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ABSTRACT

Context. The effects of planetesimal fragmentation on planet formation have been studied via various models on single embryos, and
have therefore mostly neglected concurrent effects in the outer disk. They show that planetesimal fragmentation can either hinder or
aid planet formation, due to the introduction of competing effects, namely speeding up accretion and depleting the feeding zone of
forming planets.
Aims. We investigate the influence of the collisional fragmentation of planetesimals on the planet formation process using a population
synthesis approach. Our aim is to investigate its effects for a large set of initial conditions and also to explore the consequences on the
formation of multiple embryos in the same disk.
Methods. We ran global planet formation simulations including fragmentation, drift, and an improved ice line description. To do this
we used a fragmentation model in our code. The initial conditions for the simulations that are informed by observations are varied to
generate synthetic exoplanet populations.
Results. Our synthetic populations show that depending on the typical size of solids generated in collisions, fragmentation in tandem
with radial drift can either enhance or hinder planet formation. For larger fragments we see increased accretion throughout the popu-
lations especially beyond the ice line. However, the shorter drift timescale of smaller fragments, due to their stronger coupling to the
gas, can hinder the formation process. Furthermore, beyond the ice line fragmentation promotes late growth when the damping by gas
drag fades
Conclusions. Fragmentation significantly affects the planet formation process in various ways for all types of planets and warrants
further investigation.
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1. Introduction

In the classical core accretion scenario terrestrial planets and the
cores of giant planets are formed in multiple steps. The first step
is the formation of planetesimals from dust, for which multiple
pathways are proposed. The two main proposed mechanisms are
coagulation and gravitational collapse via streaming instability
(Okuzumi et al. 2012; Kobayashi & Tanaka 2021; Yang et al.
2017). The first process describes the formation of planetesimals
via the sticking of smaller dust grains in collisions. In the second
process, streaming instability forms planetesimals through the
gravitational collapse of chondrule-sized objects (Johansen et al.
2007, 2014; Schäfer et al. 2017).

Planetary embryos form from these planetesimals via
runaway growth as their accretion rate speeds up with increas-
ing mass, and they separate themselves from the rest of the
planetesimals (Ormel et al. 2010). As the embryos grow they
start stirring up the remaining planetesimals, which reduces
the rate at which embryos accrete planetesimals and allows
other embryos (oligarchs) in neighbouring regions to catch
up in mass (Ida & Makino 1993). The size distribution of
the remaining planetesimals is quite important for the further
growth of the embryos as the accretion rates depend strongly
on their size and dynamical state (Fortier et al. 2012; Chambers
2006; Guilera et al. 2010). Furthermore, the size distribution
of the planetesimals continues to evolve through their mutual
collisions, which can lead to the coagulation or fragmentation
of planetesimals, depending on their relative speeds (Kenyon
& Bromley 2004). The relative speed between planetesimals is

caused by their gravitational interaction with the embryos and
other planetesimals and is influenced by the interactions with the
gas disk. For higher relative speeds this results in the generation
of smaller fragments that get removed from the disk via drift due
to the sub-Keplerian headwind of the gas disk. In some models
the initial size of the planetesimals is estimated to be ≈100 km
(Morbidelli et al. 2009), but the typical size of accreted solids is
still poorly constrained (Helled & Morbidelli 2021). In addition,
the outcomes of collisions are also rather uncertain (Kobayashi
& Tanaka 2010), which makes the further study of the colli-
sional evolution important to improve our understanding of
these processes and their imprint on planet formation as a whole.

There have been many studies of the collisional evolution
and fragmentation of planetesimals (Kobayashi & Tanaka 2018;
Chambers 2008, 2014; Guilera et al. 2014; San Sebastián et al.
2019; Inaba et al. 2003). These studies show that planetesimal
fragmentation can both inhibit and/or enhance the formation
of planets as it introduces competing effects. This especially
affects the growth of the core of gas giants as their greater mass
increases the random velocities of planetesimals more strongly,
and therefore shortens collisonal timescales and reduces the typ-
ical size of solids (Guilera et al. 2014). These smaller solids
are easier to accrete, but also lead to the removal of accretable
material caused by their faster drift speeds.

Previous studies focused on single-planet systems, and often
other parts of the planet formation process have to be simpli-
fied, for example migration and the calculation of the internal
structure of the forming planets. Furthermore, studies on the
impact of fragmentation in a population synthesis approach are
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valuable because they allow us to probe a larger part of the
parameter space of planet formation; unfortunately, these studies
were not performed previously. The study of multiple discrete
interacting embryos has also been neglected in previous studies,
but this consideration is important as it allows the investiga-
tion of features that may arise due to the presence of multiple
planets.

In this work we therefore present a population level investi-
gation into the influence of the size evolution of planetesimals
on planet formation, more specifically the influence of the frag-
mentation of planetesimals. This was done by implementing a
fragmentation model in the Bern model (Alibert et al. 2004,
2005, 2013; Mordasini et al. 2009, 2012; Emsenhuber et al.
2021b) and by improving the treatment of the solid disk. This
was then used to run many global planet formation simulations
varying the initial conditions in a population synthesis approach.
We considered the formation of single embryos or multiple
embryos simultaneously. This lets us create synthetic planet pop-
ulations that show how collisions between the solids in the disks
influence the formation of various types of planets. To do this,
we ran the planet formation model for different model choices
and parameters of our fragmentation model to explore its effects
in different regimes.

In Sect. 2 we give an overview of the Bern model. We
discuss the basic features of the code and the description of the
solid disk, due to its importance to the investigated collisional
processes (i.e. fragmentation). Furthermore, we describe the
newly implemented features that build on previous iterations of
the model, including drift and the calculation of the dynamical
state. Then the addition of the fragmentation model that is intro-
duced to the code is discussed. Finally, the population synthesis
approach is presented. In Sect. 3 we test our calculations against
other formation models that include fragmentation to ensure our
model’s validity. Then we use the model to generate synthetic
populations of planets in Sect. 4 to investigate the influence
of fragmentation on the planet formation process. Finally, in
Sect. 5 we present the discussion, summarise our results, and
list our conclusions.

2. Planet formation model

The numerical code used to model the formation of planets (the
Bern model) is an adaption of the code described in Emsenhuber
et al. (2021b). The Bern model includes the formation and long-
term evolution of planets in two stages. The planet formation is
first tracked for a fixed time interval (20 Myr), and is derived
from previous works (Alibert et al. 2004, 2005, 2013; Mordasini
et al. 2009; Emsenhuber et al. 2021b). The gas disk is des-
cribed as a viscous accretion disk. The turbulent viscosity is
parametrised with the constant α parameter (Shakura & Sunyaev
1973). The formation phase additionally considers the interplay
between the planet and the disk: migration, gas, and solid accre-
tion. The gravitational interactions between planetary embryos
are integrated with the mercury integrator (Chambers 1999).
The gas accretion is calculated by solving the structure equa-
tions. When the planet becomes massive enough, runaway gas
accretion occurs, the envelop contracts, and accretion is lim-
ited by the supply of the gas disk. We include core growth
by accreting planetesimals in the oligarchic regime. For mul-
tiple planets, we consider up to 100 initial embryos of moon
mass (10−2M⊕) and a mono-disperse swarm of planetesimals
(when fragmentation is not considered) of a single size (typically
300 m).

After the formation phase we continue to evolve the plan-
ets individually to 10 Gyr, as described in Mordasini et al.
(2012). This includes the solving of the internal structure equa-
tions, atmospheric escape (Jin et al. 2014), and tidal migration
(Benítez-Llambay et al. 2011).

2.1. Solid disk

The planetesimals are not represented individually, but rather are
described on a grid using a few key quantities, namely surface
density (Σ), mean root squared eccentricity (e), inclination (i),
typical size (s), and bulk density (ρ), along with the ice frac-
tion of the planetesimals.The introduction of fragmentation adds
objects of different typical sizes (fragments) to the solid disk.
To treat this we have separate grids (with individual Σ and other
quantities) for the fragments and planetesimals, which we also
refer to as different swarms of solids in the rest of the paper.

The eccentricities and inclinations are assumed to be
Rayleigh distributed which is motivated by N-body simula-
tions (Salo 1985). Since we assume an azimuthally symmetrical
disk we can describe the dynamical state (i.e. their random
velocities) with just the mean root squared eccentricity and incli-
nation of the swarm. The random velocities of the planetesimals,
described by e and i, are increased due to the gravitational
interactions among the planetesimals themselves and with the
embryos, and are dampened by the gas drag. The stirring by den-
sity fluctuations in the gas is also considered. To calculate the
dynamical state we follow the approach of Fortier et al. (2012)
and solve the evolution equations for e and i at each time step
given by

ė2 = ė2
∣∣∣
drag + ė2

∣∣∣
pp + ė2

∣∣∣
stirr + ė2

∣∣∣
DF (1)

i̇2 = i̇2
∣∣∣
drag + i̇2

∣∣∣
pp + i̇2

∣∣∣
stirr + i̇2

∣∣∣
DF, (2)

where the contributions on the right-hand side arise due to the
gas drag, the planetesimal–planetesimal interaction, the stirring
by the embryos, and the stirring by density fluctuations, in that
order. The gas drag depends on the relative velocity between the
planetesimals and the gas. We consider three regimes: Epstein,
Stokes, and quadratic (Rafikov 2004). The regimes are separated
by the size of the planetesimals and the relative velocity between
the planetesimals and the gas: vrel =

√
η2 + 5/8e2 + 1/2i2, where

η = − 1
2Ωrρmid

∂p
∂r is the deviation of the gas from Keplerian speed.

