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Key Points:6

• The physical and biogeochemical drivers of surface ocean acidity extremes are anal-7

ysed using high-frequency output of an Earth system model8

• Higher temperatures due to enhanced ocean heat uptake drive the onset of high9

[H+] extremes in the subtropics10

• In contrast, higher carbon concentrations due to increased vertical mixing and ad-11

vection cause low Ω extremes in most regions12
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Abstract13

Oceanic uptake of anthropogenic carbon causes acidification, a process that describes14

the increase in hydrogen ion concentrations ([H+]) and decrease in calcium carbonate15

mineral saturation states (Ω). Of particular concern are ocean acidity extreme (OAX)16

events, which pose a significant threat to many calcifying marine organisms. However,17

the mechanisms driving such extreme events are not well understood. Here, we use high-18

frequency output from a fully-coupled Earth system model of all processes that influ-19

ence the surface ocean temperature and carbon budgets and ultimately [H+] and Ω anoma-20

lies to quantify the driving mechanisms of the onset and decline of high [H+] and low21

Ω extreme events. We show that enhanced temperature plays a crucial role in driving22

[H+] extremes, with increased net ocean heat uptake being the dominant driver of the23

event onset in the subtropics. In the mid-to-high latitudes, decreased downward verti-24

cal diffusion and mixing of warm surface waters during summer, and increased vertical25

mixing with warm and carbon-rich subsurface waters during winter are the main drivers26

of high [H+] extreme event onset. In the tropics, increases in vertical advection of carbon-27

rich subsurface waters are the primary driver of the onset of high [H+] extremes. In con-28

trast, low Ω extremes are driven in most regions by increases in surface carbon concen-29

tration due to increased vertical mixing with carbon-rich subsurface waters. Our study30

highlights the complex interplay between heat and carbon anomalies driving OAX events31

and provides a first foundation for more accurate prediction of their future evolution.32

Plain Language Summary33

Extreme events in ocean acidity and calcium carbonate saturation state may worsen34

the impacts from ocean acidification on marine ecosystems in the coming decades. Yet,35

the physical and biogeochemical drivers of such extreme events, such as air-sea CO2 and36

heat exchange and vertical mixing, have not been analyzed. Based on high-frequency out-37

put of an Earth system model simulation, this study presents a first global assessment38

of the drivers of these extremes in the surface ocean. We find air-sea heat uptake and39

suppressed vertical mixing with colder subsurface waters to be major drivers of high [H+]40

extremes in subtropical oceans and also in higher latitude regions during summer. There,41

increased vertical mixing is the major driver during winter, mixing up carbon-rich and42

warmer subsurface waters. In tropical regions, extremes in [H+] are caused by upwelling43

of carbon-rich waters. In contrast, we find that extremes in calcium carbonate satura-44

tion state are mainly caused by increased vertical mixing or upwelling of carbon-rich deep45

waters.46

1 Introduction47

Since the beginning of the industrial era, the ocean has taken up 20 to 30% of the48

anthropogenic carbon emissions (Friedlingstein et al., 2022). This uptake has caused changes49

in ocean chemistry, collectively known as ocean acidification (Caldeira & Wickett, 2003;50

Doney, Fabry, et al., 2009). Specifically, the pH of the surface ocean has decreased by51

approximately 0.12 since preindustrial times, corresponding to an increase in hydrogen52

ion concentration ([H+]) by 30% (Jiang et al., 2023). In addition, the concentration of53

carbonate ions ([CO2−
3 ]) has decreased by about 16%, which has resulted in a decrease54

in the saturation state of calcium carbonate (Ω) (Orr et al., 2005; Jiang et al., 2023). These55

changes are projected to continue and even accelerate in the future (Orr et al., 2005; Steinacher56

et al., 2009; Bopp et al., 2013; Kwiatkowski et al., 2020; Canadell et al., 2021). By the57

end of the 21st century, surface ocean [H+] is projected to increase by another 4 - 150%58

and [CO2−
3 ] concentration is projected to decrease by another 2 - 48%, depending on the59

future carbon emission scenario (Jiang et al., 2023). These ongoing changes in ocean chem-60

istry are expected to have far-reaching implications for marine organisms and the ser-61
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vices they provide to humanity (Kroeker et al., 2013; Doney et al., 2020; Bindoff et al.,62

