tissue slides.

Conflicts of Interest: The authors do declare no conflict of interest. However, Heike Aupperle-
Lellbach, Kathrin Jaeger, and Wolf von Bomhard do offer diagnostic pathology services.

References
1. Jung, H.; Bae, K.; Lee, J.Y.; Kim, J.H.; Han, H.J.; Yoon, H.Y.; Yoon, K.A. Establishment of canine transitional cell carcinoma cell

lines harboring BRAF V595E mutation as a therapeutic target. Int. J. Mol. Sci. 2021, 22, 9151. [CrossRef]
2. De Brot, S.; Robinson, B.D.; Scase, T.; Grau-Roma, L.; Wilkinson, E.; Boorjian, S.A.; Gardner, D.; Mongan, N.P. The dog as an

animal model for bladder and urethral urothelial carcinoma: Comparative epidemiology and histology. Oncol. Lett. 2018, 16,
1641–1649. [CrossRef] [PubMed]

3. Grassinger, J.M.; Merz, S.; Aupperle-Lellbach, H.; Erhard, H.; Klopfleisch, R. Correlation of BRAF variant V595E, breed,
histological grade and cyclooxygenase-2 expression in canine transitional cell carcinomas. Vet. Sci. 2019, 6, 31. [CrossRef]
[PubMed]

4. Knapp, D.W.; Dhawan, D.; Ramos-Vara, J.A.; Ratliff, T.L.; Cresswell, G.M.; Utturkar, S.; Sommer, B.C.; Fulkerson, C.M.; Hahn,
N.M. Naturally-Occurring Invasive Urothelial Carcinoma in Dogs, a Unique Model to Drive Advances in Managing Muscle
Invasive Bladder Cancer in Humans. Front. Oncol. 2020, 9, 1493. [CrossRef]

5. De Brot, S.; Grau-Roma, L.; Stirling-Stainsby, C.; Dettwiler, M.; Guscetti, F.; Meier, D.; Scase, T.; Robinson, B.D.; Gardner, D.;
Mongan, N.P. A Fibromyxoid Stromal Response is Associated with Muscle Invasion in Canine Urothelial Carcinoma. J. Comp.
Pathol. 2019, 169, 35–46. [CrossRef] [PubMed]

6. Blackwell, W. Tumors in Domestic Animals, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016.
7. Norris, A.M.; Laing, E.J.; Valli, V.E.O.; Withrow, S.J.; Macy, D.W.; Ogilvie, G.K.; Tomlinson, J.; McCaw, D.; Pidgeon, G.; Jacobs,

R.M. Canine Bladder and Urethral Tumors: A Retrospective Study of 115 Cases (1980–1985). J. Vet. Intern. Med. 1992, 6, 145–153.
[CrossRef]

8. Fulkerson, C.M.; Knapp, D.W. Management of transitional cell carcinoma of the urinary bladder in dogs: A review. Vet. J. 2015,
205, 217–225. [CrossRef]

9. Fulkerson, C.M.; Dhawan, D.; Ratliff, T.L.; Hahn, N.M.; Knapp, D.W. Naturally Occurring Canine Invasive Urinary Bladder
Cancer: A Complementary Animal Model to Improve the Success Rate in Human Clinical Trials of New Cancer Drugs. Int. J.
Genom. 2017, 2017, 6589529. [CrossRef]

10. Mochizuki, H.; Kennedy, K.; Shapiro, S.G.; Breen, M.B. BRAF mutations in canine cancers. PLoS ONE 2015, 10, e0129534.
[CrossRef]

https://www.mdpi.com/article/10.3390/ani13152404/s1
https://www.mdpi.com/article/10.3390/ani13152404/s1
https://doi.org/10.3390/ijms22179151
https://doi.org/10.3892/ol.2018.8837
https://www.ncbi.nlm.nih.gov/pubmed/30008848
https://doi.org/10.3390/vetsci6010031
https://www.ncbi.nlm.nih.gov/pubmed/30893857
https://doi.org/10.3389/fonc.2019.01493
https://doi.org/10.1016/j.jcpa.2019.04.003
https://www.ncbi.nlm.nih.gov/pubmed/31159949
https://doi.org/10.1111/j.1939-1676.1992.tb00330.x
https://doi.org/10.1016/j.tvjl.2015.01.017
https://doi.org/10.1155/2017/6589529
https://doi.org/10.1371/journal.pone.0129534