The Epstein drag is considered when the planetesimals are
roughly smaller than the mean free path of the gas (i.e. s < 1.5×
λ = (nH2σH2)−1, where n is the number density of hydrogen,
which is the main component of the gas disk and σ its cross-
section). Otherwise the distinction between the two remaining
cases is made with the Reynolds number Remol = vrels/νmol,
where νmol = λcs/3 is the molecular viscosity and cs the sound
speed. For a Reynolds number respectively above and below 27,
the quadratic regime and the Stokes regime is considered. The
drag expressions for the Epstein regime are

ė2
∣∣∣
Edrag = −e2 csρmid

ρs
for s < 1.5λ (3)

i̇2
∣∣∣
Edrag = −i2/2

csρmid

ρs
. (4)

The formulas for the Stokes regime are

ė2
∣∣∣
Sdrag = −

3e2

2
λρmid

ρs2 for s > 1.5λ (5)
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i̇2
∣∣∣
Sdrag = −

3i2

4
λρmid

ρs2 and Remol < 27, (6)

and in the quadratic regime they are

ė2
∣∣∣
Qdrag = −2e2 vrelρmid

6ρs
for s > 1.5λ (7)

i̇2
∣∣∣
Qdrag = −i2

vrelρmid

6ρs
and Remol > 27. (8)

The second term in the dynamical evolution stems from the
planetesimal–planetesimal interaction, and follows the descrip-
tion of Ohtsuki et al. (2002),

ė2
∣∣∣
pp = a0Ω

∑
j

[
N j

h4
i jm j

(mi + m j)2 ∗
{
m jPVS(ẽi, ĩi, ẽ j, ĩ j)

+
m je2

j − mie2
i

e2
i + e2

j

PDF(ẽi, ĩi, ẽ j, ĩ j)
}]
, (9)

i̇2
∣∣∣
pp = a0Ω

∑
j

[
N j

h4
i jm j

( mi + m j) 2 ∗
{
m jQVS(ẽi, ĩi, ẽ j, ĩ j)

+
m ji2j − mii2i

i2i + i2j
QDF(ẽi, ĩi, ẽ j, ĩ j)

}]
. (10)

Here a0 is the semi-major axis, Ω is Kepler angular speed, and
i and j refer to the different swarms, for example when we con-
sider planetesimals and fragments. The viscous stirring is the
first term in the curly brackets in Eqs. (9) and (10). The dynami-
cal friction term is the second contribution, which vanishes for a
single size of planetesimals (i.e. when no fragments are present).
The functions QVS, PVS, QDF, and PDF are given by Ohtsuki et al.
(2002). These functions along with the approximated stirring
integral can be found in Appendix B.

A further contribution to the dynamical evolution stems
from the stirring of the planetesimals by the embryos, which is
given by

ė2
∣∣∣
stirr =

1
6

n∑
j

f j
ΩMplanete, j

6πbM∗
PVS(ẽ, ĩ) (11)

i̇2
∣∣∣
stirr =

1
6

n∑
j

f j
ΩMplanete, j

6πbM∗
QVS(ẽ, ĩ), (12)

where QVS and PVS are the same functions as above (with the
caveat that ẽ = a0eplan/RH and ĩ = a0iplan/RH, where RH is the
planet’s Hill radius). The distance modulation function f of the
j′th planet is given by

f −1
j = 1 +

|a0 − aplanet, j|

5RH, j
, (13)

and describes the fall-off in stirring by the planet outside of
its feeding zone. For the stirring from the density fluctuation,
we follow the description of Ormel & Kobayashi (2012) and
Kobayashi et al. (2016) which is given by

ė2
∣∣∣
DF = 400α

(
Hga0Σg

M∗

)2

Ω +
4α

3Ωtstop

(
cs

Ωa0

)2

(14)

i̇2
∣∣∣
DF = 4α

(
Hga0Σg

M∗

)2

Ω +
2α

3Ωtstop

(
cs

Ωa0

)2

, (15)

where Hg is the scale height of the gas disk and tstop is the same
stopping time as for the damping given in Eq. (17).

As the gas disk is partially pressure supported, its orbital
speed is sub-Keplerian, which means the planetesimals experi-
ence a headwind when orbiting around the star. Therefore, they
lose angular momentum, which leads to the decay of their semi-
major axis, referred to as drift. This radial motion depends on
the same drag regimes (Guilera et al. 2014) as for the damping
discussed before, and can be described as

∂a
∂t
= −

2aη
tstop
∗

s2

1 + s2 , (16)

with s = 2π ∗ tstop/P (where P is the period) and the stopping
time is given by

tstop =



6ρprp

ρgasvrel
Quadratic regime

2ρpr2
p

3ρgasλcs
Stokes regime

ρprp

ρgascs
Epstein regime.

(17)

The consideration of drift is important as we can see the
strong dependence of the drift speed on the size of the planetes-
imals. This becomes important as we reduce the typical size of
solids via fragmentation.

As the planetesimals drift across the ice line, we expect their
volatile components to evaporate reducing the typical mass and
also the typical radius of the solids. To account for this we imple-
mented a simple ablation model following the prescription of
Burn et al. (2019). The ablation follows the theoretic kinetic
expression for water ice,

ϕ(T ) =
Ps(T )√

2πmH2ORgT
, (18)

where Ps is the water vapour sublimation pressure, mH2O is the
molecular mass of water, and Rg is the universal gas constant.
The above equation assumes zero partial pressure of water in the
vicinity of the planetesimals. From this formula, and assuming
that the ice is removed from a layer with thickness δ ≪ rp, we
calculate the water mass loss as:
dm
dt

∣∣∣∣∣
H2O
= ϕ(T )mH2O4πr2

p. (19)

With the mass loss calculated we can calculate the change in
other properties that result from it, for example their bulk density
and radius, which is done by calculating the density according to
the updated ice fraction and computing the new radius from it.
This only affects planetesimals from beyond the initial ice line
that have drifted across the dynamic ice line calculated from the
structure of the gas disk. This only occurs for small planetesi-
mal sizes (s <= 100 m) because the ice line moves towards the
central star faster than the larger solids.

The gravitational interaction between planetesimals not only
changes their dynamical state, but also leads to radial diffusion.
To describe this behaviour we use the prescription of Tanaka
et al. (2003). The associated viscosity of the diffusion process
can be written as

ν =
∑
i, j

1
12
⟨RVSi j⟩µi, jh4

i ja
4
0NiN jΩ/Σtot, (20)
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where ⟨RVS,i j⟩ = 4/3(⟨QVS,i j⟩ + ⟨PVS,i j⟩) and Ni is the number
surface density of the i-th planetesimal swarms, µ is the reduced
mass of the interacting planetesimals, and hi j their mutual Hill
radius. We then use the diffusion and the drift velocities to
solve the advection diffusion equation for each swarm (includ-
ing the fragments), which is described by the diffusion advection
equation

∂

∂t
(Σi) −

1
r
∂

∂r
(rvdriftΣi) −

1
r
∂

∂r

[
3r0.5 ∂

∂r
(r0.5νΣi)

]
, (21)

= Σ̇accretion + Σ̇frag + Σ̇ablation

where, on the right-hand side, the sink terms describe the mass
removal due to the accretion by the planetary embryos, the mass
transferred between the swarms due to fragmentation, and the
ablation of the ices when crossing the water ice line, as described
above, each of which is treated in its own step. The initialisation
of the solid disk is important because it dictates the speed of the
early accretion. The initial solid surface density follows a power
law with an exponential cutoff described by

Σ0 = Σs,0 fs(r)
( r
5.2 AU

)−βs

exp

( r
rcut,s

)−2 , (22)

where the power law is chosen to be minimum mass solar nebula
(MMSN)-like (Weidenschilling 1977) as βs = 1.5 and the outer
radius rcut,s is given as a function of the cutoff radius of the gas
rcut,g as rcut,s = 0.5rcut,g (Ansdell et al. 2018). The initial solid sur-
face density Σ0,s is calculated by enforcing a specific dust-to-gas
ratio in the protoplanetary disk. The factor fs accounts for the
fact that not all elements are in the solid phase in all radial parts
of the disk. This is calculated with the disk chemistry model of
Thiabaud et al. (2014) and Marboeuf et al. (2014). The relative
abundances are set according to the interstellar medium (for the
volatiles we track H, O, C, and S atoms), and thus we calculate
the fraction of material that is in its solid phase fs at each radial
location in the disk. This factor becomes unity for large separa-
tions past all the ice lines. This also naturally sets the inner solid
disk edge when fs = 0 (i.e. when the planetesimals sublimate
completely). This sublimation radius is enforced, removing the
solid mass interior to it throughout the formation stage depend-
ing on the temperature structure of the gas disk. The water ice
line is calculated in the same way and is the biggest jump in sur-
face density as it makes up ≈60% of the ice mass (Marboeuf
et al. 2014). The bulk density ρ is also determined by the loca-
tion of the ice line, meaning we consider rocky planetesimals
with a bulk density of (3.2 g cm−3) inside the initial ice line and
icy planetesimals outside with (ρ = 1 g cm−3).