2019).63

Extreme variations in ocean acidity, known as OAX events, can amplify the im-64

pacts of long-term ocean acidification on marine organisms and ecosystems by pushing65

them beyond their limits of resilience (e.g., Spisla et al., 2021; Gruber et al., 2021; Bed-66

naršek et al., 2022). These events can cause changes in hydrogen ion concentration ([H+])67

and other carbonate system variables of similar magnitude to those expected from long-68

term ocean acidification during the 21st century (Hofmann et al., 2011; Leinweber & Gru-69

ber, 2013; Desmet et al., 2022), particularly in coastal oceans (Torres et al., 2021). OAX70

events occur on much shorter timescales and can have detrimental impacts on marine71

organisms, as demonstrated, for example, by laboratory and field studies that show signs72

of shell dissolution in calcifying organisms after only a few days in undersaturated cal-73

cium carbonate waters (e.g., Bednaršek et al., 2012, 2014). These findings emphasize the74

need to consider both short-term and long-term impacts of extreme ocean acidity lev-75

els when assessing the health and sustainability of marine ecosystems.76

OAX events are projected to become more frequent or even permanent due to long-77

term ocean acidification by the end of the 21st century (Burger et al., 2020). In addi-78

tion, short-term departures from normal [H+] conditions are expected also to become79

larger in the future, since [H+] becomes more sensitive to variations in physical and bio-80

geochemical ocean conditions as a consequence of the nonlinear nature of oceanic car-81

bon chemistry (Orr et al., 2018; Fassbender et al., 2018; Kwiatkowski et al., 2023). For82

example, the frequency of [H+] extreme events relative to a shifting-mean baseline that83

includes long-term ocean acidification is projected to increase by a factor of 14 under a84

high emission scenario by the end of the century (Burger et al., 2020). Such increases85

in extreme departures may further increase the risk for marine ecosystems under ocean86

acidification, since ecosystems may be pushed earlier and more frequently beyond their87

limits of resilience. At the same time, variations in [CO−
3 ] and aragonite saturation state88

(ΩA) are expected to become smaller, because [CO−
3 ] and ΩA become less sensitive to89

variations in physical and biogeochemical ocean conditions (Orr et al., 2018; Burger et90

al., 2020).91

Not only the projections of extreme deviations in [H+] and ΩA from the long-term92

mean differ. It is also important to note that these extremes often occur independently93

from each other. For example, the 2013-2015 marine heatwave in the North Pacific, known94

as ’the Blob’, was associated with extremely high [H+] conditions (Gruber et al., 2021),95

but not with extremely low ΩA conditions (Mogen et al., 2022). This difference may be96

attributed to the fact that distinct drivers can cause [H+] and ΩA extremes. While high97

[H+] levels and low ΩA level may arise from increased dissolved inorganic carbon or de-98

creased alkalinity, high [H+] levels may also be caused by elevated temperatures (Burger99

et al., 2022). Furthermore, the drivers determine whether acdification extremes co-occur100

with extremes in other stressors such as temperature. Understanding when these two types101

of acidification extremes do not coincide is crucial, particularly if expected impacts are102

primarily linked to one of the two variables.103

Most available studies on OAX events have focused on examining their long-term104

changes under climate change (Burger et al., 2020; Hauri et al., 2013), as well as on iden-105

tifying the drivers of the mean seasonal cycle (Hagens & Middelburg, 2016; Xue et al.,106

2021; Orr et al., 2022) and its changes (Kwiatkowski & Orr, 2018). However, the causes107

of large deviations in [H+] or ΩA from their mean seasonal cycles during OAX events108

are currently unknown. These seasonal anomalies are likely driven by changes in tem-109

perature and dissolved inorganic carbon (Deser et al., 2010; Doney, Lima, et al., 2009),110

which are the most important driving variables. The contribution of different physical111

and biogeochemical processes, such as air-sea heat and CO2 exchange and vertical mix-112

ing of heat and carbon, to changes in surface heat and carbon and ultimately to extremes113

in [H+] or ΩA is currently unknown. A better understanding of these processes is cru-114
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cial for making accurate predictions about the future evolution of OAX events at the re-115

gional scale (Burger et al., 2020).116

In this study, the drivers of extreme events in [H+] and ΩA in the global surface117

ocean are analyzed for the first time. The analysis is based on a pre-industrial control118

simulation of the GFDL ESM2M Earth system model. It makes use of a suite of model119

tendency terms for the carbon and temperature budgets that allows to decompose changes120

in temperature and carbon into contributions from the underlying physical and biogeo-121

chemical processes (Gnanadesikan et al., 2012; Palter et al., 2014; S. M. Griffies et al.,122

