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ORIGINAL RESEARCH

Profiling Daily Life Performance Recovery 
in the Early Subacute Phase After Stroke 
Using a Graphical Modeling Approach
Janne M. Veerbeek , PhD*; Clemens Hutter , MSc*; Beatrice Ottiger, MSc; Soel Micheletti , MSc;  
Simone Riedi , MSc; Enrico Bianchi , MSc; Noortje Maaijwee, MD; Tim Vanbellingen , PhD;  
Thomas Nyffeler , MD

BACKGROUND: Laboratory- based assessments have shown that stroke recovery is heterogeneous between patients and af-
fected domains such as motor and language function. However, laboratory- based assessments are not ecologically valid and 
do not necessarily reflect patients’ daily life performance. Therefore, we aimed to give an innovative view on stroke recovery 
by profiling daily life performance recovery across domains in patients with early subacute stroke and determine their inter-
relatedness, taking stroke localization into account.

METHODS AND RESULTS: Daily life performance was observed at neurorehabilitation admission and weekly thereafter until dis-
charge, using a scale containing 7 daily life domains. Graphical modeling was applied to investigate the conditional independ-
ence between recovery of these domains depending on stroke localization. There were 592 patients analyzed. Four clusters 
of interrelated domains were identified within the first 6 weeks poststroke. The first cluster included recovery in learning and 
applying knowledge, general tasks and demands, and domestic life. The second cluster comprised recovery in self- care and 
general tasks and demands. The third cluster included recovery in mobility and self- care; it incorporated interpersonal interac-
tions and relationships in left supratentorial stroke, and learning and applying knowledge in right supratentorial stroke. The final 
cluster included only communication recovery.

CONCLUSIONS: Daily life recovery dynamics early poststroke show that although impairments in body functions are anatomically 
determined, their impact on performance is comparable. Second, some, but by no means all, domains show an interrelated 
recovery. Domains requiring cognitive abilities are especially interrelated and seem to be essential for concomitant recovery 
in mobility and domestic life.
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Stroke recovery is complex and not fully unraveled 
to date. However, there is general agreement that 
recovery predominantly takes place within the first 

3 to 6 months poststroke, with most changes occur-
ring within the first weeks to months.1 This pattern has 
been observed for different domains including motor 
function,2 somatosensory function,3 speech,4 and cog-
nition.5 Moreover, it has also been shown that recovery is 

variable within and between domains, and that recovery 
of 1 domain can be mediated by others. For instance, 
patients without visuospatial neglect improved their 
upper limb motor function better and quicker than those 
with visuospatial deficits.6

To capture the pattern and heterogeneity of stroke 
recovery across domains, Ramsey and colleagues 
grouped body functions in the motor, language, 
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memory, and attention domains at around 2 weeks, as 
well as 3 and 12 months poststroke.7 Early after stroke, 
they detected 2 clusters of highly interrelated domains; 
the first cluster was made up of language, verbal mem-
ory, and spatial memory, whereas the second cluster 
was composed of motor function, attention, and spa-
tial memory. The strength of the relations within the 
second cluster remained stable at 3 and 12 months, 
but disappeared within the first cluster. Furthermore, 
the degree of recovery as assessed by a ratio index did 
not show statistically significant differences between 
domains. However, the longitudinal relationship be-
tween domains was not described.

This previous work7 on across- domain recovery 
applied laboratory- based assessments measuring the 
patient’s capacity in a uniform standard environment.8 
However, these assessments may not necessarily re-
flect the patient’s performance in daily life,9 because 
there are more demands on functioning in real life 
than there are for executing a task in a controlled 
laboratory setting without distraction. In this context, 
performance is defined as what an individual does 
in his or her current environment8 according to the 
International Classification of Functioning, Disability, 
and Health (ICF ). The questionable ecological validity 

of laboratory- based tests was also recently demon-
strated for recovery on the motor domain.9 Real- world 
arm use in patients with stroke as assessed by accel-
erometers already plateaued 3 to 6 weeks poststroke, 
although further improvements on laboratory- based 
upper limb motor assessments beyond this time-
frame were observed.9 These findings underline the 
importance of investigating what patients do in daily 
life across multiple time points and domains. Although 
currently lacking, this information is essential for im-
proving our understanding of stroke recovery, and 
impacts on rehabilitation program design. The ICF 
framework,8 with its Activities and Participation com-
ponent, is well suited to capture the patient’s daily life 
performance as the patient’s execution of a task or ac-
tion8 and involvement in a life situation8 are observed. 
It has been shown that applying this ICF framework 
provides a more extensive overview of the patient’s 
functioning than laboratory- based assessments 
alone.10 When investigating daily life performance re-
covery following stroke, the sample should not only be 
analyzed as a whole, but also stratified according to 
stroke localization. Although body functions are ana-
tomically determined,11 long- term overall outcome as 
assessed with the modified Rankin Scale is compara-
ble.12 It is unclear whether differences in terms of daily 
life performance (recovery) across multiple domains 
exist. Through graphical modeling, dependencies be-
tween domains can be visualized by an interpretable 
graph (network), facilitating the intuitive understand-
ing of potentially complex data.13 Such an approach 
has seen increasing in popularity in the past decade 
in clinical neurology research, and it has been found 
to be clinically meaningful.13– 15

The main aims of this study were to determine in 
a large sample of patients with early subacute stroke 
during inpatient rehabilitation whether (1) differences 
in performance across 7 domains from the Activities 
and Participation component of the ICF exist, depend-
ing on the stroke localization, and (2) the longitudinal 
recovery profiles of these domains are interrelated in 
the whole sample as well as in stroke localization sub-
groups, based on weekly repeated measurements. 
Weekly repeated measurements were chosen be-
cause it is unknown what the recovery dynamics of 
early poststroke recovery on daily life performance 
look like, and whether they match observations from 
laboratory- based assessments that most changes 
take place early after stroke.1

METHODS
Data and Code Disclosure Statement
Because the study participants did not sign an agree-
ment that allows the open sharing of the acquired data, 

CLINICAL PERSPECTIVE

What Is New?
• Daily life performance recovery across domains 

early after stroke is heterogeneous, and even if 
impairments in body functions are determined 
anatomically, they have a similar impact on daily 
life performance (recovery).

What Are the Clinical Implications?
• The results highlight the importance of evaluat-

ing daily life performance of patients with stroke 
in addition to laboratory- based tests for single 
domains such as motor, cognitive, or speech 
function.

• The present study provides the groundwork 
for future patient- specific, dynamic prediction 
models (including factors such as age, sex, 
and comorbidities) for various daily life perfor-
mance domains that may improve poststroke 
care and positively impact patients’ daily life 
performance.

Nonstandard Abbreviations and Acronyms

ICF International Classification of Functioning, 
Disability, and Health
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the conditions of our ethics approval do not permit 
public archiving of the data supporting the conclusions 
of this study. Based on the Swiss Human Research 
Act (Humanforschungsgesetz) in Switzerland, read-
ers seeking access to the data and the study materi-
als must complete a formal data sharing agreement to 
obtain the data. Interested readers should contact the 
corresponding author (J.M.V.) for more information and 
help. All deidentified data that are necessary and suf-
ficient to replicate all data processing steps and anal-
yses will be shared with requestors who meet these 
requirements.

All analyses were performed in Python, and the 
code is publicly available at [https://github.com/rauwu 
ckl/Corre latio nGrap h4Str okeRe covery].

Patients
This is a retrospective analysis of data routinely col-
lected in patients with early subacute stroke admit-
ted to the Neurocenter of the Luzerner Kantonsspital 
(Lucerne, Switzerland) for inpatient rehabilitation 
between January 2016 and March 2021. Patients 
≥18 years of age who had suffered either an acute 
ischemic or hemorrhagic stroke (defined according 
to the European Stroke Organization guidelines) 
were included in the analysis if they (1) had entered 
rehabilitation ≤21 days after symptom onset and (2) 
had repeated measures of daily life performance 
observations during rehabilitation (see Assessment 
of Daily Life Performance Across Domains sec-
tion) between every 5 to 10 days. The design of 
this longitudinal observational study is displayed 
in Figure 1. Details on rehabilitation content is de-
scribed in Data S1.

Statistical Analysis
Assessment of Daily Life Performance Across 
Domains

Daily life performance during inpatient rehabilitation was 
assessed on the level of the Activities and Participation 
component of the ICF. For this purpose, the Lucerne 
ICF- based Multidisciplinary Observation Scale was 
applied, which is reliable, valid, and responsive.16,17 
The Lucerne ICF- Based Multidisciplinary Observation 
Scale consists of 45 ICF items8 divided into 7 domains: 
(1) interpersonal interactions and relationships, (2) mo-
bility, (3) self- care, (4) communication, (5) learning and 
applying knowledge, (6) tasks and demands, and (7) 
domestic life. The definitions of these domains are pro-
vided in Table S1. Each item is rated on a 5- point Likert 
scale, ranging from 1 (patient is not able to fulfill a task 
or needs assistance of <75% [ie, complete assistance]) 
to 5 (patient is able to fulfill task independently [ie, no 
assistance needed]) (Table S2). All Lucerne ICF- Based 
Multidisciplinary Observation Scale items were rated 
by trained members of the multidisciplinary team at re-
habilitation admission on a weekly basis during the re-
habilitation stay, and at discharge. Thus, we obtained a 
sequence (or time series) of measurements.