The initialisation of the dynamical state of the solid disks
is simply given by the equilibrium between the self stirring of
the planetesimals and the gas drag by the gas disk (Fortier et al.
2012). We note that the initialisation does not change when con-
sidering fragmentation as at t = 0 no fragments are present in
the disk, and therefore we do not have to consider the dynamic
friction term. This results in

eplan = 2.31
M4/15

plan r1/5ρ2/15
plan Σ

1/5
g

C1/5
D ρ

1/5M2/5
∗

, (23)

and the inclinations are simply given by β = i/e = 0.5.

2.2. Planet population synthesis

In order to probe the planet formation process for different ini-
tial conditions and to compare our theoretical results with the
actual exoplanet population, we need to make use of popula-
tion synthesis (Ida & Lin 2004; Mordasini et al. 2009, 2015;
Emsenhuber et al. 2021a). The main idea is to run multi-
ple global simulations with different initial conditions to cap-
ture the diversity of resulting planets and to account for the
chaotic nature of the N-body interactions in planet formation
(Mordasini 2018). For this we run many systems (typically
∼1000) with the Bern model, as described above, where the
initial conditions are generated from the following random
variables:

Dust-to-gas ratio fD/G. To constrain the mass of gas in the
disk we make use of the gas-to-solid mass ratio fD/G and assume
the disks and their stars have the same metallicity, which leads to

fD/G

fD/G,⊙
= 10[Fe/H], (24)

where the metallicities follow the distribution of Santos et al.
(2005). The entire dust mass is assumed to be converted to
planetesimals.

Initial gas disk Mass Mg and dust mass. The distribu-
tion of initial dust disk masses Mg reproduces the Class I disks
reported in Tychoniec et al. (2018). The dust masses of the
disks follow a log-normal distribution with log10(µ/M⊕) = 2.03
and σ = 0.35 dex. The gas mass is then obtained by dividing
by the previously defined dust-to-gas ratio. The sampled gas
disk mass range is limited from 0.004 M⊙ to 0.16 M⊙ to ensure
self-gravitational stability.

Photo evaporation rate Ṁwind. Since the disk lifetimes are
constrained by a combination of α and Ṁwind, and α is kept con-
stant at a value of 2 × 10−3, we choose the evaporation such
that the disk lifetimes fit observations (Emsenhuber et al. 2021a).
This results in a log-normal distribution with log(µ/(M⊙ yr−1)) =
−6 and σ = 0.5 dex.

Inner edge of the gas disk rin. The inner disk edge of the
gas disk is chosen to be the co-rotation distance to the star (i.e.
where the Kepler period matches the rotation period of the star).
The stellar periods are sampled from Venuti et al. (2017).

Initial location of the embryos a embryos. The initial embryo
locations are randomly chosen between the inner disk edge and
40 Au uniformly in logarithm. To reproduce the results from
N-body simulations (Kokubo & Ida 2002), the embryos cannot
be closer to another than 10 Hill radii if we consider multiple
embryos.

In addition the remaining parameters can be found in
Table A.3. We note that all of the systems are formed around
solar mass stars. One particular parameter of interest is the
chosen planetesimal size, which has great effect on the frag-
mentation model introduced in the next section. We consider
two choices for the planetesimals size 100 and 1 km. The
first choice is motivated by the size distribution of aster-
oids in the main belt (Morbidelli et al. 2009) and the results
from streaming instability (Schäfer et al. 2017). The second
choice lets us explore setting closer to the previous choice of
Emsenhuber et al. (2021b), which is motivated by Schlichting
et al. (2013), Arimatsu et al. (2019), Kenyon & Bromley (2012),
and Weidenschilling (2011).
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2.3. Fragmentation model

To study the influence of fragmentation on the population of exo-
planets we have to use a simplified model that follows in parts
the model described in Ormel & Kobayashi (2012) with a few
notable differences. The model described in Ormel & Kobayashi
(2012) is a local model and does not support multi-planet sys-
tems and migration. Furthermore, it takes a simplified approach
to the calculation of the dynamical state and the effects of drift.
Our model adds to the description of the solid disk a swarm of
solids of a second variable size (known as fragments) that are
created by the mutual collisions of planetesimals.

First, we take a look at the baseline description of the frag-
mentation model. In this case the fragments are modelled as an
additional swarm of solids of a fixed size (s f ) that is a parameter
of the model. At each time step we calculate the fragmentation
rates from the mutual collisions of the planetesimals (PPs) and,
if there are any, the eroding collisions of planetesimals with frag-
ments (PFs). At each radial bin we calculate first the collisional
timescale among planetesimals which is given by

Tcoll i,k =
1

σcs ∗ nk ∗ Vrel
, (25)

where Vrel is the relative velocity among the colliders. The
number density nk of projectiles and the cross-section are
given by

nk =
Σk/

4π
3 ρk s3

k

2h
, σcs = π(si + sk)2 ∗ f f , (26)

where ρ is the bulk density of the planetesimals, h = a ∗ imax(i,k)
is the scale height of the solid disk, and f f is the gravitational
focus factor (Morbidelli et al. 2009). The subscripts i and k refer
to the properties of the targets and projectiles, respectively. When
we consider collisions among different swarms the scale height
used is the highest one as it reflects the true number densities in
the collisional volume. The gravitational focus factor describes
the deviation of the collisonal cross-section from the geometric
one (i.e. it accounts for the fact that the colliders have a gravi-
tational field enhancing their cross-section). For this we follow
the description of Morbidelli et al. (2009). We define the ratio of
specific collision energy to the specific material strength as

qi, j =
0.5mµv2rel

(mi + m j)Q∗d,i
(27)

qi(,i) =
∆v2ii

8Q∗d,i
, (28)

where mµ = (1/mi + 1/m j)−1 is the reduced mass. For the spe-
cific fragmentation energy Q∗d we use the value from the bigger
collider (i), which is considered the target. The excavated mass
of a collision mexc is then given by the collisional outcome model
of Kobayashi et al. (2010):

mexc =
qi, j

1 + qi, j
(mi + m j). (29)

We assume that all of the mass that gets excavated flows
instantaneously to the fragments. This is justified by the fact that
the bodies in the gravity regime have lower material strength
with reduced size, which should induce a collisional cascade
and the size of the fragments represents its lower end (Ormel
& Kobayashi 2012, and see our discussion in Sect. 4.3). In the

100 102 104 106 108101 103 105 107

Size [cm]

106

107

108

109

1010

1011

Sp
ec

ifi
c 

St
re

ng
th

 Q
* d
 [e

rg
/g

]

Basalts 5 km/s
Basalts 3 km/s
Basalts 25 m/s
Ices 3 km/s
Ices 0.5 km/s

Fig. 1. Specific material strength for different ice (blue) and basalt (red)
at different sizes and impact velocities.

nominal case we do not consider a change in the typical size
of planetesimals due to these collisions for the planetesimals
despite the mass that is excavated. This is ignored because out-
side of the feeding zone of embryos the collisional evolution is
in the runaway regime due to the lack of added stirring by larger
bodies. This, combined with the fact that we do not track indi-
vidual bodies and only consider one size of planetesimals means
we are not able to resolve the behaviour of the runaway bodies.
This could then affect the growing embryo as it migrates. The
resulting change in surface density from the collisions is then
obtained by combining Eqs. (25) and (29) which results in

Σ̇p = −
qp

1 + qp

ΣP

TcollPP
−

qpfΣP

TcollPF
= −Σ̇ f , (30)

where the second term stems from the collisions with frag-
ments. We note that because the impact energy of the frag-
ments is significantly smaller qPF ≪ 1 we can use that
qPF/(1 + qPF) ≈ qPF.