2015; Vogt et al., 2022). The remainder of this article is structured as follows. In sec-123

tion 2, the methods used to analyze the drivers of [H+] extremes are introduced. Sec-124

tion 3 presents the results, and a discussion of the results and conclusions are given in125

section 4.126

2 Methods127

2.1 Model and experimental design128

This study is based on a preindustrial control simulation from the Earth system129

model GFDL ESM2M (Dunne et al., 2012, 2013). The GFDL ESM2M is a fully coupled130

carbon cycle-climate model that was developed at NOAA’s Geophysical Fluid Dynam-131

ics Laboratory (GFDL). The model consists of an ocean (MOM4p1; S. Griffies, 2009),132

atmosphere (AM2; Anderson et al., 2004), land (LM3; Shevliakova et al., 2009) and sea133

ice (Winton, 2000) module. The Modular Ocean Model version 4p1 (MOM4p1) uses a134

grid with a horizontal nominal 1 ◦ resolution that increases near the equator to 0.3 ◦ and135

with a time-varying vertical resolution of about 10m in the upper ocean. In this study,136

we analyze data for the uppermost vertical layer that extends from the surface to about137

10m depth. MOM4p1 is coupled to the ocean biogeochemistry model Tracers of Ocean138

Phytoplankton with Allometric Zooplankton version two (TOPAZv2; Dunne et al., 2013).139

TOPAZv2 simulates the cycling of 30 biogeochemical tracers, three phytoplankton groups,140

and zooplankton grazing. Carbonate chemistry follows the OCMIP2 recommendations (Najjar141

& Orr, 1998; Burger et al., 2020).142

We used output of a 100 y preindustrial control simulation that was run under pre-143

scribed atmospheric CO2 levels of 286 ppm (Vogt et al., 2022). Aerosol and solar forc-144

ing were also set to preindustrial 1860 values, and no anthropogenic land use and vol-145

canic activity was assumed. We stored output for temperature (T), dissolved inorganic146

carbon (CT), total alkalinity (AT), salinity (S), silicate, and phosphate at two-hourly res-147

olution, which is equivalent to the ocean model time step. By using mocsy 2.0 (Orr &148

Epitalon, 2015), these data were used to calculate [H+] and the saturation states of arag-149

onite ΩA — a mineral form of calcium carbonate produced by marine organisms. [H+]150

and ΩA were recalculated on the model time step because mocsy 2.0 is also used to cal-151

culate partial derivatives of [H+] and ΩA in the analysis (see section 2.4). This approach152

thus avoids slight inconsistencies between the carbonate chemistry representations of the153

ESM2M model and mocsy 2.0, increasing the accuracy of the analysis. The data were154

then aggregated to daily-mean resolution for the analysis. Additionally, output for the155

processes that modulate T and CT - specifically T and CT tendency terms - were also156

stored on two-hourly resolution. Storing tendency terms at each ocean model time step157

allowed to precisely calculate the changes in daily-mean T and CT arising from the in-158

dividual tendency terms.159

2.2 Model evaluation160

The findings of this study depend on the models’ ability to accurately simulate the161

variations in [H+] and ΩA anomalies. The GFDL ESM2M Earth system model, with its162

nominal 1° horizontal grid resolution in the ocean, is only suitable for assessing ocean163
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acidity extremes on spatial scales of approximately 100 km and larger. The model is not164

well suited for driver analysis in coastal oceans and at local scales, since mesoscale and165

submesoscale variability (e.g., Desmet et al., 2022; Hayashida et al., 2020) are not well166

represented. To evaluate the simulated variability in the open ocean, we compare the167

model simulation with estimates of observation-based gridded data with a similar 1° hor-168

izontal resolution. The observation-based data, covering the period 1982-2021 (see also169

Burger et al., 2022), consists of the Hadley Centre EN4.2.2 objective analyses T and S170

fields (Good et al., 2013). Additionally, [H+] and ΩA were calculated with CO2SYS us-171

ing SOCAT-based fCO2 (MPI-SOMFNN v2022; Landschützer et al., 2016; Landschützer172

et al., 2022) and total alkalinity calculated from S and T using the LIARv2 algorithm173

(Carter et al., 2018). Since the fCO2 data is only available on monthly timescales, this174

model-data comparison is limited to monthly-mean resolution.175

After removing the long-term linear trends from the observation-based data, we176

find a generally good agreement between simulated and observation-based variability of177

anomalies relative to the seasonal cycle in surface temperature and salinity (Figure 1).178

The pattern correlation coefficients of the standard deviation in anomalies are 0.53 for179

temperature and 0.50 for salinity. However, the model tends to overestimate tempera-180

ture variability in the Southern Ocean (Figure 1a, e; supporting information Table S3)181

and salinity variability in the western tropical Pacific and Indian Ocean (Figure 1b, f).182