Cross- Sectional Analysis of Daily Life 
Performance at Rehabilitation Admission

The items making up each ICF domain were averaged 
per patient and measurement time point, whereas 
missing values in individual items were ignored. If all 
items of a domain were missing, then the correspond-
ing measurement was excluded. Subsequently, the 
values at rehabilitation admission were compared for 

Figure 1. Study design based on 1 exemplary patient.
The colors represent 7 daily life domains from the Activities and Participation component of the International Classification of 
Functioning, Disability, and Health.
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each domain between stroke localization regions (su-
pratentorial left, supratentorial right, infratentorial) using 
the nonparametric Kruskal- Wallis H test. When this test 
was statistically significant for a domain, a post hoc 
pairwise comparison was performed using the Dunn 
test.18 Throughout, we use the Bonferroni correction 
to adjust significance levels for multiple comparisons.

Graphical Modeling
We model the relationships between weekly recovery 
in 7 ICF domains during inpatient neurorehabilitation 
using an undirected graph. Nodes (circles) correspond 
to domains, whereas edges (lines) describe their re-
lationships when accounting for all other domains. 
Because we are interested in patients’ recovery profiles 
over time, we rely on the particularly suitable method 
introduced by Dahlhaus19 for time series data. Here we 
focus on the model interpretation, and refer to Sections 
A.2 and A.3 in Data S1 for a self- contained derivation 
of the methodology.

For each patient, we obtained a time series of 7 di-
mensional vectors, where each entry represents the 
average scores in the corresponding domain over 
time. We analyzed the score differences between 
consecutive weeks. To model this mathematically, we 
treated each time series as a realization of a common 
7- dimensional stochastic process, which we assumed 
to be wide sense stationary and nondegenerate 
(Data S1).

We were interested in predicting the evolution 
of 2 domains a,b ∈ {1, … , 7} from the past, pres-
ent, and future values of all 5 remaining domains 
R≔ {1, … , 7}�{a,b} (Data S1). Then we considered 
whether the prediction error for the a- th domain is cor-
related with the prediction error for the b- th domain. If 
the errors were uncorrelated, then we considered the 
domains a and b to be unrelated, after accounting for 
the remaining domains (which we wrote as a⊥b ∣ R , 
Data  S1). This means that no additional information 
about the evolution of domain a can be obtained from 

observing domain b once we have knowledge of the 
remaining domains R. This notion allows us to define 
the so- called partial correlation graph (Data S1), where 
2 nodes a,b are not connected if they are unrelated 
in the above- mentioned sense (ie, if a⊥b ∣ R holds). 
Conversely, a,b are connected by an edge if the pre-
diction errors are correlated. In addition, we visualized 
the strength of the relationship between 2 nodes by 
varying the edge thickness; the thicker the edge, the 
stronger the correlation of the prediction errors. We 
identified a drop in this relationship strength after the 
sixth edge (Data S1), and thus visualized the 6 stron-
gest edges in the graphs.

Bootstrapping was used to assess the robustness of 
the procedure. We repeated the analysis 10 000 times, 
each time using a new bootstrap replicate of the data 
set and counted how often the obtained edges differed.

Ethics and Reporting Guideline
All analyzed patients provided their general con-
sent in written form. Analyses of the data were ap-
proved by Cantonal Ethics Committee Northwest 
and Central Switzerland (BASEC- ID 2017– 00998). 
Reporting adhered to the Strengthening the Reporting 
of Observational Studies in Epidemiology statement.20

RESULTS
Patients
Data of 592 patients with early subacute stroke were 
analyzed (see Figure  2 for the flowchart). Patients’ 
characteristics are described in Table  1, and exem-
plary recovery profiles are provided in Figure 3.

Cross- Sectional Analysis of Daily Life 
Performance Data at Admission
Comparing the ICF domain scores at rehabilitation ad-
mission between stroke localization regions showed 
overall statistically significant differences for all domains 

Figure 2. Data selection flowchart.
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(Table 2, Figure 4). The post hoc comparisons between 
regions are shown in Table 2.

Graphical Modeling
The results of the graphical modeling are depicted in 
Figure 5. Out of 21 domain pairs, 6 pairs were found to 
be strongly interrelated during rehabilitation in the early 
subacute phase poststroke. Grouping interrelated do-
mains resulted in 4 clusters. The first cluster included 
recovery in learning and applying knowledge, general 
tasks and demands, and domestic life. The second 
cluster was built by recovery in self- care and general 
tasks and demands. The third cluster consisted of 
recovery in mobility, self- care, and interpersonal in-
teractions and relationships. The final cluster focused 
only on communication recovery. The bootstrapping 
procedure showed a good robustness except for the 
relationship between interpersonal interactions and re-
lationships and self- care, which was missing in 24.5% 
of the bootstrap samples (Table S3).

Repeating the graphical modeling approach in the 
supratentorial left subgroup showed a similar picture 
(Figure 6A). In supratentorial right strokes’ third clus-
ter, an additional relationship was found between mo-
bility and learning and applying knowledge, whereas 

no relationship existed between self- care and inter-
personal interactions and relationships (Figure  6B). 
A graph could not be constructed for infratentorial 
strokes, because the sample size was too small.

DISCUSSION
We presented an innovative view on stroke recovery 
by analyzing daily life performance from a multidomain 
perspective in a heterogeneous sample of 592 pa-
tients with early subacute stroke. The cross- sectional 
analysis of data collected 1 week poststroke showed 
that the patients’ daily life performance during reha-
bilitation in the domains general tasks and demands, 
and domestic life was clearly lower than in the other 
5 domains. One explanation for this could be that 
within these 2 domains, the patients’ performance in 
complex daily life activities was observed, requiring 
high levels of functioning on the motor, cognitive, and 
communicative domains, as well as a good integration 
thereof.21 Patients with infratentorial stroke had a sig-
nificantly higher performance on all domains (except 
for mobility), when compared with those who suffered 
a supratentorial stroke. The finding that only mobility 
performance was equal between infra-  and supraten-
torial strokes might be a result of the differences in 
symptoms. Although the cerebellum22 and brainstem23 
also play a role in cognition, cognitive deficits are less 
common in infratentorial strokes than in supratentorial 
strokes.24 Comparing patients with left supratentorial 
stroke with right supratentorial stroke showed only 
significant differences in the mobility and communica-
tion domains. Lower mobility performance was seen 
in patients with right supratentorial stroke, which may 
be related to the presence of unilateral spatial neglect 
in these patients.25 It has been shown that patients 
with neglect have more limitations in posture and 
movement,26 and upper limb motor function27 when 
compared with those without neglect. Conversely, 
patients with left supratentorial stroke showed a lower 
communication performance, which is in line with 
the well- known lateralization of language in the left 
hemisphere.28

In a further step, we analyzed the longitudinal re-
lationship between recovery during the first 6 weeks 
poststroke in the 7 daily life domains during rehabili-
tation in the whole sample using a graphical modeling 
approach. Among 21 possible domain pairs, 6 were 
strongly interrelated. These pairs were identical to the 
domain pairs when only supratentorial left strokes were 
considered. In right supratentorial strokes, 5 of these 6 
relationships were identical, and 1 was different. This 
suggests 2 things: first, that recovery across domains 
is heterogeneous, and second, that although impair-
ments in body functions are determined anatomically, 

Table 1. Patients’ Characteristics

Characteristic Value (N=592)
Missing 
values (%)

Age, y, mean (SD) 71.7 (14.4) 0

Sex, women, n (%) 267 (45.1) 0

Time poststroke, d, median (q1– q3) 8.0 (6.0– 10.0) 0

Length of stay, d, median (q1– q3) 28.0 (19.0– 40.0) 0

NIHSS, /42, median (q1– q3)* 4.0 (2.0– 8.0) 12.5

Stroke localization, n (%) 0

Supratentorial left 274 (46.3)

Supratentorial right 198 (33.4)

Infratentorial 120 (20.3)

LIMOS at admission, median (q1– q3) 0

Total score, /35 21.0 (16.2– 25.8)

Interpersonal interactions and 
relationships, /5

4.0 (3.0– 4.0)

Mobility, /5 3.1 (2.3– 3.8)

Self- care, /5 3.4 (2.4– 4.1)

Communication, /5 3.6 (2.5– 4.5)

Learning and applying knowledge, /5 2.9 (2.2– 3.7)

General tasks and demands, /5 2.3 (1.7– 3.0)

Domestic life, /5 2.0 (1.2– 2.8)

ICF indicates International Classification of Functioning, Disability, and 
Health; LIMOS, Lucerne ICF- based Multidisciplinary Observation Scale; 
NIHSS, National Institutes of Health Stroke Scale; and q1– q3, quartile 1 to 
quartile 3.

*In case of thrombolysis and thrombectomy, the value refers to the first 
NIHSS assessment after acute treatment.D
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they have a similar impact on daily life recovery during 
inpatient rehabilitation. From the graphical modeling, a 
total of 4 clusters (ie, groups of interrelated domains) 
for daily life performance recovery could be observed. 
First, a strong interrelatedness was found between 
learning and applying knowledge, general tasks and 

demands, and domestic life. This observation was also 
found when the left and right supratentorial strokes 
were analyzed separately. The ability to manage com-
plex everyday life requires a good integration of higher- 
level cognitive and motor performance, which could 
be one explanation.29 We speculate that recovery of 

Figure 3. Examples of recovery profiles of 9 early subacute patients for 7 daily life 
domains from the Activities and Participation component of the ICF.
ICF indicates International Classification of Functioning, Disability, and Health.