The description of the material strength is vital for the frag-
mentation model because it dictates the speed of fragmentation
and the size distribution of fragments. We utilize the specific
fragmentation energy Q∗d (i.e. the energy needed to disperse 50%
of the target body) as it is used to determine the collisional
outcomes as described above. For this model we consider two
descriptions of Q∗d. The nominal case takes the results from Benz
(1999) at v = 3 km s−1 for basalt and ice, as described below,

Q∗d(s) = Q0s

( s
cm

)bs
+ Q0gρs

( s
cm

)bg
+ 9v2esc(s), (31)

where s refers to the size of the planetesimals and vesc is their
mutual escape velocity, and the remaining parameters can be
found in Table A.2. The first term refers to the strength regime,
the second term is the gravitational regime, and the last term is
the gravitational potential (Stewart & Leinhardt 2009). A visu-
alisation of the function can be seen in Fig. 1. We also consider
another description of the fragmentation energy Q∗d, which takes
into account the effect of different impact velocities and the
differences in strengths between icy and rocky planetesimals.
Specifically, this means that we interpolate between the curves
given by the parameters in Table A.2 according to the impact
speed and ice fraction of the planetesimals. The parametrisations
of Q∗d are described in Benz (1999, 2000), and the interpolation
follows the approach of San Sebastián et al. (2019). For veloci-
ties above the maximum or below the minimum relative velocity
covered by the parameters in Table A.2, we take the values of the
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closest curve (i.e. we do not extrapolate beyond the curves). This
leads to a more accurate representation of the specific material
strength, which mainly impacts the low-velocity regime where
the material strength is considerably lower.

The fragment size can either be given as a parameter or can
be calculated. When calculated by the model, the initial frag-
ment size is given by the minimum in the specific fragmentation
energy Q∗d for the respective materials. This means icy and rocky
planetesimals have different initial sizes. This leads (for an ice
fraction of ≈0.6) to an initial fragment size of 105 m inside the
ice line and a size of 147 m outside. The size of fragments is then
only changed if the collisions between the fragments become
destructive (i.e. if ∆v2FF/8Q∗d(s f ) > 0.5) meaning the collisions
between the equal-sized fragments excavate more mass than they
add. In this case we reduce the size of fragments until the col-
lision become non-destructive, meaning their size at each radial
separation of the disk is then given by the implicit equation

∆v2FF

8Q∗d(s f )
= 0.5. (32)

In this equation s f is the fragment size and ∆vFF is the rela-
tive velocity among fragments. Due to the negative slope in the
strength regime of the Q∗d curve and the increased gas damping
at lower sizes, we are able to find a stable size for the fragments
(i.e. Eq. (32) has a solution).

The fragments have short drift timescales, due to their strong
coupling to the gas. As dictated by the pressure structure of the
gas disk they drift towards the central star until they reach a pres-
sure maximum. This leads to a significant pile-up of fragments
at the global pressure maximum located at the inner disk edge
(Guilera & Sándor 2017). For our gas disk structures and con-
densation model (Thiabaud et al. 2014) this pressure maximum
is located outside of the dust sublimation line. The resulting pile-
up of fragments can lead to very high solid-to-gas ratios at the
pile-up which is not well described by our model as we do not
account for the back reaction of solids onto the gas. Furthermore
we expect mass to be removed from the inner disk edge through
various processes (Li et al. 2022); however, the exact structure
of the inner disk edge remains quite uncertain (Dullemond &
Monnier 2010). As we are not able to resolve the full dust evo-
lution and collisional evolution that comes with the pile-up, we
use a heuristic simplified treatment of the solids at the global
gas pressure maximum. We limit the solid surface density to the
gas surface density when the gas surface density is above a cer-
tain threshold, which we chose to be 200 g cm−2. We ignore the
limiting at lower gas surface densities because we do not expect
solids in the entire disk to vanish when the gas disk dissipates,
and because the drifting of solid slows down significantly as the
gas disk dissipates. We discuss this simplified treatment and its
effects in Sect. 5.

The code features an adaptive time step for the solid disk that
ensures that the processes are treated consistently, which follows
the approach of Morbidelli et al. (2009). The time step is chosen
such that neither the surface density (Σ) nor the random veloc-
ities (e and i) change by more than 10% anywhere in the disk
in a single time step. Another limit is that we ensure that the
solids, especially the fragments, do not drift further than 1% of
their semi-major axis, but there is a minimum time step of 1yr.
We note that these restrictions for the time step are in addition to
those described in Emsenhuber et al. (2021b), which come from
the planet’s internal structure and growth and the evolution of
the gas disk.
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Fig. 2. Fragmentation rates of planetesimals due to their mutual colli-
sions in our model (solid) and from Eq. (33) (dashed) at different times.
The dot indicates the location of the forming planet.

3. Comparison with previous work

In order to ensure the validity of the fragmentation model intro-
duced in the last section it is important to make a comparison
to similar models presented in the literature, namely Chambers
(2006) and Ormel & Kobayashi (2012). These models both oper-
ate with a similar three-component approximation to the solids
in the disk (embryos, planetesimals, and fragments).

First, we wanted to compare the fragmentation rates of our
planetesimal–planetesimal collisions to the ones from Chambers
(2006) which are given by

dΣp

dt
=

69.4Σ2
pa2

0

Pm
∗min

[
Q

2Q∗d
, 1

]
, (33)

where Q is the specific impact energy (i.e. Q = 0.5 ∗ mµ ∗
vrel/mp). This formula is constructed under the assumption that
β = i/e = 0.5, which does not hold throughout the entire disk
in our simulations. The comparison of our fragmentation rates
resulting from planetesimal–planetesimal collisions and theirs
can be seen in Fig. 2. We tested this on a system with initial
conditions that can be seen in Table A.4.

As can be seen, the rates are quite close to one another except
on the outer edges of the feeding zone of the embryo, which
is expected as this is where we get values of β that are signifi-
cantly lower than the equilibrium value of β = 0.5. This arises
due to the stirring of the planet that affects the eccentricities
and inclinations with different strengths leading to a deviation
from the equilibrium value of β = 0.5. Furthermore, Chambers
(2006) assumes that all the collisions happen in the high-velocity
regime, which might not hold far away from the embryo.

For the second comparison we constructed a test system with
the initial conditions that can be seen in Table A.1. Additionally,
to be consistent with the works of Ormel & Kobayashi (2012), for
the profile of the disk we chose MMSN-like initial conditions of

Σgas(a) = 376.2 g cm−2
( a
5.2 AU

)−1.5
(34)

Σplanetesimals = 1/57Σg(5 AU) = 7 g cm−2. (35)

This corresponds to a MMSN model with an enhanced surface
density of 2.65. Furthermore, we set the fragment size to a fixed
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Fig. 3. Core mass of the embryos in our simulation (red) and
the reference simulation from Ormel & Kobayashi (2012), see their
Fig. 6A (blue).

size of 1 cm and planetesimals were set to a size of 106 cm
so that the model could be compared to Fig. 6 from Ormel &
Kobayashi (2012). Additionally, we disabled planet migration,
the evolution of the gas disk, and the drift of solids and the
gravitational focusing for the collisions as they do not consider
these processes. For the description of the specific fragmenta-
tion energy we used the Q∗d description of Benz (1999) for ices
at 500 m s−1 (see Table A.2). For the relative velocity between
solids for this comparison we also followed their simplified for-
mula of ∆vPP = ∆vPF = 2eP ∗ vk. To have a comparable treatment
for the dynamical state we increased the integration time of
Eq. (2) by a factor of 50, which ensures the dynamical state is
always in equilibrium.

The resulting mass growth of the embryo is displayed in
Fig. 3. The major difference between the two runs is in the initial
stages of embryo growth, which is mainly due to the different
ways the eccentricities and inclinations are calculated: they con-
sider the balance between the two dominant timescales, whereas
we integrate the dynamical evolution equation given in Eq. (2),
which leads to different eccentricities and inclinations during
the early stages. However, the end results are very close as the
isolation mass is reached almost simultaneously.

In addition to the evolution of the forming planet we can
compare the surface densities of planetesimals and fragments
at the embryo’s location, which ultimately dictates the accre-
tion rates. The surfaces densities at the embryos throughout the
simulation can be seen in Fig. 4. The surface densities around
the embryos compare rather well. The biggest differences are
present in the early stages of the formation process, which can
once again be explained by the different ways the dynamical state
of the solids is calculated, which mostly comes into play at early
times. As we can see, the outcome of our model is comparable
to the results of different simplified models used to characterise
fragmentation.

4. Population synthesis

To get a more robust understanding of how our newly added frag-
mentation model affects the synthetic populations, we consider
different set-ups for the treatment of the solid disk. To do this
we ran single-embryo populations for three different models for
two different sizes of planetesimals: 100 and 1 km. The three
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Fig. 4. Surface densities of the planetesimals (solid) and fragments
(dashed) at the embryo’s location for our model (red) and the Ormel
& Kobayashi (2012) model (blue).

Table 1. Chosen settings for the different populations.

Name Planetesimal size Fragment size

Lno 100 km No fragmentation
L 100 km 100 m
Ldyn 100 km Dynamic

S no 1 km No fragmentation
S 1 km 100 m
S dyn 1 km Dynamic

MLno (20 embryos) 100 km No fragmentation
ML (20 embryos) 100 km 100 m
MLdyn (20 embryos) 100 km Dynamic

MSno (20 embryos) 1 km No fragmentation
MS (20 embryos) 1 km 100 m

set-ups differ in their treatment of fragmentation. The first repre-
sents a reference case that includes the updated stirring, drift,
and treatment of the ice line for the solid disk, but does not
include fragmentation. The second includes fragmentation with
a fixed fragment size of 100 m. The third set-up adds the dynam-
ical calculation of the fragment size, as dictated by Eq. (32). To
investigate the formation of multiple planets in the same disk,
we completed a population with 20 embryos for both planetesi-
mal sizes of 100 and 1 km that consider fragments of 100 m. We
also considered the dynamical treatment of the fragment size for
the 100 km planetesimals. As a comparison, we also ran non-
fragmenting populations with 20 embryos for the 100 and the
1 km planetesimals. An overview of the populations with their
abbreviations and their chosen model parameters can be seen in
Table 1.