These biases suggest that the model may overestimate the contributions of temperature183

variations to extremes in the Southern Ocean and freshwater fluxes in the western trop-184

ical Pacific and Indian Ocean. We also find good agreement between simulated and observation-185

based spatial patterns of [H+] and ΩA variability with pattern correlation coefficients186

of the standard deviation in [H+] and ΩA anomalies of 0.48 and 0.62, respectively (Fig-187

ure 1c,d,g,h). However, [H+] is generally more variable in the observation-based prod-188

uct compared to the model data (+33% globally; supporting information Table S3), par-189

ticularly in the high latitudes (e.g., +54% in the Southern Ocean) and the eastern equa-190

torial Pacific. The higher [H+] variability in the observation-based data is mainly attributable191

to the historical increase in [H+] sensitivity with respect to variations in its drivers from192

ocean acidification (Burger et al., 2020). Recalculating simulated H+] variability with193

the driving variables adjusted to the 1982-2021 mean conditions, which include ocean194

acidification and other historical trends, the excess in observation-based standard devi-195

ation is reduced to 4 % globally. However, an excess in observation-based standard de-196

viation of [H+] anomalies remains in the high latitudes (+18% over the Southern Ocean).197

Calculating observation-based CT following the methodology for [H+] and ΩA, we find198

that the remaining mismatch in these regions is associated with a negative bias in sim-199

ulated variability in CT anomalies (18% smaller standard deviation in simulated CT sea-200

sonal anomalies over the Southern Ocean). It is important to note the uncertainties in201

the observation-based data from the pCO2 mapping method (Fay et al., 2021), in par-202

ticular in the high latitudes (Landschützer et al., 2016), highlighting a need to better con-203

strain observation-based carbonate system variability.204

In summary, we find a good agreement between simulated and observation-based205

variability of anomalies relative to the seasonal cycle in all analyzed variables, and a good206

match in the spatial variability patterns, despite a general low bias in simulated [H+] vari-207

ability. These results suggest that the GFDL ESM2M model is well suited to analyze208

the drivers of extremes in [H+] and ΩA in the open ocean.209

2.3 Extreme event definition and identification of onset/decline peri-210

ods211

We examine events of both extremely high [H+] and extremely low ΩA, which are212

collectively referred to as OAX events. We define OAX events based on seasonally-varying213

extreme event thresholds (Hobday et al., 2016; Vogt et al., 2022; Burger et al., 2022).214

At each location and for each day of the year, the [H+] extreme event threshold is de-215

termined as the 90th percentile of the 100 anomaly values with respect to the climato-216

logical seasonal cycle for that day of the year. As a result, the likelihood that the [H+]217
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Figure 1. Standard deviation for anomalies relative to the seasonal cycle in (a,e) T, (b,f)

S, (c,g) [H+], and (d,h) ΩA, of the pre-industrial GFDL ESM2M model simulation (top) and

observation-based data over the period 1982-2021 (bottom). The observation-based data was

linearly detrended prior to the analysis.

anomaly exceeds the threshold is equal across locations and across the year. The choice218

of the 90th percentile ensures the inclusion of extreme ocean conditions while maintain-219

ing a sufficiently large sample for robust analyses. At a specific location, extreme events220

in [H+] are then defined as coherent periods over which the [H+] anomaly is above the221

local seasonally varying threshold (Figure 2). Similarly, extremely low ΩA events are de-222

fined when ΩA falls below the seasonally-varying thresholds that are given by the 10th223

percentiles of the anomaly distributions for each calendar day.224

At each location and for each OAX event, we identify its onset and decline period225

(Figure 2). The onset phase is defined as the period between the start of the extreme226

event (e.g., where the [H+] anomaly exceeds the seasonally varying threshold) and the227

peak of the extreme event, where [H+] anomaly is maximal. Likewise, the decline phase228

is defined as the period between the peak of the extreme event and the time when [H+]229

anomaly falls below the threshold again. In this study, we average the change in [H+]230

anomaly and its drivers over these two periods. We assign the day of event peak to the231

decline period, as the change in [H+] anomaly on that day characterizes the reduction232

in [H+] anomaly between the peak day and the following day. Likewise, the last day of233

the decline period is excluded, as the change in [H+] anomaly on that day characterizes234

the transition from the last day of the event to the first day after the event.235

2.4 Decomposition of OAX events into drivers236

Changes in [H+] seasonal anomalies (H+ ′) in each grid cell are decomposed into
contributions from T, S, CT and AT (Figure 3; equation (1)). The change in [H+] anomaly
between day i and day i+1, denoted by ∆H+ ′(i), is approximated by employing a first
order Taylor expansion of [H+] at day i, and by calculating the seasonal anomalies (de-
note by primes) of the obtained terms from T, CT, AT, and S:

∆H+ ′(i) ≃
(
∂H+

∂T
(i)∆T(i)

)′

︸ ︷︷ ︸
T term

+

(
∂H+

∂CT
(i)∆CT(i)

)′

︸ ︷︷ ︸
CT term

+

(
∂H+

∂AT
(i)∆AT(i)

)′

︸ ︷︷ ︸
AT term

+

(
∂H+

∂S
(i)∆S(i)

)′

︸ ︷︷ ︸
S term

.