Table 2. Comparison of Daily Life Domain Scores at Rehabilitation Admission From the Activities and Participation 
Component of the ICF Between Stroke Localizations

ICF domain
Kruskal- Wallis H 
test, P value

Post hoc analysis, P value

Supratentorial left vs 
supratentorial right

Supratentorial left vs 
infratentorial

Supratentorial right vs 
infratentorial

Interpersonal interactions and relationships <0.001* 0.073 <0.001* 0.037

Mobility 0.004* <0.001* 0.456 0.048

Self- care <0.001* 0.008 0.072 <0.001*

Communication <0.001* <0.001* <0.001* 0.002*

Learning and applying knowledge <0.001* 0.929 <0.001* <0.001*

General tasks and demands <0.001* 0.095 <0.001* <0.001*

Domestic life <0.001* 0.025 0.009 <0.001*

ICF indicates International Classification of Functioning, Disability, and Health.
*P values are significant at P<0.05 after Bonferroni correction for multiple comparisons.
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cognition drives recovery of everyday life, and that 
cognitive– motor interference results in a deterioration 
of daily life performance.30

The second cluster of interrelated domains con-
sists of recovery in self- care and general tasks and 
demands. For both domains, cognitive and motor re-
covery seem to be equally important. Taking dressing 
as an example item that is contained in the self- care 
domain, we see a task in which patients must select 
appropriate clothing, determine the right order, and 
should be physically able to perform relevant motor 
acts and apply compensation strategies, if needed. 
From isolated observations, we know that paresis, 
apraxia, and neglect are the main drivers for dressing 
limitations.31 In the same vein, observed general tasks 
and demands tasks, such as making a bed, managing 
diabetes, and making payments online, rely on both 
cognitive and motor functions. They distinguish them-
selves from self- care items by their less- routine nature 
(ie, these tasks belong to instrumental activities of daily 
living).

The third cluster includes recovery in mobility and 
self- care. In left supratentorial strokes, interpersonal 
interactions and relationships recovery was also in-
cluded. In patients with right supratentorial stroke, 
this cluster also contained learning and applying 
knowledge recovery, although this latter relationship 
was weaker than the other 5 found relationships. The 

mobility– self- care relationship could be explained by 
the fact that mobility activities are often also used during 
self- care. For example, when recovery in the mobility- 
item hand and arm use (ICF code d445) is present, re-
covery in the self- care item washing oneself (ICF code 
d510) will most likely be observed in parallel, because 
recovery in hand and arm use is required to improve on 
these items. In addition, both domains might be largely 
influenced by the presence of a paresis and neglect.6,32 
The lack of an overall relationship between mobility re-
covery and the more nonmotor ICF domains could be 
related to the strong dependency of mobility recovery 
on corticospinal tract integrity,7,33 whereas cognition is 
more dependent on an intact function of widespread 
(sub)cortical networks.34 However, a relationship be-
tween mobility and learning and applying knowledge 
was present in right supratentorial strokes. In both do-
mains, the presence of right hemispheric symptoms 
like neglect and anosognosia may have a detrimental 
effect on performance.32,35 This longitudinal relation-
ship matches the cross- sectional relationship between 
motor function and attention observed by Ramsey and 
colleagues.7 The presence of aphasia may be the rea-
son why interpersonal interactions and relationships 
were included in this third cluster in supratentorial left 
strokes, because previous work has shown that apha-
sia negatively influences interpersonal relationships36 
and hampers care provision.37

Figure 4. Daily life domain scores at rehabilitation admission from the Activities 
and Participation component of the ICF by stroke localization.
ICF indicates International Classification of Functioning, Disability, and Health. *P<0.05 
after Bonferroni correction for multiple comparisons; **P<0.01 after Bonferroni correction 
for multiple comparisons.
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The fourth and final cluster includes recovery of 
communication performance, which was unrelated 
to recovery in the other 6 domains. This finding was 

shown for the entire sample, as well as in patients with 
supratentorial left stroke, in which aphasia is more 
often present.4 Data inspection showed generally 

Figure 5. Partial correlation graph for the entire sample (N=592).
Each node (circle) represents a daily life domain from the Activities and Participation 
component of the International Classification of Functioning, Disability, and Health. Each 
edge (line) represents a direct relationship between recovery of 2 domains that persists 
when accounting for all other 5 domains.

Figure 6. Partial correlation graphs for left (N=274) and right supratentorial 
strokes (N=198).
Each node (circle) represents a daily life domain from the Activities and Participation 
component of the International Classification of Functioning, Disability, and Health. Each 
edge (line) represents a direct relationship between recovery of 2 domains that persists 
when accounting for all other 5 domains. A, patients with left supratentorial stroke. B, 
Patients with right supratentorial stroke. C indicates communication; DL, domestic life; 
GT&D, general tasks and demands; II&R, interpersonal interactions and relationships; 
L&AK, learning and applying knowledge; M, mobility; and SC, self- care.
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less recovery on the communication domain in daily 
life during the first 2 months poststroke in inpatient 
rehabilitation. This result agrees with findings from 
laboratory- based tests. For instance, Dunn and col-
leagues showed that in the acute phase poststroke, 
the recovery curve of language was less steep when 
compared with motor recovery.38

Surprisingly, the graphical modeling approach 
barely displayed differences between patients with left 
and right supratentorial stroke. This suggests that al-
though symptoms between strokes in the left and right 
hemisphere vary on a Body Function component (eg, 
aphasia in left hemispheric strokes, neglect occurs 
more often in right hemispheric strokes),39 the interre-
latedness between recovery on various performance 
domains, or the lack thereof, is equal. From this obser-
vation, the anatomical lateralization of functions seems 
to be less relevant when looking at recovery of daily life 
performance during inpatient rehabilitation. However, 
from a treatment perspective, it is likely that different 
approaches are required to enhance daily life per-
formance recovery in each of these subgroups. The 
cross- sectional analysis also points toward a possible 
impact of stroke symptoms such as a hemiparesis, ne-
glect, and aphasia on daily life performance, although 
they might impact in a different manner. Especially 
higher- order domains such as general tasks and de-
mands and domestic life, require a good integration 
of both motor and nonmotor functions and abilities. 
However, in the current work, we were unable to in-
vestigate possible associations with limitations on the 
body function component and recovery thereof. Thus, 
from a clinical perspective, knowledge of impairments 
of the Body Function component as well as limitations 
of the Activities and Participation component are im-
portant for adapting rehabilitation programs to the pa-
tient’s individual needs.

Another relevant aspect of this work is related to 
cost- effectiveness. Increasing health care costs force 
us to critically review the indication to continue rehabil-
itation in individuals constantly. The weekly observa-
tion of the patients’ daily life performance is a critical 
aspect herein. This study shows that just focusing 
on laboratory- based testing of, for example, muscle 
strength to capture a paresis or visuospatial attention to 
assess neglect to determine whether to stop, continue, 
or adapt rehabilitation is too shortsighted. Although 
our sample had a median acute National Institutes of 
Health Stroke Scale of 4 (quartile 1=2, quartile 3=8) 
after thrombolysis and thrombectomy, we could show 
that although patients have mild- to- moderate deficits 
when using a quick bedside test on the Body Function 
component, they can have substantial restrictions in 
daily life performance.29 Furthermore, it shows that 
the National Institutes of Health Stroke Scale does not 

capture cognitive deficits sufficiently,40 although cog-
nition seems to play a central role in daily life perfor-
mance during inpatient rehabilitation and its recovery.

Our analysis methodology comes with some cave-
ats. Although we do not make any assumptions about 
the distribution of the data, we do assume the under-
lying stochastic process to be stationary. Furthermore, 
linear predictors are used, and we did not investigate 
the causality of relationships. Lastly, we determined 
the number of strong relationships to be 6, based on a 
drop in the strength of relationships, which comes with 
some ambiguity. On the clinical side, it is important to 
note that the observations were restricted to the first  
2 months poststroke during inpatient neurorehabilita-
tion. Our results cannot be generalized to the general 
stroke population, including patients with both less and 
more severe poststroke deficits who do not receive 
inpatient neurorehabilitation, and does not inform us 
about the chronic phase after stroke.

To improve generalizability of our results, future stud-
ies should include all patients with stroke regardless of 
stroke severity, and follow- up should be extended into 
the chronic phase. This would enable the inclusion of 
social and environmental modifiers of daily life perfor-
mance recovery outside of an inpatient rehabilitation 
setting. Furthermore, our study is the groundwork for 
future studies on the relationship between recovery 
of body functions and daily life performance, as well 
as on the predictability of recovery of multiple real- life 
performance domains in individual patients. Clinical tri-
als are needed to evaluate if rehabilitation interventions 
positively affect performance in interrelated domains. 
These could be informed by graphical modeling.13

CONCLUSIONS
To the best of our knowledge, this is the first study that 
investigated the impact of stroke localization on daily 
life performance during inpatient rehabilitation and the 
interrelatedness of weekly recovery on multiple daily 
life performance domains in patients with early suba-
cute stroke based on a graphical modeling approach 
using time series. Independent of stroke localization, 
4 clusters of interrelated performance domains were 
identified. This finding supports the use of scales that 
capture the patient’s performance in daily life along with 
laboratory- based assessments. This will help health 
care professionals to timely identify restrictions that re-
quire further rehabilitative treatment, with the potential 
of developing better and more cost- efficient neuroreha-
bilitation programs. This study sheds light on patients’ 
recovery processes using daily life performance obser-
vations, therewith reinforcing the importance of manag-
ing everyday life and its demanding nature.
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Data S1.