4.1. Single-embryo populations

In order to isolate the effects of fragmentation, it is useful to dis-
cuss the formation of single embryos in the disk as it allows us to
prevent any chaotic noise stemming from the N-body interaction
between the different forming planets. For this we investigated
different settings for the fragmentation models L and Ldyn. Pop-
ulation L is the nominal case with 100 km planetesimals and a
constant fragment size of 100 m. The fragment size was chosen
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Fig. 5. Distance–mass diagrams for the populations with a single embryo. The colour of the points refer to their bulk composition: red for
Menv/Mcore > 1; blue for a volatile fraction >1%; green for the remaining points (i.e. rocky planets).

to be close to the minimum in the Q∗d functions for ice and basalt
from Benz (1999). In the second population, Ldyn, we also enable
the dynamical calculation of the fragment size, as described in
Sect. 2.3. We also ran a population without fragmentation to have
a reference case to compare it to (Lno). As the effects of fragmen-
tation strongly depend on the size of the initial planetesimals, we
also ran simulations with smaller planetesimals of 1 km size in
the set of populations S no, S , and S dyn, where we explore the
same three settings of our fragmentation model.

One of the main results of the population synthesis is the
semi-major axis mass diagram, which allows us to see where the
forming planets end up and the formation pathways to their final
locations. To illustrate this we show the semi-major axis mass
diagram for our different single-embryo populations in Fig. 5 we
group the planets according to different properties: planets that
have accreted more than 1% of volatile material are considered
icy planets, planets that have a higher envelope than core mass

are referred to as gas giants and The remaining planets are con-
sidered to be rocky. All of the following diagrams show their
respective populations at a time of 5 Gyr.

In the left column of Fig. 5 (i.e. for the 100 km initial plan-
etesimals) when comparing the population L with the reference
case Lno we can see a few notable differences. Firstly, we can
generally observe more massive planets when we consider the
effects of fragmentation. This is especially visible for the icy
planets where for the fragmenting population we see the verti-
cal branch of inward-drifting icy planets at around ∼10 M⊕, as
described by Mordasini et al. (2012, 2009). Furthermore, we get
significantly fewer very low-mass planets of around ∼0.1 M⊕ in
the inner regions of the disk. This feature mainly arises due to
the transport of fragments to the inner disk where they pile up
and enhance the growth rates. To illustrate this pile-up we show
an example system where we omitted the limiting of the surface
density described in Sect. 2.3 as this makes it easier to see the
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white. The dashed lines mark the evolution after disk dispersal.

mass transported to the inner disk. This can be seen in Fig. 6
where we plot the surface density evolution of the fragments
close to the star. As we can clearly see, there is a significant
enhancement of the solid surface density of fragments at the
inner disk edge when compared with the initial solid surface den-
sity. The initial disk profile represents the distribution of solids
in the non-fragmenting case as the drift of 100 km planetesimals
is negligible. We additionally see a void of Earth-mass planets at
∼1 AU in population L, which we discuss below.

When we include the dynamic calculation of the fragment
size in population Ldyn we similarly see that the growth in the
outer disk is greatly enhanced. This holds true even further out
in the disk when compared to population L. Additionally, we
observe icy planets being formed closer to the star down to
∼1 AU. This is true even for low-mass planets (M < M⊕) that
experience little migration. This can be explained by the drift
timescales of the smaller fragments that are significantly shorter
leading to increased volatile transport to the inside of the initial
ice line. The population in the inner disk is significantly less mas-
sive due to the short drift timescale of the solid material in the
inner disk. This material is not entirely available to be accreted
due to the limiting of the surface density at the inner disk edge,
as described in Sect. 2.3.

When we look at the 1 km sized planetesimals in the right
column of Fig. 5 (populations S no, S , and S dyn), the effects
remain largely the same as before, but with the caveat that the
planetary masses are already enhanced due to the faster accre-
tion of the smaller planetesimals. This allows giant planets to
be formed in the population with fragmentation, whereas they
are absent in the reference simulation S no. Additionally, we once
again see the lack of planets forming at Earth’s location for the
fragmenting population. When including the dynamical frag-
ment size we once again see the same imprint as for the bigger
planetesimals, mainly the halted growth for rocky planets and
enhanced growth outside the ice line. Interestingly, we see a
sharp transition in planet masses at ∼10 AU separating embryos
experiencing no growth with M ≈ 10−2M⊕ and the more massive
ones.

When comparing the populations S no to the previous popula-
tions computed with the previous iterations of the code shown in
Emsenhuber et al. (2021a), we generally observe a significantly
less massive population. Specifically, in the S no populations no

giant planets are formed. However, there are three main differ-
ences in the updated model that inhibit the formation of giant
planets. The first two are the choice of planetesimal size, which
is increased from 300 m to 1 km, and the inclusion of stirring
of the planetesimals by density fluctuation, which both lead to
higher eccentricities and inclinations for the planetesimals mak-
ing them harder to accrete. The third is that we consider different
distributions of the initial conditions, which results in the shorter
lifetimes of the gas disks (see Sect. 2.2), leaving less time for gas
giants to be formed.

A planet’s properties depend not only on its final location but
also on its formation pathway. Therefore, we are also interested
in the formation tracks for different types of planets forming
in the populations. Tracks for different types of planets form-
ing in the populations Lno and L can be seen in Fig. 7. This is
done by plotting the formation pathways of a group of planets
that have similar final properties (i.e. they end up at the same
location in the distance–mass diagram). To determine what is
close, we use the logarithmic distance in the semi-major axis
mass plane d(i, j) =

√
log(mi/m j) + log(ai/a j), where m[i, j] are

the final planet masses and a[i,i] the semi-major axes.
The groups that are not shown in either of the columns

of Fig. 7 have no planet that is in close enough proximity
(dmin > 2) to the group centre; in other words, these particular
types of planets do not form in that population (e.g. the violet
group in the bottom left panel). The formation tracks for the
first row of Fig. 7 look quite similar for the two populations,
except for the green group where the fragmenting population
keeps accreting material during outward migration. The second
row displays interesting differences when it comes to the red
group, where in the fragmenting population the planets accrete
a larger part of their mass closer to the star compared to their
non-fragmenting counterparts. The planets growing further out
(yellow and orange) form almost in situ, meaning they migrate
very little during their formation. When comparing the orange
and cyan groups, we see that for population L the planets show
more migration close to their final mass, whereas for population
Lno the planets migrate during the entire growth process, which
implies a difference in timing of the accretion. The void of plan-
ets at Earth’s location seen in population L can be explained by
the difference in migration; we see the yellow group experienc-
ing little migration and the orange group migrating significantly
more leaving this part of the diagram depleted. The migration
becomes more significant when we get to ∼10 Earth masses
which is an expected result for type I migration (Ward 1997).
When comparing the brown group we see a picture similar to
that for the red group. The fragmenting population accretes more
of its material closer to the star where the same type of planet
migrating inwards forms further out in the disk in the non-
fragmenting case. The purple and pink groups are absent from
population Lno as the planets beyond the ice line do not grow
massive enough to fill that part of the diagram (i.e. there are no
planets forming with M > M⊕ beyond 1 AU for population Lno).

We can also probe the importance of the starting location of
the embryo by running different simulations of the same initial
disk (see parameters in Fig. A.4). To probe the importance of
the initial location of the embryo we ran 100 single-embryo sim-
ulations with different starting locations. We did this with and
without the fragmentation of planetesimals to be able to com-
pare the two scenarios. This can be seen in Fig. 8; the embryos
are equally spaced in log between the inner edge of the disk and
40 AU as this is also the range of semi-major axes allowed for the
seeding of the initial embryo location for our populations, and it
has the same spatial density distribution (uniform in log).
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When we look at the non-fragmenting tracks of Fig. 8 we
can see that all of the icy planets originate from beyond the ini-
tial ice line because the 100km planetesimals experience very
little drift. For the rocky planets we see that most of them end up
at the inner disk edge and that the more massive ones originate
from further out in the disk, which is consistent with the brown
group from Fig. 7. The tracks in the right panel of Fig. 8 illus-
trate similar features that can be seen for the most massive part
of the entire population L. For the close-in planets we recover
tracks similar to those of the brown group in Fig. 7. The outer
tracks are similar to the purple, violet, and blue group, although
with enhanced growth, which results from the massive disk of
the system. We can clearly see that with the inclusion of frag-
mentation we are able to form icy planets from initial embryos
that are well within the initial ice line, which is not the case with-
out. This is due to the drift of fragments and the movement of
the ice line during the simulation. As the ice line moves towards

the star during the evolution of the gas disk (Burn et al. 2019),
icy fragments drift past initial location of the ice line enriching
the interior embryos in volatiles. This does not happen for the
planetesimals as their drift timescales are significantly longer,
meaning the icy planetesimals do not migrate far past the initial
ice line. Additionally, we can see a distinct difference between
the formation pathways of icy and rocky planets in these heav-
ier disks where the growth of icy planets is greatly enhanced
because of the drift pile-up at the ice line caused by the transi-
tion in drift speed due to the change in bulk density of solids (by
a factor of ∼3). This can be seen by the sharp transition between
the furthest initial embryo that forms a rocky planet and the clos-
est icy planet-forming embryo that differ in final mass by a factor
of ≈5 (black crosses in Fig. 8). This also links to the previously
discussed gap in planets around the Earth’s location seemingly
being an effect of the sharp transition between icy and rocky
planets. Additionally, the distribution of the rocky planets also
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changes significantly leading to the formation of more massive
planets from embryos starting close to the inner disk edge, due to
the increased access of accretable solids when compared to the
non-fragmenting case. So we can clearly see that the addition
of fragmentation affects the formation pathways of planets very
differently depending on the starting location of the embryos.