(1)
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Figure 2. An exemplary [H+] extreme event in the northern subpolar Pacific depicting the

event definition as well as the separation into event onset and decline periods.

∆T(i), ∆CT(i), ∆AT(i), and ∆S(i) denote the changes in the respective variables be-237

tween day i and day i+1. The partial derivatives with respect to T and CT in equa-238

tion (1) are calculated for each day from daily-mean T, CT, AT, S, silicate and phosphate239

using mocsy 2.0 (Orr & Epitalon, 2015). The analogous decomposition of anomaly changes240

is also performed for ΩA.241

The approximation of the changes in [H+] and ΩA seasonal anomalies through the242

sum of the T, CT, AT, and S terms, as described in equation (1) for [H+], works well.243

For example, the root mean squared error (RMSE) over all simulated days of the approx-244

imation of [H+] anomaly change in equation (1) is 0.2 pmol kg−1d−1 (pmol = 10−12 mol)245

on global average. RMSE is smaller than 5% of the standard deviation of [H+] anomaly246

change over 99.9% of the ocean, indicating that the approximation accurately captures247

variations in [H+] anomaly change.248

2.5 Decomposition of T and CT changes during OAX events into ten-249

dency terms250

Within the ESM2M model, changes in T and CT between two model time steps251

are calculated from a number of tendencies that describe the changes in T and CT due252

to the individual physical and biogoechemical processes represented by the model (supporting253

information text S1; Palter et al., 2014; S. M. Griffies et al., 2015). We make use of these254

tendency terms to further decompose the changes in T and CT into individual physical255

and biogeochemical drivers. To do so, changes in daily-mean T or CT due to individual256

processes are reconstructed by adding up the respective tendency term on two-hourly257

(model time step) resolution between the two days that are considered (supporting in-258

formation text S2).259
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[H+] anomaly change

T term CT termCT term CT termAT term S term

• Air-sea flux (Ta-s term) • Air-sea flux (CT
a-s term)

Convective vertical mixing (Tvmix term)• Convective vertical mixing (CT
vmix term)•

Local vertical mixing & diffusion (Tvdiff term)• Local vertical mixing & diffusion (CT
vdiff term)•

Advection (Tadv term)• Advection (CT
adv term)•

Biology (CT
bio term)•...•

...•

Figure 3. A scheme depicting the decomposition of [H+] anomaly change (∆H+ ′) into the T,

CT, AT, and S terms (equation (1)). The T and CT terms are further decomposed into tendency

contributions (equations (4) and (5)).

For temperature, these individual processes include air-sea exchange of heat (∆Ta-s),
resolved and parameterized subgrid-scale horizontal and vertical advection of heat (∆Tadv),
vertical diffusion and local mixing of heat (here referred to as vertical diffusion only; ∆Tvdiff),
convective vertical mixing of heat in the ocean boundary layer as represented by the non-
local KPP (K-profile) parametrization (∆Tvmix), and a residual contribution (∆Tres)
from other processes, such as neutral diffusion and river runoff (supporting information
text S1), as well as grid cell height variations (supporting information text S2):

∆T ≃ ∆Ta-s +∆Tvmix +∆Tvdiff +∆Tadv +∆Tres. (2)

Likewise, for CT the contributions include air-sea exchange of CO2 (∆Ca-s
T ), resolved and

parameterized subgrid-scale horizontal and vertical advection of carbon (∆Cadv
T ), ver-

tical diffusion and local mixing of carbon (∆Cvdiff
T ), nonlocal KPP convective mixing of

carbon (∆Cvmix
T ), biological carbon uptake and release (∆Cbio

T ), and other processes in-
cluding grid cell height variations (∆Cres

T ):

∆CT ≃ ∆Ca-s
T +∆Cvmix

T +∆Cvdiff
T +∆Cadv

T +∆Cbio
T +∆Cres

T . (3)

More details on the individual tendencies and their underlying parametrizations can be260

found in supporting information text S1. The tendencies from grid cell height variations261