A. Supplemental Methods and Results
A.1 Information on rehabilitation content
Patients received personalized multidisciplinary neurorehabilitation, including occupational therapy,
physical therapy, rehabilitative nursing, speech and language therapy, and neuropsychology. The fo-
cus and composition depended on the limitations and restrictions of the patient.

The therapies were mainly problem- and task-oriented, were repetitive of nature and principles of
motor learning were applied.

A.2 Graphical Models
Let X[·] be stochastic process with n components, i.e. X[t] 2 Rn. We aim to visualize whether a pair
a, b 2 {1, . . . , n} of components of X[·] has a relationship, when linearly accounting for past, present
and future observed values in another set S ⇢ {1, . . . , n} of components. I.e., we want to answer the
following question: Assume that we observeXS [·], the evolution of the stochastic process components in the set

S, and use this information to predict Xa[·], the evolution of component a, then does also observing component

Xb[·] provide additional information?

To this end we compute a graph (where the nodes correspond to the n components of X) such
that we can answer the above question simply by checking whether there is a path between a and b in
the graph that does not contain any node in S.

The purpose of this appendix is to give a self-contained explanation of the necessary theory. Specif-
ically, we collect the relevant results from the literature19,41,42, and provide detailed proofs thereof.
First, we introduce background on Fourier analysis in Section A.2.1 and provide the definition and
useful properties of the class of stochastic processes we consider in Section A.2.2. In Section A.2.3
we then make the above notion of linear relationships precise. Finally, in Section A.2.4, we define the
mentioned graphical representation and prove its properties.

Notation For n1, n2 2 N, we denote by (Rn1)Z the set of all sequences of n1-dimensional vectors, and
by (Rn1⇥n2)Z the set of all sequences of n1 ⇥ n2-dimensional matrices. For matricesM1,M2 2 Rn1⇥n2

we use the notation M1 � M2 or M1 < M2 to indicate that the matrix M1 � M2 is positive definite
or semi-definite, respectively. By |M1| we denote the sum of the absolute values of the entries in the
matrixM1. By MH

1 = M1
T we denote the Hermitian transpose of M1.

A.2.1 Preliminaries
We start by defining the space of absolutely summable matrix sequences as follows.
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Definition S1. For n1, n2 2 N we define the space of absolutely summable matrix sequences as

`1(Rn1⇥n2) :=

(
x[·]

�����x 2 (Rn1⇥n2)Z,
1X

t=�1
|x[t]| < 1

)
,

where |x[t]| denotes the sum of the absolute values of the entries in x[t], i.e. |x[t]| =
P

n1

j=1

P
n2

`=1 |xj`[t]|.

A core building block of the theory is the ability to produce a time-series from another time-series
using a linear operation. To this end, we define convolution operation for matrix sequences.

Definition S2 (Convolution). Let x[·] 2 `1(Rn1⇥n2) and y[·] 2 (Rn2⇥n3)Z. We define the convolution

according to

(x ⇤ y)[t] =
1X

`=�1
x[`]y[t� `].

A further core tool is the Fourier transform, defined as follows.

Definition S3 (Discrete time Fourier transform). Let x[·] 2 `1(Rn1⇥n2) we define

F {x} (↵) =
1X

t=�1
x[t]e�2i⇡t↵ =: f(↵),

where ↵ 2 [0, 1]. The inverse transform of f(↵) is given by

F�1 {f} [t] =
Z 1

0
f(↵)e2⇡it↵d↵ = x[t],

with t 2 Z.

This allows us to express the convolution as a simple product in frequency space. First, we verify that
F {x ⇤ y} is well-defined, which requires x ⇤ y to be summable.

Lemma S4. Let x[·] 2 `1(Rn1⇥n2) and y[·] 2 `1(Rn2⇥n3), then

x ⇤ y 2 `1(Rn1⇥n3)

Proof.

1X

t=�1
|(x ⇤ y)[t]| 

1X

t=�1

1X

`=�1
|x[`]y[t� `]|

 (n1 · n2 · n3)
1X

`=�1
|x[`]|

1X

t=�1
|y[t� `]| < 1

Now we can state the convolution theorem.

Theorem S5 (Convolution theorem). Let n1, n2, n3 2 N, x 2 `1(Rn1⇥n2), and y 2 `1(Rn2⇥n3). We

have

F {x ⇤ y} (↵) = F {x} (↵)F {y} (↵).
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Proof.

F {x ⇤ y} (↵) =
1X

t=�1

1X

`=�1
x[`]y[t� `]e�2i⇡t↵

=
1X

`=�1
x[`]

1X

t=�1
y[t� `]e�2i⇡t↵

=
1X

`=�1
x[`]

1X

t0=�1
y[t0]e�2i⇡(t0+`)↵

=
1X

`=�1
x[`]e�2i⇡`↵ F {y} (↵)

= F {x} (↵)F {y} (↵).

We conclude our introduction to harmonic analysis with the following lemma, that we will need later.

Lemma S6. Let x[·] 2 `1(Rn1⇥n2) and define x0[t] = x[�t]T . We have

F {x0} = F {x}H .

Proof. We compute

F {x0} (↵) =
1X

t=�1
(x[�t]T )e�2i⇡t↵

=
1X

t=�1
(x[t]T )e2i⇡t↵

=

 1X

t=�1
(x[t]T )e�2i⇡t↵

!
(1)

= F {x} (↵)
T

= (F {x})H ,

where in (1) we use that x[t] 2 Rn1⇥n2 , 8t 2 Z.

Apart from the above background in harmonic analysis, we will need the following result from
linear algebra regarding the inversion of a block matrix.

Theorem S7 (Schur Complement). LetM 2 Cn1⇥n2 be a non-singular block matrix

M =
A B

C D

!

such that D is non-singular as well. Then

M�1 =
E�1 �E�1F

�GE�1 D�1 +GE�1F,

!
(2)

where E = A�BD�1C, F = BD�1
, and G = D�1C with E non-singular.

Proof. Through direct verification we see that M can be written as

M =
A B

C D

!
=

I F

0 I

! 
E 0

0 D

! 
I 0

G I

!
(3)
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and thus

det(M) = det
I F

0 I

!
det

E 0

0 D

!
det

I 0

G I

!
= det(E) det(D).

SinceM andD are both non-singular by assumption this implies det(E) 6= 0, i.e., E is non-singular as
well. Hence, we can invert (3) as follows

M�1 =
I 0

G I

!�1 
E 0

0 D

!�1
I F

0 I

!�1

=
I 0

�G I

! 
E�1 0

0 D�1

! 
I �F

0 I

!
(4)

Simplifying (4), we obtain (2).

A.2.2 Stationary stochastic processes
We now introduce the stochastic processes under consideration and derive some basic properties.

Definition S8 (Wide sense stationary). Let X[·] be an n-dimensional stochastic process indexed by

t 2 Z, i.e. X[t] 2 Rn, 8t 2 Z. X is wide-sense stationary (WSS) if there is an mX 2 Rn
, which we call

the mean of X , such that

E[X[t]] = mX , 8t 2 Z

and a sequence kX [·] 2 `1(Rn⇥n), which we call the autocovariance sequence of X , such that

E[X[t]X[t0]T ] = kX [t� t0], 8t, t0 2 Z. (5)

Remark S9. Since (5) only depends on the di�erence t� t0 we can set t0 = 0 and calculate the autocovariance
sequence according to

kX [⌧ ] = E
⇥
X[⌧ ]X[0]T

⇤
, 8⌧ 2 Z.

Remark S10. Let X[·] be a stochastic process as in Definition S8. We have

kX [⌧ ] = E
⇥
X[⌧ ]X[0]T

⇤
= E

⇥
X[0]X[⌧ ]T

⇤T
= kX [�⌧ ]T .

Remark S11. Let X[·] be a stochastic process as in Definition S8, and set f(↵) := F {kX} (↵). Then, from
Remark S10 and Lemma S6 it follows that f(↵) = f(↵)H for all ↵ 2 [0, 1].

f = F {kX} is called the power spectral density ofX . Thismatrix valued function is positive semidefinite
as we show in the following Lemma.

Lemma S12. LetX[·] be a stochastic process as in Definition S8, and f = F {kX}. Then f(↵) is positive
semidefinite for all ↵ 2 [0, 1].

Proof. Fix ↵ 2 [0, 1] arbitrarily and define for, T 2 N,

IT :=
1

T

T�1X

t=0

X[t]e�2i⇡t↵

! 
T�1X

`=0

X[`]e�2i⇡`↵

!H

,

which is positive semidefinite by construction. Thus, E [IT ] is positive semidefinite as well. We next
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compute the limit with respect to T ! 1 of this expression. To this end, we calculate

E [IT ] =
1

T

T�1X

t=0

T�1X

`=0

E
⇥
X[t]X[`]H

⇤
e�2i⇡(t�`)↵

=
1

T

T�1X

`=0

T�1X

t=0

kX [t� `]e�2i⇡(t�`)↵

=
1

T

T�1X

⌧=�(T�1)

(T � |⌧ |)kX [⌧ ]e�2i⇡⌧↵

=
T�1X

⌧=�(T�1)

kX [⌧ ]e�2i⇡⌧↵ � 1

T

T�1X

⌧=�(T�1)

|⌧ |kX [⌧ ]e�2i⇡⌧↵.

Now, as
P1

⌧=�1 |kX [⌧ ]| < 1 by assumption,
P

T�1
⌧=�(T�1) kX [⌧ ]e�2i⇡⌧↵ converges to fX(↵) as T ! 1.