Animals 2023, 13, 2404 14 of 16

11. Ostrander, E.; Decker, B.; Parker, H.G.; Dhawan, D.; Kwon, E.M.; Karlins, E.; Davis, B.; Ramos-vara, J.A.; Bonney, P.L.; McNiel,
E.A.; et al. Homologous Mutation to Human BRAF V600E is Common in Naturally Occurring Canine Bladder Cancer—Evidence
for a Relevant Model System and Urine-based Diagnostic Test. Mol. Cancer Res. 2012, 17, 1310–1314. [CrossRef]

12. Mochizuki, H.; Breen, M. Comparative aspects of BRAF mutations in canine cancers. Vet. Sci. 2015, 2, 231–245. [CrossRef]
[PubMed]

13. Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 2007, 26, 3279–3290. [CrossRef]
[PubMed]

14. Anand, D.; Yashashwi, K.; Kumar, N.; Rane, S.; Gann, P.H.; Sethi, A. Weakly supervised learning on unannotated H&E-stained
slides predicts BRAF mutation in thyroid cancer with high accuracy. J. Pathol. 2021, 255, 232–242. [CrossRef] [PubMed]

15. Xing, M.; Alzahrani, A.S.; Carson, K.A.; Shong, Y.K.; Kim, T.Y.; Viola, D.; Robenshtok, E.; Fagin, J.A.; Puxeddu, E.; Fugazzola,
L.; et al. Association Between BRAF V600E Mutation and Recurrence of Papillary Thyroid Cancer. J. Clin. Oncol. 2015, 33, 42–50.
[CrossRef]

16. Yoon, J.; Lee, E.; Koo, J.S.; Yoon, J.H.; Nam, K.H.; Lee, J.; Jo, Y.S.; Moon, H.J.; Park, V.Y.; Kwak, J.Y. Artificial intelligence to predict
the BRAFV600E mutation in patients with thyroid cancer. PLoS ONE 2020, 15, e0242806. [CrossRef]

17. Ito, T.; Tanaka, Y.; Murata, M.; Kaku-Ito, Y.; Furue, K.; Furue, M. BRAF Heterogeneity in Melanoma. Curr. Treat. Options Oncol.
2021, 22, 20. [CrossRef]

18. Peralta, S.; Webb, S.M.; Katt, W.P.; Grenier, J.K.; Duhamel, G.E. Highly recurrent BRAF p.V595E mutation in canine papillary oral
squamous cell carcinoma. Vet. Comp. Oncol. 2023, 21, 138–144. [CrossRef]

19. Forbes, S.A.; Beare, D.; Bindal, N.; Bamford, S.; Ward, S.; Cole, C.G.; Jia, M.; Kok, C.; Boutselakis, H.; De, T.; et al. High-Resolution
Cancer Genetics Using the Catalogue of Somatic Mutations in Cancer. Curr. Protoc. Hum. Genet. 2016, 91. [CrossRef]

20. Robertson, A.G.; Kim, J.; Al-ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Katherine, A.; Akbani,
R.; et al. HHS Public Access bladder cancer. Cell 2018, 171, 540–556. [CrossRef]

21. Iyer, G.; Al-Ahmadie, H.; Schultz, N.; Hanrahan, A.J.; Ostrovnaya, I.; Balar, A.V.; Kim, P.H.; Lin, O.; Weinhold, N.; Sander, C.; et al.
Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J. Clin. Oncol. 2013, 31, 3133–3140.
[CrossRef]

22. Boulalas, I.; Zaravinos, A.; Delakas, D.; Spandidos, D.A. Mutational analysis of the BRAF gene in transitional cell carcinoma of
the bladder. Int. J. Biol. Markers 2009, 24, 17–21. [CrossRef] [PubMed]

23. Longo, T.; McGinley, K.F.; Freedman, J.A.; Etienne, W.; Wu, Y.; Sibley, A.; Owzar, K.; Gresham, J.; Moy, C.; Szabo, S.; et al. Targeted
Exome Sequencing of the Cancer Genome in Patients with Very High-risk Bladder Cancer. Eur. Urol. 2016, 70, 714–717. [CrossRef]
[PubMed]

24. Thomas, R.; Wiley, C.A.; Droste, E.L.; Robertson, J.; Inman, B.A.; Breen, M. Whole exome sequencing analysis of canine urothelial
carcinomas without BRAF V595E mutation: Short in-frame deletions in BRAF and MAP2K1 suggest alternative mechanisms for
MAPK pathway disruption. PLoS Genet. 2023, 19, e1010575. [CrossRef] [PubMed]