(part of the ∆Tres and ∆Cres
T terms) do not represent physical or biogeochemical pro-262

cesses. However, they are needed to precisely reproduce ∆T and ∆CT with equations263

(2) and (3). Based on equations (2) and (3), the T and CT terms in equation (1) are de-264

composed into the individual tendency contributions:265

(
∂H+

∂T
(i)∆T(i)

)′

=

(
∂H+

∂T
(i)∆Ta-s(i)

)′

︸ ︷︷ ︸
T a-s term

+

(
∂H+

∂T
(i)∆Tvmix(i)

)′

︸ ︷︷ ︸
T vmix term

+

(
∂H+

∂T
(i)∆Tvdiff(i)

)′

︸ ︷︷ ︸
T vdiff term

+

(
∂H+

∂T
(i)∆Tadv(i)

)′

︸ ︷︷ ︸
T adv term

+

(
∂H+

∂T
(i)∆Tres(i)

)′

︸ ︷︷ ︸
T res term

(4)
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(
∂H+

∂CT
(i)∆CT(i)

)′

=

(
∂H+

∂CT
(i)∆CT

a-s(i)

)′

︸ ︷︷ ︸
C a-s

T term

+

(
∂H+

∂CT
(i)∆CT

vmix(i)

)′

︸ ︷︷ ︸
C vmix

T term

+

(
∂H+

∂CT
(i)∆CT

vdiff(i)

)′

︸ ︷︷ ︸
C vdiff

T term

+

(
∂H+

∂CT
(i)∆CT

adv(i)

)′

︸ ︷︷ ︸
C adv

T term

+

(
∂H+

∂CT
(i)∆CT

bio(i)

)′

︸ ︷︷ ︸
C bio

T term

+

(
∂H+

∂CT
(i)∆CT

res(i)

)′

︸ ︷︷ ︸
C res

T term

.

(5)

The analogous decomposition is also performed for ΩA.266

3 Results267

In Section 3.1, we quantify the contributions of the four drivers T, CT, AT, and268

S to the onset and decline of surface high [H+] extremes. Subsequently, we evaluate the269

specific processes that modulate the impact of the two most important drivers, temper-270

ature (Section 3.2) and carbon concentrations (Section 3.3). We investigate the seasonal271

differences in these processes in Section 3.4. In Section 3.5, we briefly compare our find-272

ings on high [H+] levels with those for low ΩA extremes.273

3.1 Contributions of temperature, carbon, alkalinity and salinity anoma-274

lies to the onset and decline of surface [H+] extremes275

On a global scale, the average increase in [H+] anomalies during event onset is 9.1 pmol kg−1 d−1 (Ta-276

ble 1). The main factor contributing to the increase is the rise in temperature during the277

onset of the event. On a global scale, the temperature increase contributes 7.3 pmol kg−1 d−1or278

80% to the total increase. Increased temperature directly leads to an increase in [H+]279

via changes in the carbonate chemistry equilibrium (Zeebe & Wolf-Gladrow, 2001). In-280

creases in CT also contribute to the increase in [H+] globally, but the contribution of 2.4 pmol kg−1 d−1
281

is relatively small and accounts for 27% of the total [H+] increase. Increases in alkalin-282

ity slightly counteract the [H+] increases (-8%) and contributions from changes in salin-283

ity are minor (1%).284

At the regional scale (Figure 4), we find that the increase in temperature is the dom-285

inant driver of [H+] increases in 78% of the global ocean surface area during the onset286

phase, whereas CT dominates over 22% of the ocean surface area. Regions that are par-287

ticularly dominated by the CT contribution are the eastern and central tropical Pacific288

and the Arctic Ocean. There, increases in [H+] during the onset period result from in-289

creases in CT (Figure 4e), while temperature decreases make the temperature contribu-290

tion negative (Figure 4c). In the subtropics and the Southern Ocean, increases in tem-291

perature and associated increases in positive [H+] anomalies are somewhat damped by292

decreases in CT and associated decreases in [H+] anomalies. In the Kuroshio and Gulf293

Stream regions and the Northern Indian Ocean, increases in [H+] anomalies result from294

increases in both T (Figure 4c) and in CT (Figure 4e). This pattern also holds true near295