It remains to show that
1

T

T�1X

⌧=�(T�1)

|⌧ |kX [⌧ ]e�2i⇡⌧↵ ����!
T!1

0. (6)

To establish this, fix ✏ > 0 and observe that 9T0 2 N such that
P1

⌧2Z, |⌧ |>T0
|kX [⌧ ]| < ✏. Now, for

T > T0,
������
1

T

T�1X

⌧=�(T�1)

|⌧ |kX [⌧ ]e�2i⇡⌧↵

������
 1

T

T�1X

⌧=�(T�1)

��⌧kX [⌧ ]e�2i⇡⌧↵
��

=
1

T

T0�1X

⌧=�(T0�1)

|⌧kX [⌧ ]|+
X

⌧2Z, T0|⌧ |<T

|⌧ |
T

|kX [⌧ ]|

 1

T

T0�1X

⌧=�(T0�1)

T0C +
X

⌧2Z, T0|⌧ |<T

|kX [⌧ ]|

 2T 2
0C

T
+

X

⌧2Z, T0|⌧ |

|kX [⌧ ]|

 2T 2
0C

T
+ ✏ ����!

T!1
✏,

where C = sup
⌧2Z |kX | < 1. Since we can choose ✏ arbitrarily small, this yields (6). Thus, we have

established
fX(↵) = lim

T!1
E [IT ]| {z }

<0

< 0.

As ↵ was arbitrary, this completes the proof.

We shall place some additional conditions on the WSS processes we consider. These are specified in
the following definition.

Definition S13. We say that a stochastic processX[·] is zero-mean, WSS and non-degenerate if it satisfies

Definition S8 such thatmX = 0 and F {kX} (↵) is non-singular 8↵ 2 [0, 1].

The zero-mean condition is purely for convenience, while requiring the power spectral density to be
non-singular excludes certain degenerate cases. For example this condition would be violated, if two
components of the stochastic process are always identical.

With this definition we get the following corollary of Lemma S12.
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Corollary S14. Let X[·] be an n-dimensional stochastic process satisfying Definition S13, where f =
F {kX}. Then for any subset A ⇢ [n] and 8↵ 2 [0, 1] the principal submatrix fAA(↵), which is obtained
from f(↵) by taking only those rows and columns with indices in the set A, is positive definite and thus

non-singular.

Proof. Fix ↵ arbitrarily. By Lemma S12, f(↵) is positive semi-definite and thus has only non-negative
eigenvalues. Since f(↵) is non-singular by assumption, zero is not an eigenvalue. Therefore, f(↵) � 0,
i.e. 8v 2 Cn we have vHf(↵)v > 0. Now let w 2 C|A| be arbitrary and fix v 2 Cn such that vA = w and
vAc = 0. We get

wH(fAA(↵))w = vHf(↵)v > 0,

which, since w is arbitrary, yields fAA(↵) � 0.

A.2.3 Linear relationships
Now we consider a particular n-dimensional stochastic process X[·]. Thus, we shall frequently omit
the explicit dependency onX in our notation. We use the capital lettersA,B ⇢ [n] to denote subsets of
the components of the stochastic process. E.g. XA[·] corresponds to the |A|-dimensional vector process
containing only the components corresponding to the indices in the set A ⇢ {1, . . . , n}. Similarly, for
disjoint A,B ⇢ [n], we shall identify components of the autocovariance sequence kX [⌧ ] as follows,

cAA[⌧ ] := E[XA[⌧ ]XA[0]
T ], cBB [⌧ ] := E[XB [⌧ ]XB [0]

T ],

cAB [⌧ ] := E[XA[⌧ ]XB [0]
T ], cBA[⌧ ] := E[XB [⌧ ]XA[0]

T ].
(7)

Furthermore, we identify components of f = F {kX}, the power spectral density, as follows

fAA(↵) := F {cAA} (↵), fBB(↵) := F {cBB} (↵),
fAB(↵) := F {cAB} (↵), fBA(↵) := F {cBA} (↵).

Remark S15. From Remark S10 we have

cBB [⌧ ] = cBB [�⌧ ]T and cBA[⌧ ] = cAB [�⌧ ]T ,

and, from Remark S11, we have

fBB(↵) = fBB(↵)
H

and fBA(↵) = fAB(↵)
H .

We are interested in linearly predicting the evolution of some components from the observed time-
series corresponding to other components. This linear prediction of a time-series based on values of
another time-series can be expressed through convolution. It is parametrized by a matrix sequence
�[·], which is used in the convolution, and a mean vector µ.

Definition S16. Let X[·] be an n-dimensional, stochastic process satisfying Definition S13. Let A,B ⇢
[n] be non-empty disjoint sets. For µ 2 R|A|

and �[·] 2 `1(R|A|⇥|B|), we define the following parametrized

prediction

eXµ,�

A.B
[t] := µ+

1X

`=�1
�[`]XB [t� `].

We define the error incurred by this predictor according to

eEµ,�

A.B
[t] := XA[t]� eXµ,�

A.B
[t]. (8)

Note that both eXµ,�

A.B
and eEµ,�

A.B
are again stochastic processes, which, as we now see, satisfy Definition

S8.
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TheoremS17. LetX[·] be an n-dimensional, stochastic process satisfyingDefinition S13. LetA,B ⇢ [n]

be non-empty disjoint sets. Let µ 2 R|A|
and �[·] 2 `1(R|A|⇥|B|). Then, the process eEµ,�

A.B
defined in (8)

satisfies Definition S8. Its mean is given by

E
h
eEµ,�

A.B
[t]
i
= µ, 8t 2 Z (9)

and its autocovariance sequence, using the notation (7), by

E
h
eEµ,�

A.B
[t] eEµ,�

A.B
[t0]T

i
= µµT +cAA[t� t0]� (cAB ⇤�0)[t� t0]� (� ⇤cBA)[t� t0]+(� ⇤cBB ⇤�0)[t� t0],

(10)
8t, t0 2 Z, where �0[t] := �[�t]T .

Proof. To establish (9) we first use E [X[t]] = mX = 0, 8t 2 Z and compute

E
h
eEµ,�

A.B
[t]
i
= E

"
XA[t]� µ�

1X

`=�1
�[`]XB [t� `]

#

= E [XA[t]]� µ�
1X

`=�1
�[`]E [XB [t� `]]

= µ, 8t 2 Z.

Next, fix t, t0 2 Z arbitrarily and let � := t� t0. We compute

E
h
eEµ,�

A.B
[t] eEµ,�

A.B
[t0]T

i
= E

2

66664
XA[t]�

1X

`=�1
�[`]XB [t� `]

| {z }
=:Z[t]

�µ

3

77775

2

66664
XA[t

0]�
1X

`0=�1
�[`0]XB [t

0 � `0]

| {z }
=:Z[t0]

�µ

3

77775

T

= E
⇥
Z[t]Z[t0]T

⇤
+ µµT , (11)

wherewe use that the cross terms evaluate to zero becauseE [Z[t]] = 0 aswe have seen before. Further,
we calculate

E
⇥
Z[t]Z[t0]T

⇤
= E

⇥
XA[t]XA[t

0]T
⇤
�

1X

`=�1
�[`]E

⇥
XB [t� `]XA[t

0]T
⇤

�
1X

`0=�1
E
⇥
XA[t]XB [t

0 � `0]T
⇤
�[`0]T +

1X

`=�1

1X

`0=�1
�[`]E

⇥
XB [t� `]XB [t

0 � `0]T
⇤
�[`0]T

= cAA[t� t0]�
1X

`=�1
�[`]cBA[t� t0 � `]

�
1X

`0=�1
cAB [t� t0 + `0]�[`0]T +

1X

`=�1
�[`]

1X

`0=�1
cBB [t� t0 + `0 � `]�[`0]T

= cAA[�]�
1X

`=�1
�[`]cBA[�� `]

�
1X

`0=�1
cAB [�+ `0]�[`0]T

| {z }
=
P1

`=�1 cAB [`]�[�(��`)]T

+
1X

`=�1
�[`]

1X

`0=�1
cBB [�+ `0 � `]�[`0]T

| {z }P1
`00=�1 cBB [`00]�[�((��`)�`00)]T

= cAA[�]� (� ⇤ cBA)[�]� (cAB ⇤ �0)[�] +
1X

`=�1
�[`](cBB ⇤ �0)[�� `]

| {z }
(�⇤cBB⇤�0)[�]

(12)
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Together, (11) and (12) imply (10). Finally, from (9), (10) and Lemma S4, it follows that eEµ,�

A.B
satisfies

Definition S8.

In light of the previous theoremwe use the following notation for the covariance sequence of the error
process, i.e. the quantity in (10),

ẽµ,�
A.B

[⌧ ] := E
h
eEµ,�

A.B
[⌧ ] eEµ,�

A.B
[0]T

i
.

Now we want to pick µ⇤ and �⇤ that are optimal in the sense that ẽµ,�
A.B

[0] < ẽµ
⇤
,�

⇤

A.B
[0] for all other

choices µ and �. Corollary S19 below then shows, that with this criterion also the expected squared
error in each component is minimized.