25. Mochizuki, H.; Shapiro, S.G.; Breen, M. Detection of BRAF mutation in urine DNA as a molecular diagnostic for canine urothelial
and prostatic carcinoma. PLoS ONE 2015, 10, e0144170. [CrossRef]

26. Rasteiro, A.M.; Sá E Lemos, E.; Oliveira, P.A.; Gil da Costa, R.M. Molecular Markers in Urinary Bladder Cancer: Applications for
Diagnosis, Prognosis and Therapy. Vet. Sci. 2022, 9, 107. [CrossRef]

27. Davis, A.S.; Chang, M.Y.; Brune, J.E.; Hallstrand, T.S.; Johnson, B.; Lindhartsen, S.; Hewitt, S.M.; Frevert, C.W. The Use of
Quantitative Digital Pathology to Measure Proteoglycan and Glycosaminoglycan Expression and Accumulation in Healthy and
Diseased Tissues. J. Histochem. Cytochem. 2021, 69, 137–155. [CrossRef]

28. Acs, B.; Rantalainen, M.; Hartman, J. Artificial intelligence as the next step towards precision pathology. J. Intern. Med. 2020, 288,
62–81. [CrossRef]

29. Qu, H.; Zhou, M.; Yan, Z.; Wang, H.; Rustgi, V.K.; Zhang, S.; Gevaert, O.; Metaxas, D.N. Genetic mutation and biological pathway
prediction based on whole slide images in breast carcinoma using deep learning. npj Precis. Oncol. 2021, 5, 87. [CrossRef]

30. Chen, M.; Zhang, B.; Topatana, W.; Cao, J.; Zhu, H.; Juengpanich, S.; Mao, Q.; Yu, H.; Cai, X. Classification and mutation prediction
based on histopathology H&E images in liver cancer using deep learning. npj Precis. Oncol. 2020, 4, 14. [CrossRef]

31. Zuraw, A.; Aeffner, F. Whole-slide imaging, tissue image analysis, and artificial intelligence in veterinary pathology: An updated
introduction and review. Vet. Pathol. 2022, 59, 6–25. [CrossRef]

32. Hespel, A.M.; Zhang, Y.; Basran, P.S. Artificial intelligence 101 for veterinary diagnostic imaging. Vet. Radiol. Ultrasound 2022, 63,
817–827. [CrossRef] [PubMed]

33. Gardner, J.; O’Leary, M.; Yuan, L. Artificial intelligence in educational assessment: ‘Breakthrough? Or buncombe and ballyhoo?’.
J. Comput. Assist. Learn. 2021, 37, 1207–1216. [CrossRef]

34. Lustgarten, J.L.; Zehnder, A.; Shipman, W.; Gancher, E.; Webb, T.L. Veterinary informatics: Forging the future between veterinary
medicine, human medicine, and One Health initiatives-a joint paper by the Association for Veterinary Informatics (AVI) and the
CTSA One Health Alliance (COHA). JAMIA Open 2020, 3, 306–317. [CrossRef] [PubMed]

35. Gedon, J.; Kehl, A.; Aupperle-Lellbach, H.; von Bomhard, W.; Schmidt, J.M. BRAF mutation status and its prognostic significance
in 79 canine urothelial carcinomas: A retrospective study (2006–2019). Vet. Comp. Oncol. 2022, 20, 449–457. [CrossRef]

36. Kiupel, M.; Camus, M. Diagnosis and Prognosis of Canine Cutaneous Mast Cell Tumors. Vet. Clin. N. Am. Small Anim. Pract.
2019, 49, 819–836. [CrossRef]