Antarctica. However, it is important to note that the model may not adequately sim-296

ulate physical and biogeochemical dynamics close to the Antarctic continent. The con-297

tribution from AT is generally smaller and predominately opposite to the contribution298

of CT (pattern correlation coefficient of -0.73). The AT contribution is most important299

in the tropical regions where increases in AT tend to decrease [H+] and therefore inhibit300

event onset.301

During the decline period of [H+] extreme events, simulated reductions in temper-302

ature (Figure 4d) and CT concentrations (Figure 4f) contribute similarly to the decline303

of [H+] at the global scale, with a decrease of approximately -4.7 and -5.0 pmol kg−1 d−1,304

respectively. This is in contrast to the onset period, where the temperature term dom-305

inates at the global scale. At the regional scale, the CT term decreases almost everywhere306
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in
pmol kg−1 d−1

Global Tropics Subtropics Southern Ocean

onset decline onset decline onset decline onset decline

T

T a-s term 12.6 -3.0 12.1 1.8 24.5 -6.3 4.1 -0.9

T vmix term -9.5 0.6 -6.0 -0.3 -17.5 2.2 -6.0 -1.5

T vdiff term 5.0 -1.8 -1.7 -2.1 3.2 -2.3 11.7 -1.6

T adv term -0.6 -0.5 -1.3 -0.8 -2.0 -0.9 0.3 0.3

T res term -0.1 0.0 -0.7 0.3 0.5 0.0 -0.1 -0.1

Sum of T terms 7.3 -4.7 2.6 -1.1 8.7 -7.3 10.0 -3.7

CT

C a-s
T term -4.2 -5.3 -3.3 -3.8 -2.7 -3.7 -8.6 -9.6

C vmix
T term 2.3 2.3 -0.1 1.9 4.8 2.1 2.4 2.8

C vdiff
T term 0.5 1.7 -0.8 0.8 -1.3 1.0 4.3 4.1

C adv
T term 5.0 -1.8 16.6 -3.4 -1.2 0.3 1.4 -1.7

C bio
T term 0.2 -1.0 -3.4 -2.9 0.2 0.0 0.9 -0.1

C res
T term -1.3 -1.0 -2.0 -1.8 -0.3 -0.3 -0.5 -0.5

Sum of CT terms 2.4 -5.0 6.9 -9.3 -0.4 -0.6 -0.1 -4.9

AT term -0.8 1.3 -2.0 3.4 0.1 -0.2 -0.2 0.6

S term 0.1 -0.2 0.3 -0.5 0.9 0.0 0.0 -0.1

Total 9.1 -8.5 7.8 -7.5 8.4 -8.1 9.8 -8.2

Simulated 9.1 -8.6 7.8 -7.5 8.4 -8.1 9.8 -8.2

Table 1. The simulated average daily changes in [H+] anomalies during the onset and de-

cline periods of [H+] extreme events and the tendency contributions to these changes. Results

are shown for the global ocean, the tropics, the subtropics, and the Southern Ocean. The re-

gions are defined in Figure 4a. For each period and region, the two largest positive and negative

contributions are highlighted in red and blue bold font, respectively. The T and CT terms are

decomposed into air-sea flux (a-s), convective vertical mixing (vmix ), local vertical mixing and

diffusion (vdiff ), advection (adv), biology (bio), and residual (res) terms. ’Total’ denotes the sum

of all tendency contributions and ’Simulated’ denotes the actual simulated [H+] change during

the onset and decline phases.
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Figure 4. The simulated [H+] anomaly change during onset and decline of extreme high [H+]

events and the contributions from the T, CT, and AT terms. (a, b) The simulated change in

[H+] anomalies during the onset and decline phases of extreme [H+] events, the contribution of

the (c, d) T term, (e, f) CT term, and (g, h) AT term (see equation (1)). The salinity term is

small and not shown (see also Table 1). The solid, dashed, and dotted boxes in a) indicate the

tropics (10 ◦S - 10 ◦N and 220 ◦W - 85 ◦W in the Pacific, 55 ◦W - 10 ◦E in the Atlantic, and 50 ◦E

- 100 ◦E in the Indian Ocean), the subtropics (15 ◦N - 30 ◦N and 205 ◦W - 125 ◦W in the North

Pacific, 30 ◦S - 15 ◦S and 190 ◦W - 90 ◦W in the South Pacific, 15 ◦N - 30 ◦N and 65 ◦W - 25 ◦W

in the North Atlantic, 30 ◦S - 15 ◦S and 35 ◦W - 5 ◦E in the South Atlantic, and 30 ◦S - 15 ◦S and

55 ◦E - 105 ◦E in the Indian Ocean), and the Southern Ocean (65 ◦S - 45 ◦S), respectively. These

regions are used in Table 1.
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(in 94% of the ocean surface area), with the largest decreases simulated in the tropical307