Theorem S18. Let X[·] be an n-dimensional, stochastic process satisfying Definition S13 and let f =
F {kX}. Further, letA,B ⇢ [n] be non-empty disjoint sets. Then for allµ 2 R|A|

and �[·] 2 `1(R|A|⇥|B|)
we have

ẽµ,�
A.B

[0] <
Z 1

0

�
fAA(↵)� fAB(↵)fBB(↵)

�1fBA(↵)
�
d↵ (13)

with equality for µ⇤ = 0 and �⇤ = F�1
�
fAB(↵)fBB(↵)�1

 
. We call the error process with this optimal

choice

EA.B := Eµ
⇤
,�

⇤

A.B
(14)

and its autocovariance sequence

eA.B := ẽµ
⇤
,�

⇤

A.B
.

The power spectral density is then given by

F {eA.B} (↵) = fAA(↵)� fAB(↵)f
�1
BB

(↵)fBA(↵). (15)

Proof. We denote b� = F {�} and apply the Fourier transform to (10) as follows

F
n
ẽµ,�
A.B

o
(↵) = F

�
µµT + cAA � (cAB ⇤ �0)� (� ⇤ cBA) + (� ⇤ cBB ⇤ �0)

= µµT + fAA(↵)� fAB(↵)b�(↵)H � b�(↵)fBA(↵) + b�(↵)fBB(↵)b�(↵)H (16)
= µµT + fAA � fAB(f

�1
BB

fH

BB
)b�H � b�fH

AB
+ b� fBBf

�1
BB

fBB
b�H

� fABf
�1
BB

fBA + fABf
�1
BB

fH

AB

(17)

= µµT +
�
fAA(↵)� fAB(↵)f

�1
BB

(↵)fBA(↵)
�

+
⇣
b�(↵)fBB(↵)� fAB(↵)

⌘
f�1
BB

(↵)
⇣
b�(↵)fBB(↵)� fAB(↵)

⌘H

,
(18)

where in (16) we use Lemma S6 and in (17) we use the symmetry properties from Remark S15 while
omitting the explicit dependence on ↵ to keep notation more concise.

Next we show that
⇣
b�(↵)fBB(↵)� fAB(↵)

⌘
f�1
BB

(↵)
⇣
b�(↵)fBB(↵)� fAB(↵)

⌘H

< 0, 8↵ 2 [0, 1]. (19)

To verify this, fix ↵ 2 [0, 1] arbitrarily and let v 2 C1⇥|A|. We compute

v
⇣
b�(↵)fBB(↵)� fAB(↵)

⌘

| {z }
=:w

f�1
BB

(↵)
⇣
b�(↵)fBB(↵)� fAB(↵)

⌘H

| {z }
wH

vH

= vw
�
f�1
BB

fBB

�
f�1
BB

�
f�1
BB

fBB

�H
wHvH

=
�
vwf�1

BB

�
fBBf

�1
BB

fH

BB
(f�1

BB
)HwHvH

=
�
vwf�1

BB

�
fBB(vwf

�1
BB

)H � 0, (20)

where in (20) we use that, by Corollary S14, fBB(↵) is positive semidefinite. As ↵ was arbitrary, this
establishes (19).

D
ow

nloaded from
 http://ahajournals.org by on A

ugust 16, 2023



Starting from (18), we now use the inverse transform to compute

ẽµ,�
A.B

[0] = F�1
n
F
n
ẽµ,�
A.B

oo
[0]

= µµT +

Z 1

0

�
fAA(↵)� fAB(↵)f

�1
BB

(↵)fBA(↵)
�
d↵

+

Z 1

0

⇣
b�(↵)fBB(↵)� fAB(↵)

⌘
f�1
BB

(↵)
⇣
b�(↵)fBB(↵)� fAB(↵)

⌘H

d↵

<
Z 1

0

�
fAA(↵)� fAB(↵)f

�1
BB

(↵)fBA(↵)
�
d↵, (21)

where in (21) we use µµT < 0 as well as (19). This completes the proof of (13). Next, we note that
by 41(Theorem 3.8.3) and Lemma S4 it holds thatF�1

�
fAB(↵)fBB(↵)�1

 
2 `1(R|A|⇥|B|). Further, with the

choice �⇤ = F�1
�
fAB(↵)fBB(↵)�1

 
the quantity in (19) evaluates to 0, thus, together with µ⇤ = 0,

yielding equality in (13). Finally, inserting the µ⇤ and �⇤ in (18) yields (15), which completes the
proof.

The following corollary gives a practical interpretation to Theorem S18.

Corollary S19. The choice µ⇤,�⇤
from Theorem S18 also minimizes the mean squared error of each

component. That is, 8a 2 {1, . . . , |A|}

E
h
( eEµ,�

A.B
[t])2

a

i
� E

⇥
(EA.B [t])

2
a

⇤
8t 2 Z. (22)

Proof. Fix a 2 {1, . . . , |A|}. We first note, that

E
⇥
(EA.B [t])

2
a

⇤
= (eA.B [0])aa and E

h
( eEµ,�

A.B
[t])2

a

i
= (ẽµ,�

A.B
[0])aa, 8t 2 Z

Further, by Theorem S18, we have ẽµ,�
A.B

[0] < eA.B [0], which, by definition, implies that ẽµ,�
A.B

[0]�eA.B [0]
is positive semidefinite. Let now v 2 C1⇥|A| be the vector, that has a single 1 at the a-th position and
is zero otherwise. We have

0  v
⇣
ẽµ,�
A.B

[0]� eA.B [0]
⌘
vH = (ẽµ,�

A.B
[0])aa � (eA.B [0])aa

and (22) follows.

We proceed to study further properties of the error process EA.B [·] defined in (14). First we show,
that this stochastic process also satisfies the conditions of Definition S13.

Corollary S20. Let X[·] be an n-dimensional, stochastic process satisfying Definition S13. Let A,B ⇢
[n] be non-empty disjoint sets. Then EA.B [·], as defined in Theorem S18, satisfies Definition S13.

Proof. Since the stochastic process EA.B [·] is a special case of Definition S16 it follows from Theorem
S17 that EA.B [·] satisfies Definition S8, with mean E [EA.B ] = µ⇤ = 0.

It remains to prove thatF {eA.B} (↵), which, according to Theorem S18, is given byF {eA.B} (↵) =
fAA(↵) � fAB(↵)f

�1
BB

(↵)fBA(↵) where f(↵) = F {kX}, is non-singular 8↵ 2 [0, 1]. To show this, we
define C = A [ B, fix ↵ 2 [0, 1] arbitrarily and denote f 0 = fCC(↵). By Corollary S14 we have f 0 � 0.
We write the matrix partitioned as follows

f 0 =

fAA fAB

fBA fBB

,

where, by Corollary S14, f 0
BB

� 0 as well. Hence, by Theorem S7, fAA � fABf
�1
BB

fBA = F {eA.B} (↵)
is indeed non-singular. As ↵ was arbitrary this completes the proof.
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Next, we investigate the e�ect of restricting the set A of components to predict.

Corollary S21. Let X[·] be a stochastic process satisfying Definition S13 and let A,B ⇢ [n] be disjoint
sets. Further, let A0 ⇢ A and let M 2 {0, 1}|A0|⇥|A|

be the matrix such that Mj` = 1 i� the j-th element

in A0
is the `-th element in A and 0 otherwise. Then

EA0.B [t] = MEA.B [t] 8t 2 Z, (23)
and eA0.B [⌧ ] = MeA.B [⌧ ]M

T 8⌧ 2 Z. (24)

Proof. Let �A = F�1
�
fAB(↵)fBB(↵)�1

 
and �A0 = F�1

�
fA0B(↵)fBB(↵)�1

 
be the optimal se-

quences from Theorem S18 that parametrize EA.B [·] and EA0.B [·] respectively. We observe

MEA.B [t] = M�A ⇤XB = �A0 ⇤XB = EA0.B [t] 8t 2 Z

which yields (23). Further, we observe

F
�
MeA.BM

T (↵) = MfAA(↵)M
T �MfAB(↵)f

�1
BB

(↵)fBA(↵)M
T

= fA0A0(↵)� fA0B(↵)f
�1
BB

(↵)fBA0(↵)

= F {eA0.B} (↵) 8↵ 2 [0, 1].

Taking the inverse Fourier transform we obtain (24).

Finally, we introduce the complex-coherency of two signals.

Remark S22. As a special case of Theorem S18 we consider predicting one component of X from another, i.e,

A = {a}, B = {b} for a, b 2 [n]. Then (15) can be written as

F {ea.b} (↵) = faa(↵)�
|fab(↵)|2

fbb(↵)
=
�
1� Cab(↵)

2
�
faa(↵),

where

Cab(↵) :=
|fab(↵)|p

faa(↵)fbb(↵)

is known as the complex-coherency
43(Section 1.6.1)

of the signals Xa and Xb.

A.2.4 A graphical representation
Nowwe are ready to graphically visualize whether components of a stochastic processX are linearly
related, when accounting for a set of other components. More precisely, we consider a set S ⇢ [n]
and two components a, b 2 [n] \ S. Then we investigate, whether there is still a linear relationship
between Xa and Xb after we account for the evolution of XS . If this is not the case, we consider a
and b as unrelated given S, which we write as a ? b | S. That is, if we observe a realization of XS

then additionally observingXa does not provide further (linear) information about the realization of
Xb.

Definition S23. LetX[·] be an n-dimensional, stochastic process satisfying Definition S13. Let S ⇢ [n]
be a non-empty set and a, b 2 [n] \ S. We define the relation

a ? b | S :, E [Ea.S [t]Eb.S [`]] = 0 8t, ` 2 Z.