https://doi.org/10.1158/1541-7786.MCR-14-0689
https://doi.org/10.3390/vetsci2030231
https://www.ncbi.nlm.nih.gov/pubmed/29061943
https://doi.org/10.1038/sj.onc.1210421
https://www.ncbi.nlm.nih.gov/pubmed/17496922
https://doi.org/10.1002/path.5773
https://www.ncbi.nlm.nih.gov/pubmed/34346511
https://doi.org/10.1200/JCO.2014.56.8253
https://doi.org/10.1371/journal.pone.0242806
https://doi.org/10.1007/s11864-021-00818-3
https://doi.org/10.1111/vco.12869
https://doi.org/10.1002/cphg.21
https://doi.org/10.1016/j.cell.2017.09.007
https://doi.org/10.1200/JCO.2012.46.5740
https://doi.org/10.1177/172460080902400103
https://www.ncbi.nlm.nih.gov/pubmed/19404918
https://doi.org/10.1016/j.eururo.2016.07.049
https://www.ncbi.nlm.nih.gov/pubmed/27520487
https://doi.org/10.1371/journal.pgen.1010575
https://www.ncbi.nlm.nih.gov/pubmed/37079639
https://doi.org/10.1371/journal.pone.0144170
https://doi.org/10.3390/vetsci9030107
https://doi.org/10.1369/0022155420959146
https://doi.org/10.1111/joim.13030
https://doi.org/10.1038/s41698-021-00225-9
https://doi.org/10.1038/s41698-020-0120-3
https://doi.org/10.1177/03009858211040484
https://doi.org/10.1111/vru.13160
https://www.ncbi.nlm.nih.gov/pubmed/36514230
https://doi.org/10.1111/jcal.12577
https://doi.org/10.1093/jamiaopen/ooaa005
https://www.ncbi.nlm.nih.gov/pubmed/32734172
https://doi.org/10.1111/vco.12790
https://doi.org/10.1016/j.cvsm.2019.04.002


Animals 2023, 13, 2404 15 of 16

37. Tamlin, V.S.; Bottema, C.D.K.; Peaston, A.E. Comparative aspects of mast cell neoplasia in animals and the role of KIT in prognosis
and treatment. Vet. Med. Sci. 2020, 6, 3–18. [CrossRef]

38. Bertram, C.A.; Aubreville, M.; Donovan, T.A.; Bartel, A.; Wilm, F.; Marzahl, C.; Assenmacher, C.A.; Becker, K.; Bennett, M.; Corner,
S.; et al. Computer-assisted mitotic count using a deep learning-based algorithm improves interobserver reproducibility and
accuracy. Vet. Pathol. 2022, 59, 211–226. [CrossRef]

39. Shmatko, A.; Ghaffari Laleh, N.; Gerstung, M.; Kather, J.N. Artificial intelligence in histopathology: Enhancing cancer research
and clinical oncology. Nat. Cancer 2022, 3, 1026–1038. [CrossRef]

40. Figueroa-Silva, O.; Pastur Romay, L.A.; Viruez Roca, R.D.; Rojas, M.D.S.A.Y.; Suárez-Peñaranda, J.M. Machine Learning
Techniques in Predicting BRAF Mutation Status in Cutaneous Melanoma From Clinical and Histopathologic Features. Appl.
Immunohistochem. Mol. Morphol. 2022, 30, 674–680. [CrossRef]

41. Krebs, F.S.; Britschgi, C.; Pradervand, S.; Achermann, R.; Tsantoulis, P.; Haefliger, S.; Wicki, A.; Michielin, O.; Zoete, V. Structure-
based prediction of BRAF mutation classes using machine-learning approaches. Sci. Rep. 2022, 12, 12528. [CrossRef]

42. Kim, R.H.; Nomikou, S.; Coudray, N.; Jour, G.; Dawood, Z.; Hong, R.; Esteva, E.; Sakellaropoulos, T.; Donnelly, D.; Moran, U.; et al.
Deep Learning and Pathomics Analyses Reveal Cell Nuclei as Important Features for Mutation Prediction of BRAF-Mutated
Melanomas. J. Investig. Dermatol. 2022, 142, 1650–1658.e6. [CrossRef] [PubMed]

43. Saldanha, O.L.; Quirke, P.; West, N.P.; James, J.A.; Loughrey, M.B.; Grabsch, H.I.; Salto-Tellez, M.; Alwers, E.; Cifci, D.; Ghaffari
Laleh, N.; et al. Swarm learning for decentralized artificial intelligence in cancer histopathology. Nat. Med. 2022, 28, 1232–1239.
[CrossRef] [PubMed]

44. Haghighat, M.; Browning, L.; Sirinukunwattana, K.; Malacrino, S.; Khalid Alham, N.; Colling, R.; Cui, Y.; Rakha, E.; Hamdy, F.C.;
Verrill, C.; et al. Automated quality assessment of large digitised histology cohorts by artificial intelligence. Sci. Rep. 2022, 12,
5002. [CrossRef]