The core mass budget in terms of fragments and planetesi-
mals is an interesting statistic to look at as it allows us to directly
see what the most dominant mode of accretion is (i.e. how much
mass was accreted in the form of fragments or planetesimals for
the different types of planets). Additionally, it lets us see the
direct impact that fragmentation has on the formation of different
types of planets. This is depicted in Fig. 9.

A general trend for all populations is that in the far outer
disk (from ∼10 AU outward) fragmentation seems to have less
effect on the accretion mode of planets as the embryos in
these regions accrete negligible amounts of fragments. This
can be explained by the low surface densities and long colli-
sion timescales among planetesimals leading to few fragments
being produced and explains why the fragmenting populations
are very similar to their non-fragmenting counterparts beyond
∼10−20 AU. However, this region is noticeably pushed outwards
for the smaller planetesimals because, due to their smaller size,
they have shorter collisional timescales. As a general trend in
the populations with fixed fragment size, Fig. 9 shows that the
closer we get to the star and the heavier the final planet is, the
higher its mass fraction of accreted fragments is. When enabling
the dynamic calculation of the fragment size we can see a sim-
ilar trend, with the caveat that we get low-mass planets in the
inner disk that accrete significantly fewer fragments and have a
lower final mass of ≈10−1M⊕. This shows that the inner disk gets
depleted of fragments when we consider these smaller fragments
that have very short drift timescales which halts the growth of
these embryos. The right column of Fig. 9 shows that more frag-
ments are being accreted on the planets when compared to their
100 km counterpart, which is true for both set-ups. This can
be explained by the fact that the smaller planetesimal are much
easier to fragment due to their lower material strength. In the
end for the 1 km planetesimals the planets almost exclusively

consist of fragments, which implies that the initial 1 km sized
planetesimals are very weak with regard to collisions among
themselves.

An additional important factor for planet formation is the
timescale on which the planets form. This can be tracked by
comparing the formation time of the core versus the lifetime of
the gas disk. This largely dictates the amount of gas that can
be accreted onto the planet for the heavier cores. This is espe-
cially important for the formation of giant planets as they have to
accrete their gaseous envelop while the gas disk is still massive
enough. To illustrate this, in Fig. 10 we plot the time in which
the core grows by half of its final accreted core mass versus the
disk lifetime.

Looking at the left column of Fig. 10 for the 100 km planetes-
imals we see a few key features. When we compare the formation
times in the inner disk, we can see that planets at the inner
disk edge with ∼3−5 M⊕ have shorter formation times when
considering fragmentation compared to the ones without. Specif-
ically, we can see this quite clearly for the more massive planets
(Mp > M⊕). Another interesting feature is the added late accre-
tion for the planets further out (between 1 and 6 AU and masses
between 0.5 and 5 M⊕), which all have formation timescales
around the disk lifetime and slightly above. The planets form-
ing further out in the disk have formation times longer than the
disk lifetime; however, the fragmenting population L displays a
significant reduction in formation times for these planets. Look-
ing at the dynamic fragment size (Ldyn) we see and additional
speed-up for the outer planets.

For the 1 km sized planetesimals we can see a significant
reduction in the growth timescale when adding fragments of a
fixed size, which is in line with what we see for the 100 km
planetesimals. However, the formation times get shortened sig-
nificantly more, so much that for population S virtually all
planets form within the disk lifetime. For population S we can
also see that the giant planets have shorter formation times
than the intermediate-mass planets with ∼1−100 M⊕. With the
introduction of fragmentation we can observe an increase in
occurrence rate of planets that grow to around ∼1 M⊕ for popula-
tion L and in the range 1−100 M⊕ for S beyond the ice line on the
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Fig. 9. Distance–mass diagram for single-embryo populations (100 km (left) and 1 km (right)). The colour refers to the mass fraction of planetesi-
mals that were accreted onto the core.

timescale of the disk lifetime. In order to illustrate what happens
for these systems, we show the growth track along with sur-
face densities of fragments and planetesimals around an example
planet in Fig. 11.

As we can see for this type of forming planet, the gener-
ation of fragments occurs just before the dispersal of the gas
disk. This means that the enhanced growth rate provided by
the fragments only contributes during the later stages of planet
formation. The fragments get generated during the end of the
disk lifetime because with the removal of the disk the eccen-
tricity damping from gas drag weakens and relative velocities
are increased, leading to higher fragmentation rates. The gener-
ated fragments have much lower e and i than the planetesimals
as long as the disk is still present and take some time to be
stirred up as the disk vanishes. Which means they are accreted
much more quickly. This leads to a significant accretion boost
right around the time of disk dispersal that we can see in many
simulations where the embryo is outside of ∼3 AU. This is an
interesting feature as it implies that the stirring by the planet can
lead to the generation fragments, and that the dispersal of the
gas disk also plays an important roll in the collisional evolution.
This enhanced growth around the disk lifetime also has impli-
cations for the enrichment of heavy elements in the envelopes
of these planets (Shibata & Helled 2022) as we expect a signifi-
cant amount of the planetesimals accreted at later times when the
planet has already accreted gas to be deposited in the envelop.

Another important quantity to compare the planet popula-
tions is the mass distribution of the formed planets, which is
described by the planetary mass function (PMF). We show the

PMF as a reversed cumulative distribution function for all our
populations (including the multi-embryo populations discussed
below), which can be seen in Fig. 12.

As we can clearly see, the addition of fragmentation leads
to a significantly more massive population of planets when we
consider a fixed size for the generated fragments. This is true for
both the 100 and the 1 km planetesimals. However, when we con-
sider the dynamical size calculation of the fragments, the picture
changes quite drastically and we get an adverse effect across all
mass ranges. As expected, the runs with smaller planetesimals
yield enhanced growth across the spectrum when compared to
their 100 km counterparts as the smaller planetesimals are more
easily accreted. An interesting feature of population S when
compared to previous works (Emsenhuber et al. 2021a) is that
the occurrence rate gap of planets around 100 M⊕ is much less
pronounced, which may be due to the late growing outer planets
discussed above as they fit in the mass range of the gap.

With the introduction of the radial drift of solids, a sig-
nificant amount of mass is transported to the global pressure
maximum at the inner disk edge, which leads to a pile-up of
solids (see Sect. 2.1). This happens because in our disk models
this trapping of solids happens outside of the sublimation line for
refractories. In order to approximately treat the unresolved com-
plex physics at the inner disk edge, we limit the solid surface
density to the gas surface density above a limit of 200 g cm−2.
In Fig. 13 we display the mass removed by this limiting of sur-
face density for the different populations during the formation
stage of the planet formation. We do this by plotting the median
mass removed along with the 10th–90th percentile interval for all
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Fig. 10. Mass–distance diagram for single-embryo populations. The colour refers to the ratio of the time in which the embryos accrete half their
final mass to the gas disk lifetime.

systems. This serves as a good measure for the mass transport in
the inner disk as it allows us to see how much additional material
is transported to the inner disk edge.

As we can clearly see in Fig. 13 the addition of fragmentation
leads to much earlier mass removal (i.e. increased mass transport
to the inner disk). This is enhanced even further when we con-
sider the dynamical calculation of the fragment size, which is
expected as the smaller fragments have shorter drift timescales
than the bigger fragments. Additionally, for the 1 km planetes-
imals we observe little difference (except populations S no and
Lno) when compared to their 100 km counterparts owing to the
fact the mass transport is dominated by the fragments and not
the planetesimals. We can see in Fig. 13 that this affects the
populations without planetesimal fragmentation mostly on the
timescale of lifetimes of the gas disks, which limits its imprint

on the forming planets especially as the formation timescales
are short in the inner disk (see Fig. 10). However, for the pop-
ulations with planetesimal fragmentation we remove this mass
quite early, meaning we experience a great deal of drift in the
early stages depleting the inner disk of solid material. This is
one of the main explanations why growth is halted for embryos
in the inner disk when we consider the dynamical size of the
fragments.