Since we consider stationary processes, the quantity on the right-hand side only depends on the dif-
ference t� `. Therefore, we can prove the following equivalent formulations which are easier to work
with.
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Lemma S24. Let X[·] be an n-dimensional, stochastic process satisfying Definition S13. Let S ⇢ [n] be
a non-empty set and a, b 2 [n] \ S. We have the following equivalence

a ? b | S , e{a,b}.S [⌧ ] is diagonal , 8⌧ 2 Z
, F

�
e{a,b}.S

 
(↵) is diagonal , 8↵ 2 [0, 1]

Proof. Define Ma =
⇣
1 0

⌘
and Mb =

⇣
0 1

⌘
. From Corollary S21 we know that we can write

Ea.S [t] = MaE{a,b}.S [t] and Eb.S [t] = MbE{a,b}.S [t] for all t 2 Z. Hence, using that E{a,b}.S is sta-
tionary, we have

E [Ea.S [t]Eb.S [`]] = E
⇥
MaE{a,b}.S [t]MbE{a,b}.S [`]

⇤

= MaE
⇥
E{a,b}.S [t]E{a,b}.S [`]

T
⇤
MT

b

= Ma

�
e{a,b}.S [t� `]

�
MT

b

=
�
e{a,b}.S [t� `]

�
12

, 8t, ` 2 Z.

Thus, we have shown that E [Ea.S [t]Eb.S [`]] = 0, 8t, ` 2 Z is equivalent to (e{a,b}.S [·])12 ⌘ 0. The latter
in turn is equivalent to F

�
e{a,b}.S

 
12

⌘ 0. Exchanging the positions of a and b then completes the
proof.

This definition is the starting point for our graphical representation. Specifically, we define a graph
where the nodes correspond to the components of the stochastic processX . Further, any two nodes a
and b are connected by an edge unless a ? b | [n] \ {a, b} is satisfied.

Definition S25 (Partial correlation graph). LetX[·] be an n-dimensional, stochastic process satisfying

Definition S13. The corresponding partial correlation graph GX = (V, E) has nodes V = [n] and edges

E ⇢ V ⇥ V such that

(a, b) /2 E , a ? b | [n] \ {a, b}.

The following theorem shows, how we can determine this graph in a computationally e�cient way.

Theorem S26. Let X[·] be an n-dimensional, stochastic process satisfying Definition S13 and let f =
F {kX}. For all ↵ 2 [0, 1] we define g(↵) := f(↵)�1

and

d(↵) := �

0

BB@

g(↵)�1/2
11 . . . 0
.
.
.

. . .
.
.
.

0 . . . g(↵)�1/2
nn

1

CCA g(↵)

0

BB@

g(↵)�1/2
11 . . . 0
.
.
.

. . .
.
.
.

0 . . . g(↵)�1/2
nn

1

CCA 8↵ 2 [0, 1]. (25)

Further, let a, b 2 [n] and define the [0, 1] ! C2⇥2
function F (↵) := F

�
e{a,b}.[n]\{a,b} (↵). We have

dab(↵) =
F (↵)12

[F11(↵)F22(↵)]
1/2

, (26)

and in particular dab ⌘ 0 ) a ? b | [n] \ {a, b}.

Proof. Weassumewithout loss of generality that a = 1 and b = 2. Further, we define the setsA = {a, b}
and B = [n] \ {a, b}. Now we fix ↵ 2 [0, 1] arbitrary and omit the explicit dependency on ↵ in f(↵),
g(↵) and F (↵). Further, we partition f(↵) according to

f =
fAA fAB

fBA fBB

!
.
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By definition f and by Corollary S14 also fBB are non-singular. Thus, we can use Theorem S7 to
compute the upper left block of the inverse according to

g = f�1 =
E�1 ·
· ·

!
,

where E = fAA � fABf
�1
BB

fBA. By Theorem S18 we recognize

F = F {eA.B} (↵) = fAA � fABf
�1
BB

fBA = E.

We now write

E =
F11 F12

F21 F22

!

with inverse

E�1 =
1

F11F22 � F12F21

F22 �F12

�F21 F11

!
=

g11 g12

g21 g22

!
,

where in the last equality we simply recognized that E�1 constitutes the top left block of g. Thus,

dab = d12 = �g�1/2
11 g12 g

�1/2
22 =

F12

[F22F11]
�1/2

,

which, since ↵ was arbitrary, establishes (26).
It remains to show dab ⌘ 0 ) a ? b | [n] \ {a, b}. To this end, we note that dab(·) ⌘ 0 implies

F12(·) ⌘ 0, which, in turn, implies (e{a,b}.[n]\{a,b}[·])12 ⌘ 0. Thus, by Remark S10, e{a,b}.[n]\{a,b} is
indeed diagonal.

Remark S27. Comparing (26)withRemark S22, we note that dab is the complex-coherence of the error processes

that arise when predicting a and b separately using S.

The following property is key to interpreting the partial correlation graph.

Theorem S28. Let X[·] be an n-dimensional, stochastic process satisfying Definition S13. Let GX be

the corresponding partial correlation graph. Further, let S ⇢ [n] and a, b 2 [n] \ S, a 6= b such that S
separates a from b, i.e. every path from a to b contains at least one node in S. Then

a ? b | S.

To prove this theorem we need two results which we present first. The proof of Theorem S28 will
follow thereafter.

Lemma S29. Let X[·] be an n-dimensional, stochastic process satisfying Definition S13 and let f =
F {kX}. Further, define g(↵) := f(↵)�1

. Let A,B ⇢ [n] be disjoint subsets, setD = [n] \ (A[B), and
let gAB(↵) be the submatrix obtained by taking rows and columns corresponding to index sets A and B
respectively. Then

gAB(·) ⌘ 0
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if and only if

e(A[B).D[·] is block diagonal, i.e. e(A[B).D[⌧ ] =

0

BBBBBBBBBBB@

· . . . · 0 . . . 0
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

· . . . · 0 . . . 0

0 . . . 0 · . . . ·
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

0 . . . 0 · . . . ·

1

CCCCCCCCCCCA

|A| |B|

|A
|

|B
|

, 8⌧ 2 Z

Proof. W.l.o.g. we assume that A = {1, . . . , nA}, B = {nA + 1, . . . , nA + nB} and D = {nA + nB +
1, . . . , n}. Further, we define C := {1, . . . , nA + nB}, i.e. C = A [ B. Now we fix ↵ 2 [0, 1] arbitrary
and partition f(↵) and g(↵) as follows

f(↵) =

fCC

fCD

fDC fDD

fAA fAB

fBA fBB

A

B

D

C

, g(↵) =

gCC

gCD

gDC gDD

gAA gAB

gBA gBB

A

B

D

C

. (27)

Further, we define f ✏ = F
�
e(A[B).D (↵), which we partition as follows

f ✏ =

f ✏

AA
f ✏

AB

f ✏

BA
f ✏

BB

. (28)

We start by applying Theorem S7 with the partition as in (27) to obtain

gCC = (fCC � fCDf�1
DD

fDC)
�1.

We now recognize, using (15), that gCC = (F {eC.D} (↵))�1 = (f ✏)�1. By Corollary S20, E(A[B).D

satisfies Definition S13 and F
�
e(A[B).D

 
= f ✏ is non-singular 8↵ 2 [0, 1]. From Corollary S14 we

then also have that f ✏

BB
is non-singular, and thus we can apply Theorem S7 with the partition in (28)

to compute gAB , the upper right sub-matrix of (f ✏)�1:

gAB = �
⇣
f ✏

AA
� f ✏

AB
(f ✏

BB
)�1 f ✏

BA

⌘�1
f ✏

AB
(f ✏

BB
)�1

Since the inverses are non-singular, we have gAB = 0 , f ✏

AB
= 0. As ↵ was arbitrary this shows

gAB(·) ⌘ 0 , F
�
e(A[B).D AB

⌘ 0 , (e(A[B).D)AB ⌘ 0.

By Remark S10, this shows that e(A[B).D is indeed block diagonal.
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Lemma S30. Let X[·] be an n-dimensional, stochastic process satisfying Definition S13. Further, let

S ⇢ [n] and a, b, c 2 [n] \ S. Then

a ? b | S [ {c} and a ? c | S [ {b}.

imply

a ? b | S.

Proof. Let V = S [ {a, b, c} and consider the reduced stochastic process Y = XV with autocovariance
sequence kY [·], power spectral density fY = F {kY }, and its inverse gY = (fY )�1. We directly observe
that a ? b | S [ c relative to the stochastic process X is equivalent to a ? b | {a, b}c relative to the
stochastic process Y , since V \ {a, b} = S [ {c}. Similarly, a ? c | S [ {b} relative to X is equivalent
to a ? c | {a, c}c relative to Y . Further, by Corollary S14, fY is again full rank, and thus we can apply
Lemma S29 with the stochastic process Y twice to obtain

gY
ab

⌘ 0 and gY
ac

⌘ 0.

Now define the set B = {b, c} and we have gY
aB

⌘ 0. We use Lemma S29 in the other direction to get

e({a}[B).S [⌧ ] is block diagonal 8⌧ 2 Z.

Thus, using Corollary S21,
e{a,b}.S [⌧ ] is diagonal 8⌧ 2 Z,

and we have a ? b | S as desired.

Proof of Theorem S28. The proof is by backward induction on the number of nodes k := |S| in the set
S. For the base case, k = n � 2, we have S = [n] \ {a, b}. Hence, S separating a from b simply means
that there is no edge between a and b. By Definition S25 this implies a ? b | S, as desired.

Now assume that for k < n � 2 and all sets S0 ⇢ [n] with |S0| > k, that separate a from b we also
have a ? b | S0.