45. Salvi, M.; Acharya, U.R.; Molinari, F.; Meiburger, K.M. The impact of pre- and post-image processing techniques on deep learning
frameworks: A comprehensive review for digital pathology image analysis. Comput. Biol. Med. 2021, 128, 104129. [CrossRef]
[PubMed]

46. Campanella, G.; Hanna, M.G.; Geneslaw, L.; Miraflor, A.; Werneck Krauss Silva, V.; Busam, K.J.; Brogi, E.; Reuter, V.E.; Klimstra,
D.S.; Fuchs, T.J. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med.
2019, 25, 1301–1309. [CrossRef]

47. Terada, Y.; Takahashi, T.; Hayakawa, T.; Ono, A.; Kawata, T.; Isaka, M.; Muramatsu, K.; Tone, K.; Kodama, H.; Imai, T.; et al.
Artificial Intelligence-Powered Prediction of ALK Gene Rearrangement in Patients with Non–Small-Cell Lung Cancer. JCO Clin.
Cancer Inform. 2022, 6, e2200070. [CrossRef]

48. Nero, C.; Boldrini, L.; Lenkowicz, J.; Giudice, M.T.; Piermattei, A.; Inzani, F.; Pasciuto, T.; Minucci, A.; Fagotti, A.; Zannoni,
G.; et al. Deep-Learning to Predict BRCA Mutation and Survival from Digital H&E Slides of Epithelial Ovarian Cancer. Int. J.
Mol. Sci. 2022, 23, 11326. [CrossRef]

49. Yamashita, R.; Long, J.; Longacre, T.; Peng, L.; Berry, G.; Martin, B.; Higgins, J.; Rubin, D.L.; Shen, J. Deep learning model for the
prediction of microsatellite instability in colorectal cancer: A diagnostic study. Lancet Oncol. 2021, 22, 132–141. [CrossRef]

50. Linder, N.; Konsti, J.; Turkki, R.; Rahtu, E.; Lundin, M.; Nordling, S.; Haglund, C.; Ahonen, T.; Pietikäinen, M.; Lundin, J.
Identification of tumor epithelium and stroma in tissue microarrays using texture analysis. Diagn. Pathol. 2012, 7, 22. [CrossRef]

51. Bradish, J.R.; Richey, J.D.; Post, K.M.; Meehan, K.; Sen, J.D.; Malek, A.J.; Katona, T.M.; Warren, S.; Logan, T.F.; Fecher, L.A.; et al.
Discordancy in BRAF mutations among primary and metastatic melanoma lesions: Clinical implications for targeted therapy.
Mod. Pathol. 2015, 28, 480–486. [CrossRef]

52. Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob,
J.J.; et al. Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. N. Engl. J. Med. 2014, 371, 1877–1888.
[CrossRef] [PubMed]

53. Rossman, P.; Zabka, T.S.; Ruple, A.; Tuerck, D.; Ramos-Vara, J.A.; Liu, L.; Mohallem, R.; Merchant, M.; Franco, J.; Fulkerson,
C.M.; et al. Phase I/II trial of vemurafenib in dogs with naturally occurring, BRAF-mutated urothelial carcinoma. Mol. Cancer
Ther. 2021, 20, 2177–2188. [CrossRef] [PubMed]

54. Tagawa, M.; Tambo, N.; Maezawa, M.; Tomihari, M.; Watanabe, K.I.; Inokuma, H.; Miyahara, K. Quantitative analysis of the
BRAF V595E mutation in plasma cell-free DNA from dogs with urothelial carcinoma. PLoS ONE 2020, 15, e0232365. [CrossRef]
[PubMed]

55. Aupperle-Lellbach, H.; Grassinger, J.; Hohloch, C.; Kehl, A.; Pantke, P. Diagnostische Aussagekraft der BRAF-Mutation V595E in
Urinproben, Ausstrichen und Bioptaten beim kaninen Übergangszellkarzinom. Tierärztliche Prax. Ausg. K Kleintiere Heimtiere
2018, 46, 289–295. [CrossRef]

56. Wu, S.; Hong, G.; Xu, A.; Zeng, H.; Chen, X.; Wang, Y.; Luo, Y.; Wu, P.; Liu, C.; Jiang, N.; et al. Artificial intelligence-based model
for lymph node metastases detection on whole slide images in bladder cancer: A retrospective, multicentre, diagnostic study.
Lancet Oncol. 2023, 24, 360–370. [CrossRef]
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