In order to investigate the radial extent of the mass removal
in the inner disk and its impact on the forming planets, we ran
an additional population with the same initial conditions as pop-
ulation Lno, but without limiting the surface density. We chose
this population because the surface density profile steepens with
shorter drift timescales, so population Lno is affected out to the
greatest distance from the star when compared with the other
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populations. This makes it the most conservative choice show-
ing an upper limit for the radial influence of this treatment. When
we compare the final masses of the same planets forming in the
two populations, we see that the differences are negligible out-
side of 0.4 AU with the maximum relative difference in mass
being 7 × 10−3 and with an average of 3.5 × 10−4. However, we
should be aware that it impacts the planets forming at the inner
disk edge where we see an average mass deviation of 7% inside
0.4 AU. This means we have to be careful when interpreting the
results of our simulations with forming planets close to the inner

disk edge. However, we know that we underestimate the masses
of these planets, and so the resulting final planet masses serve as
a lower limit.

4.2. Multi-embryo population

It is also interesting to investigate the formation of multiple plan-
ets in the same disk because fragmentation and the other added
processes open up further possibilities of interaction between
planets, for example the accretion of the inward-drifting frag-
ments generated by another planet further out. To investigate this
we ran a population with the same parameters as Lno, L, Ldyn,
S no, and S (named MX where X is the single-embryo name)
that include 20 initial embryos per system to see if there are any
emerging imprints on the forming planets left by the interplay
between the presence of multiple embryos per disk and plan-
etesimal fragmentation. To investigate this we show in Figs. 14
and 15 the same quantities as in Figs. 9 and 10 for the multi-
planet populations. We note that we did not plot the planetesimal
mass fraction in the core for populations MLno and MSno as it
adds no new information (cores are made up of planetesimals
alone).

When we compare the final masses and positions of the
planets in the reference simulation (MLno) to those in the frag-
menting counterpart (ML), we recover effects of fragmentation
on the population very similar to those in the single-embryo case.
Specifically, the features we observe are significantly enhanced
growth beyond the ice line and the increased occurrence rate
of massive planets with formation times around the dispersal
of the gas disk outside of the ice line. We also see the pro-
moted growth at the inner disk edge where we do not have many
planets remaining in the 10−2−10−1M⊕ mass range when consid-
ering fragmentation. When considering the dynamic treatment
of the fragment size (MLdyn), we can see the significantly lower
planet masses inside of 1 AU when compared to population ML
along with the enhanced growth in the outer disk, which are
both features we recovered from comparing the respective singe
embryo populations. For the smaller planetesimals, when look-
ing at the population MSno, we see that with the addition of
multiple embryos giant planets form in the disks, which is not
the case for S no as giant impacts between the embryos lead to
enhanced growth. For the population MS we see that the gas
giants have a much wider distribution of semi-major axes when
compared to their single-embryo counterparts, which is due to
the n-body interactions between the growing embryos. By com-
paring the two (MSno and MS) we can see that the addition
of fragmentation clearly enhances growth in the outer disk and
shortens formation timescales beyond the ice line.

The fragment fractions displayed in the left column of
Figs. 14 and 15 take into account the composition of the col-
liders for embryo mergers (i.e. the planetesimal fraction of the
merged core is computed consistently from its colliders). When
we compare the fragment fraction of the multi-embryo popula-
tions with their respective single-embryo counterparts we can
see the same general trends of higher fragment fractions for
closer-in and heavier planets. When we look at the simulations
with bigger planetesimals (ML) the picture remains largely the
same; however, due to the scatter introduced by the N-body inter-
actions we have a less homogeneous picture. For example, we
can see quite a few planets containing few fragments in the inner
system. Additionally, for the MLdyn we see that most low-mass
planets inside of 1 AU have higher planetesimal mass fractions
in the core compared with the fixed size treatment. For the 1 km
sized planetesimals we once again see that apart from the very
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low-mass planets all the mass gets accreted in the form of frag-
ments. The right column of Figs. 14 and 15 depict the formation
times, and also generally show the same trends as discussed in
Sect. 4.1. In these plots we can nicely see the random scatter
from the N-body interactions with the planets with very long
formation times (dark blue) that are distributed throughout the
populations including fragmentation. These planets grow from
giant impacts, and therefore are not restricted by the lifetime of
the gas disk nor can they be present in the single-embryo case.
The remaining planets display the same distribution of formation
times as their single-embryo counterparts.

The PMFs for the multi-embryo populations are already
shown in Fig. 12. The y-intersect of the PMF is at less than
the initial number of embryos because only the surviving plan-
ets at 5 Gyr are being counted for the statistic, which means
that all the planets lost to collisions and the star are omitted.
For the single-embryo case, the addition of fragmentation (i.e.
comparing MLno and ML) with a fixed fragment size leads to
significantly more massive planets. However, contrary to the
single-embryo case, the dynamic fragments also produce more
massive planets, which is due to the large number of planets with
masses in the range 1−10 M⊕ outside of 1 AU. For the 100 km
planetesimal populations ML and MLdyn we see that only very
few planets get lost to collisions, which is due to their over-
all lower mass when compared to the simulations with 1 km
sized planetesimals. When we look at the population MSno we
clearly see the imprint of the giant planets on the PMF, which
are not present in the single-embryo counterpart, leading to a
much higher maximum mass. For the smaller planetesimals with
fragmentation (MS) we see very similar results when compared
to their single-embryo counterparts; however, the lack of plan-
ets around ∼100 M⊕ is less pronounced than expected, but more
pronounced than in the single-embryo case. The addition of frag-
ments of a fixed size still seems to enhance the growth of the
planets significantly, and also lead to more planets being lost (i.e.
an increase in the embryo–embryo collisions that occur). The
maximum masses appear to be almost the same for the single-
embryo and the multi-embryo cases for the three simulations,
which is in line with the results from Emsenhuber et al. (2021a)
where the maximum mass shows only a slight dependence on the
initial number of embryos.

When we look at the mass that was removed due to the lim-
iting of the surface density in the inner disk displayed in Fig. 13,
we see that there is less mass removed when we compare the
multi-embryo populations to the single-embryo equivalents. This
is to be expected: the more embryos there are in the disk, the
higher the chance that one starts in the inner disk and accretes
some of the material before it is lost to the removal. Additionally
the mass flux to the inner disk edge gets reduced for a larger num-
ber of embryos as they accrete the fragments before they reach
inner disk edge. This trend does not hold when we compare MSno
with S no, which can be explained by the added presence of giant
planets that stir up the planetesimals, leading to increased drift
speeds (see Eq. (16)).

In summary, we can see that the presence of multiple
planets does not seem to break the imprint that planetesi-
mal fragmentation has on planet formation; however, there are
still a few changes that arise due to the multi-planet nature
of these systems. This is in line with the results of Guilera
et al. (2014), who find little change for two in situ forming
planets in the same disk. However, in this work we explored
the possible effects of multiple forming migrating planets on
many different systems and planet pairs, leading to a more
robust confirmation of the lack of or little influence of the
interplay.

4.3. Limitations of the model

Our model describes the size distribution of solids with two bins
as opposed to treating the entire size range of solids. We do this
to reduce the computational cost of the simulations and to have a
conceptually simpler model. However, this means that we do not
account for the fact that the fragments created by collisions have
a size distribution rather than a characteristic size. This becomes
important for the collisions among fragments in the typical size
range we consider (∼100 m) as they become super catastrophic
(Q/Q∗d ≫ 1), (Guilera et al. 2014) and lead to mass being trans-
ported to smaller sizes. This leads to a loss of accretable material
(via drift or reduction to dust sizes), which is ignored in our
model. The only way this is considered at the moment is when
considering the dynamical size change by assigning a smaller
typical size to the fragments for which the collisions are not
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Fig. 14. Distance–mass diagram analogous to Figs. 9 (left) and 10 (right) for populations MLno (top), ML (middle), and MLdyn (bottom) with 20
embryos per disk where only the surviving planets are included. The mass limits of the figures vary for the different populations.
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Fig. 15. Distance–mass diagram analogous to Figs. 9 (left) and 10 (right) for populations MSno (top) and MS (bottom) with 20 embryos per disk
where only the surviving planets are included.

super destructive anymore. In order to investigate the effect of
the single size treatment of fragments, we can compare our
results with the giant planet formation model of Guilera et al.
(2010, 2014) and San Sebastián et al. (2019) that includes frag-
mentation and the full size distribution. We simulated the in situ
formation of an initially 0.05 M⊕ mass embryo in a 10 MMSN
disk, as described in the baseline case of San Sebastián et al.
(2019). The growth was calculated until the crossover mass was
reached. To be consistent with their results we use the fragmen-
tation energy description of Benz (1999) for basalt at 3 km s−1

and assume a bulk density of 1.6 g cm−3 for the solids. We ran
our model both with a fixed fragment size of 100 m (red) and
the dynamical size calculation (magenta). The resulting growth
tracks of the embryo computed with our model and theirs (blue)
can be seen in Fig. 16. Their resulting formation times are con-
siderably different as our simulations display shorter formation
times in such a massive disk. One reason for this is that they
only consider the generation of fragments once the collisions
among planetesimals reaches ϕ = Q/Q∗d > 1, where Q is the spe-
cific impact energy and Q∗d is the specific fragmentation energy
(i.e. when collisions become fully fragmenting), which is not the
case in our model. To account for this we ran a second set of

simulations with our model (black 100 m, green dyn) also adopt-
ing that model choice. With these additional changes we see that
the formation time and crossover mass of the forming planet lies
between our different fragment size treatments, which illustrates
nicely the influence the size distribution has on the formation
of planets.