Next we want to show that the same holds for all such sets with k nodes. To this end, fix S ⇢ [n],
such that |S| = k and S separates a from b. Further, choose an arbitrary node c 2 [n] \ (S [ {a, b}) and
observe that S [ {c} separates a from b. Using the inductive assumption this implies a ? b | S [ {c}.

Next we consider how a, b and c are connected. Since S separates a and b there are only 3 possibil-
ities, as illustrated below. In particular, there cannot be a path via c from a to b, that does not also go
through S.

Case 1

a b

c

S

Case 2

a b

c

S

Case 3

a b

c

S

Case 1 There is a path from b to c that does not go through S. This implies that S [ {b} separates a
and c. By the inductive assumption, we therefore have a ? c | S [ {b}. Together, with a ? b | S [ {c}
Lemma S30 then implies a ? b | S as desired.

Case 2 There is a path from a to c that does not go through S. This implies that S [ {a} separates c
from b, and, by the inductive assumption, c ? b | S [ {a}. Together, with a ? b | S [ {c} Lemma S30
then implies a ? b | S as desired.

Case 3 There is no path between c and either a or b that does not go through S. We then also have
that S [ {b} separates a and c. Therefore, we can treat this case the same as Case 1.

This completes the inductive step and therefore the proof.
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A.3 A partial correlation graph for stroke recovery data
In this sectionwe describe the implementationwe use to estimate the partial correlation graph defined
in Section A.2.4 from data.

A.3.1 Estimating the graph from data
Let N 2 N be the number of patients. For each patient j 2 {1, . . . , N}, we are given a time-series xj [·]
with Tj 2 N weekly n-dimensional measurements, i.e. xj [t] 2 Rn for t 2 {1, . . . , Tj}. This collection
X := {xj [·]|j 2 [N ]} constitutes our dataset. Since patients overall get better through recovery the
xj [·] sequences generally tend to be increasing. However, we are interested in describing the pattern
of recovery, thus we instead investigate the time-series of score improvements from week to week.
Further, we subtract the global average of this improvement such that the resulting data has mean
zero. More specifically, we define

m =
1

N

NX

j=1

0

@ 1

Tj � 1

Tj�1X

t=1

xj [t+ 1]� xj [t]

1

A

and
exj [t] := (xj [t+ 1]� xj [t])�m for t 2 {1, . . . , eTj} and j 2 {1, . . . , N},

where eTj := Tj � 1 is the length of the processed time-series. Thus, it is reasonable to assume that exj

are samples of a zero-mean WSS process satisfying Definition S13.
Next, we need to estimate the autocovariance sequence of the underlying process. Let Tmax =

maxj2[N ]
eTj and define for ⌧ 2 �(Tmax � 1), . . . , 0, . . . , (Tmax � 1), the estimate

bk[⌧ ] := 1

#{j 2 [N ] | eTj > |⌧ |}

X

j2[N ], eTj>|⌧ |

1
eTj � |⌧ |

0

@
min{eTj�⌧,eTj}X

t=max{1,1�⌧}

exj [t+ ⌧ ]exj [t]
T

1

A .

Estimates for large values of |⌧ |might be noisy which leads to a large variance in the estimated power
spectral density43(Chapter 2). Hence, we taper the estimate of the autocovariance sequence using a win-
dow function w[·] as follows

ek[⌧ ] := w[⌧ ]bk[⌧ ].

We choose the Blackman window, but note that we also obtained the same graph when using the Tri-
angle, Hann, or Hamming windows.

Next, we apply the fast Fourier transform to get samples of f(↵) = F{ek}(↵), at the values ↵ 2n
0

2Tmax�1 ,
1

2Tmax�1 , . . . ,
2(Tmax�1)
2Tmax�1

o
. We then compute d(↵) defined in (25) for these values. Next, we

need to identify entries a, b in this matrix-valued sequence such that da,b(·) ⌘ 0. To this end we com-
pute kda,b(·)k`1 and sort the values obtained in thisway. Figure I shows the values associatedwith each
edge in descending order. We identify a drop after the 6th edge, and thus visualize the six dominant
edges in Figure II.

A.3.2 Reliability of the algorithm
Finally, we estimate the reliability of our procedure using Bootstraping44. Specifically, we randomly
draw with replacement N time-series from X to produce a bootstrap replicate dataset X 0. Then we
apply the procedure from Section A.3.1 to obtain a new graph with 6 edges. This we repeat 10’000
times and count how often a particular edge is missing, respectively how often a particular new edge
occurs. Table ?? shows the obtained frequencies.

A.3.3 Partial correlation graphs for left and right supratentorial strokes
We repeat the procedure from Section A.3.1 separately for the groups of patients that su�ered a left
or right supratentorial stroke. In Figure III we visualize the top six edges obtained in this way for each
group.

D
ow

nloaded from
 http://ahajournals.org by on A

ugust 16, 2023



Table S1: Definitions of the investigated domains of the Activities and Participation component ac-
cording to the International Classification of Functioning, Disability and Health.

ICF domain Definition
Interpersonal interactions and
relationships

This domain is about carrying out the actions and tasks required
for basic and complex interactions with people (strangers, friends,
relatives, family members and lovers) in a contextually and socially
appropriate manner.

Mobility This domain is about moving by changing body position or location
or by transferring from one place to another, by carrying, moving
or manipulating objects, by walking, running or climbing, and by
using various forms of transportation.

Self-care This domain is about caring for oneself, washing anddrying oneself,
caring for one’s body and body parts, dressing, eating and drinking,
and looking after one’s health.

Communication This domain is about general and specific features of communicat-
ing by language, signs and symbols, including receiving and pro-
ducing messages, carrying on conversations, and using communi-
cation devices and techniques.

Learning and applying
knowledge

This domain is about learning, applying the knowledge that is
learned, thinking, solving problems, and making decisions.

General tasks and
demands

This domain is about general aspects of carrying out single ormulti-
ple tasks, organizing routines and handling stress. These items can
be used in conjunction with more specific tasks or actions to iden-
tify the underlying features of the execution of tasks under di�erent
circumstances.

Domestic life This domain is about carrying out domestic and everyday actions
and tasks. Areas of domestic life include acquiring a place to live,
food, clothing and other necessities, household cleaning and repair-
ing, caring for personal and other household objects, and assisting
others.

Reference: World Health Organization. Towards a common language for functioning, disability and
health: ICF. Geneva, 2002.
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Table S2: Scoring of the items of the Lucerne ICF-basedMultidisciplinaryObservation Scale (LIMOS).

Score Description

1 the patient is not able to fulfil a task at all or needs more than 75% of assistance
(i.e., complete assistance)

2 the patient is able to fulfil a task with an assistance of 25–75% (i.e., severe assis-
tance)

3 the patient is able to fulfil a task with an assistance of <25%, or under supervision
(i.e., moderate assistance)

4 the patient is able to fulfil a task independently, but needs increased time and/or
auxiliary materials/ aids (i.e., slight assistance)

5 the patient is able to fulfil a task independently (i.e., no assistance needed)
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Table S3: Fraction of bootstrap samples inwhich an edgewasmissing or an additional edgewas found.

Missing edges (%) Extra edges (%)

Interpersonal interactions and relationships . . . . . . . . . . . . . . .
24.21

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self-care
General tasks and demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.98
. . . . . . . . . . . . . . . . . . . . . . . . Learning and applying knowledge
Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self-care 1.19
General tasks and demands. . . . . . . . . . . . . . . . . . . . . . .Self-care 1.02
Domestic life . . . . . . . . . . . . . . . . . . General tasks and demands 0.00
Domestic life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.00
. . . . . . . . . . . . . . . . . . . . . . . . Learning and applying knowledge
Domestic life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mobility 15.18
Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self-care 6.40
Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.52
. . . . . . . . . . . . . . . Interpersonal interactions and relationships
Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.78
. . . . . . . . . . . . . . . . . . . . . . . . Learning and applying knowledge
Learning and applying knowledge . . . . . . . . . . . . . . . . Self-care 0.77
Communication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Domestic life 0.32
Interpersonal interactions and relationships . . . . . . . . . . . . . . .

0.16
. . . . . . . . . . . . . . . . . . . . . . . . Learning and applying knowledge
General tasks and demands. . . . . . . . . . . . . . . . . . . . . . .Mobility 0.13
Interpersonal interactions and relationships . . . . . . . . . . . . . . .

0.08
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mobility
Domestic life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Self-care 0.04
General tasks and demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.02
. . . . . . . . . . . . . . . Interpersonal interactions and relationships
Communication . . . . . . . . . . . . . . . General tasks and demands 0.00
Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mobility 0.00
Domestic life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.00
. . . . . . . . . . . . . . . Interpersonal interactions and relationships
Learning and applying knowledge . . . . . . . . . . . . . . . .Mobility 0.00
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Figure S1. For each pair a, b of nodes we visualize the `1-norm of the corresponding entry in d( ) as 

computed in (25). We identify a drop after the 6th edge (red line) and thus retain only the firs
· 
t sixedges.
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Figure S2. Partial correlation graph that visualizes the six dominant edges identified in Figure S1. 
The thickness of an edge between nodes a and b is proportional to kdabk`1 as defined in (26).
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(a) Left supratentorial stroke (b) Right supratentorial stroke

(c) Left supratentorial stroke (d) Right supratentorial stroke

Figure S3. We repeat the analysis from Section A.3.1 seperately for patients that su�ered a left or 
right supratentorial stroke and visualize the top 6 edges in each case.
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