Additionally, we approximated treatment of the inner disk
because without the full size range we lack the information to
apply more sophisticated models for the mass loss and solid evo-
lution at the global pressure maximum (Li et al. 2022). However,
previous studies simply treated the inward-drifting material as
direct mass loss, which can account for a significant amount of
their mass budget (Chambers 2008). Furthermore, at the moment
we only account for the sublimation of volatiles at the water ice
line and do not add the sublimated material back to the gas disk.
However, this is reasonable as water ice makes up a major part of
the volatile mass fraction leading to the most significant change
in planetesimal properties. We also assume local collision rates
for the planetesimals; in other words, we do not account for the
fact that planetesimals with high eccentricities collide with plan-
etesimals in neighbouring radial bins (Morbidelli et al. 2009;
Guilera et al. 2014).
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Fig. 16. Growth tracks of an in situ forming planet at 5 AU. Shown
are a 10 MMSN disk calculated with the model of San Sebastián et al.
(2019) (blue), our model with fixed size (red, black), and the dynamic
size calculation (magenta, green), in the nominal case and when only
considering collisions once ϕ > 1. The solid lines are core masses and
the dashed lines are the envelope masses.

5. Summary and conclusions

In this work we investigated the influence of planetesimal frag-
mentation on the planet formation process by adding planetes-
imal fragmentation to the Bern model along with an updated
description of the solid disk. Using the population synthesis
approach we probed its impact on the formation on the different
types of exoplanets for different planetesimal sizes and model
parameters. The main results of this analysis are as follows:

– The addition of fragmentation does not allow for the for-
mation of giant planets for 100 km planetesimals. However,
it does promote the growth in the outer regions of the
disk, which is enough to enhance or enable the giant planet
formation for smaller 1 km sized planetesimals.

– For smaller fragments we can expect a hindering effect of
planetesimal fragmentation on the planet formation process,
especially in the inner disk where the drift timescales are
very short. For 100 km planetesimals, however, fragmenta-
tion can still promote the growth of planets outside a few AU
both in single-embryo and in multiple-embryo simulations.

– We find fragmentation promotes late growth beyond the ice
line where we get a boost in accretion rate from fragments
that are generated around the time of the gas disk dispersal
as the damping by gas drag weakens.

– The simulations highlight the significance of how the inner
disk edge and its associated gas pressure maximum is treated
for planet formation. In consequence our results in the inner
disk (<0.4 AU) are to be treated as preliminary due to the
shortcomings of the model.

– The presence of multiple embryos in the disk does not
significantly alter the imprint of fragmentation onto planet
formation.

As we see significant changes for the populations when con-
sidering fragmentation, we discuss their implications on previ-
ous results obtained with the Bern model (Emsenhuber et al.
2021a,b; Voelkel et al. 2020). Voelkel et al. (2020) also per-
formed single-embryo populations via the accretion of 100 km
planetesimals. However, they investigated the influence of dif-
ferent surface density slopes for the planetesimals along with the
dynamic formation of planetesimals. Due to the differing ini-
tial conditions in the two works, a quantitative comparison is

not feasible so we discuss the emerging features from the inves-
tigated added physics. The effects of a steeper density slope
and the addition of fragmentation for the nominal case show
similar imprints on the populations in the inner disk where we
get significantly enhanced growth. However, the results start to
vary beyond the ice line where the steeper density profiles have
little effect on the population, whereas fragmentation gives a
significant boost to planetary growth as icy planetesimals frag-
ment faster. With the consideration of the dynamic fragment
size the picture changes quite a lot, and prevents most planets
from forming within the ice line to grow beyond 0.5 M⊕. So the
consideration of fragmentation can enhance or counteract the
effects the dynamic embryo creation has on the forming plan-
ets, as found in the works of Voelkel et al. (2020), depending on
the fragmentation model chosen.This would make it important to
consider the effects in tandem in future works, especially since
the consideration of both processes increase the self-consistency
of the solid disk and both have a non-negligible effects on the
formation of planets.

There are several improvements and follow-up questions we
want to explore in future works. The single-size treatment of
fragments is not ideal when considering a collisional outcome
model with varying slope for the size distribution of fragments
(Guilera et al. 2014). This means a more elaborate description of
the full size distribution of solids should be added, incorporat-
ing a model for the dust evolution and planetesimal formation
(Guilera et al. 2020; Voelkel et al. 2020). We showed the
importance of this by comparing our results with the works
of San Sebastián et al. (2019) leading to significant differences
depending on the treatment of the fragment size. Additionally,
the impact of different descriptions of the fragmentation energy
is also of interest as it greatly impacts the timescale on which
fragmentation operates along with the size distribution of the
fragments generated. This may be especially important when
considering rubble pile-like objects (Krivov et al. 2017) that may
be present in the disk. Furthermore the treatment of the inner
disk edge warrants further investigation as we expect many of the
current model assumptions to not hold up in this environment.
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Appendix A: Simulation details

Table A.1. Additional parameters for the test comparison vs Ormel &
Kobayashi (2012)

Parameter Value
Stellar mass 1 M⊕
Viscosity α 10−4

Initial Embryo Mass 10−6M⊕

Table A.2. Specific material strengths for ices and basalt at different
relative velocities

type of planetesimals Q0s Q0g bs bg
Basalt 5km/s 9e7 0.5 -0.36 1.36
Basalt 3km/s 3.5e7 0.3 -0.38 1.36
Basalt 25m/s 1.23e7 6.3e-8 -0.31 2.27
Ices 3km/s 1.6e7 1.2 -0.39 1.26

Ices 0.5km/s 7e7 2.1 -0.45 1.19

Table A.3. Additional global parameters for all of the populations

Parameter Value
Stellar mass 1 M⊕
Viscosity α 2 × 10−3

Power-law Gas −0.9
Power-law Solids −1.5

Initial Embryo Mass 10−2M⊕
Number of Embryos 1, 20

Formation Time 2 × 107yr

Table A.4. Initial conditions of system 63 of population L

Parameter Value
rin 8.07 × 10−2

core radius 1.26 × 102

Σg 1.98 × 102

Ṁwind 6.20 × 10−7

fD/G 1.35 × 10−2

Appendix B: Stirring functions

The stirring functions for the viscous stirring of planetesimals
from Ohtsuki et al. (2002) are given by

PVS =
73ẽ2

10Λ2 ln(1 + 10Λ2/ẽ2) +
72IPVS (β)
πẽĩ

ln(1 + Λ2), (B.1)

QVS =
4ĩ2 + 0.2ĩẽ3

10Λ2ẽ
ln(1 + 10Λ2ẽ) +

72IQVS (β)
πẽĩ

ln(1 + Λ2),

(B.2)

PDF =
ẽ2

Λ2 ln(1 + 10Λ2) +
576IPd f (β)

πẽĩ
ln(1 + Λ2), (B.3)

QDF =
ĩ2

Λ2 ln(1 + 10Λ2) +
576IQd f (β)

πẽĩ
ln(1 + Λ2), (B.4)

Λ = 1/12(ẽ2 + ĩ2) ∗ ĩ, (B.5)

where ẽ and ĩ refer to the reduced eccentricity and inclination
given by ẽ = (e2

i + e2
j )/hm (where hm =

(mi+m j

3M⊙

)1/3 is the mutual

Hill radius of swarms of solids i and j). Since it is impractical to
calculate the elliptic integrals appearing in the in the equations
above, we need approximations. The integrals I[P,Q],[VS ,DF] are
approximated in the range 0 < β = i/e < 1 as

IPVS =
β − 0.36251

0.061547 + 0.16112β + 0.054473β2 , (B.6)

IQVS =
0.71946 − β

0.21239 + 0.49764β + 0.14369β2 , (B.7)

IPDF =
98.912 + 38.384β + 0.209β2

51.996 + 127.503β + 49.781β2 , (B.8)

IQDF =
−9.562 · 10−4 + 179.7β + 12.083β2

228.8 + 570.4β + 234.1β2 . (B.9)

The approximations of IPVS and IQVS are given by Chambers
(2006) and IPDF and IQDF are obtained in the same way, and it
can be checked that they match the approximated integrals from
Ohtsuki et al. (2002) within 3% in the range 0 < β ≤ 1, which is
the range of allowed values in the code.
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