Pacific and the high latitudes (Figure 4f). Similarly, the temperature term also decreases308

in most regions (in 92% of the surface ocean), with the most pronounced decreases in309

the subtropics (Figure 4d), where the temperature term is the main driver of [H+] de-310

cline. An exception is again the equatorial Pacific, where temperature increases during311

the decline period of [H+] extremes, thereby counteracting event decline.312

3.2 Drivers of temperature variations during [H+] extreme events313

To understand the individual processes driving the changes in temperature anoma-314

lies during [H+] extreme events and hence the temperature contribution to onset and de-315

cline of [H+] extreme events (Figure 4c, d), the change in temperature anomaly during316

event onset and decline is decomposed (see equation (4); Table 1) into the contributions317

from air-sea heat exchange (Figure 5b, c), nonlocal KPP convective mixing (Figure 5e,318

f), vertical diffusion and local mixing (Figure 5h, i), and horizontal and vertical advec-319

tion (Figure 5k, l). For ease of interpretation of the anomaly patterns, we also show the320

climatological means of the tendency contributions to the T term (Figure 5a,d,g,j). These321

are determined by calculating the temporal mean values of the tendency contributions322

to the T term instead of calculating their seasonal anomalies.323

At the global scale, reduced ocean heat loss (i.e., net ocean heat uptake) contributes324

most to the increases in temperature anomalies during the onset period of [H+] extreme325

events (Table 1). The net ocean heat uptake increases [H+] anomalies by 12.6 pmol kg−1 d−1
326

(138% of [H+] anomaly increase) at the global scale. In addition, increases in temper-327

ature anomaly associated with reduced vertical diffusion and local mixing of warm wa-328

ters to the subsurface cause an increase in [H+] anomalies of 5.0 pmol kg−1 d−1 (54 ,̧%329

of [H+] anomaly increase) during the onset period. Convective mixing increases sea sur-330

face temperature by transporting heat to the surface when surface waters lose buoyancy331

due to heat loss to the atmosphere. This mechanism is less active during the positive air-332

sea heat flux anomalies in the onset period. The associated negative anomalies in non-333

local KPP convective mixing during the onset period reduce surface temperature anoma-334

lies and therefore [H+] anomalies during the onset, strongly dampening the temperature-335

induced increases in [H+] anomalies (−9.5 pmol kg−1 d−1, -104% of [H+] anomaly increase).336

At the regional scale (Figure 5), the positive contribution from air-sea heat exchange337

is largest in the low-to-mid latitudes and in particular in the subtropical oceans (Table 1;338

Figure 5b), while the contribution is much smaller or negative in the high latitudes. In339

the subtropics, air-sea heat exchange often changes the sign from net loss to the atmo-340

sphere to net uptake during [H+] extreme events (Figure 5a,b). Vertical diffusion and341

local mixing increases temperature anomaly and hence contributes positively to the T342

term in all ocean regions, except in the tropical Pacific and Indian Ocean, where verti-343

cal diffusion and local mixing of heat to the subsurface is increased during [H+] extreme344

events (Figure 5h). The vertical diffusion and local mixing contribution is most positive345

in the North Atlantic, North Pacific, and Southern Ocean (Table 1, Figure 5h). In the346

subtropics and the mid-to-high latitudes during summer, the positive contribution from347

vertical diffusion and local mixing arises due to a reduction in mixing with colder sub-348

surface waters that coincides with a reduction in wind strength (supporting information349

Figure S3a, c). In the high latitudes during winter, the positive contribution instead of-350

ten arises due to an increase in upward mixing of heat. The increase in upward mixing351

of heat is associated with stronger winds (supporting information Figure S3c). Decreases352

in nonlocal KPP convective mixing decrease surface temperature and [H+] almost in the353

entire global surface ocean, especially in the subtropics (Table 1, Figure 5e), where also354

increases in temperature anomaly due to air-sea heat exchange are largest (Figure 2b,355

Figure 5b). The contribution from advective heat transport is generally small (Figure 5k),356

except in the tropical Pacific, where it decreases temperature and [H+] during the on-357

set of [H+] extreme events (Table 1, Figure 5e).358
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Figure 5. The decomposition of the T term into tendency contributions. The climatological

means of the tendency contributions to the T term (first column) as well as their contributions to

the onset (second column) and decline (third column) means of the T term (Figure 4 c, d).
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During the decline phase of [H+] extreme events, the temperature decrease in the359

subtropics mainly results from increased heat losses to the atmosphere (Figure 5c). Ver-360

tical diffusion and local mixing also decreases temperature over most of the ocean (Fig-361

ure 5i) and is the main driver of temperature decrease in the Southern Ocean (Table 1).362

The increases in temperature that counteract the [H+] event decline in the tropical Pa-363

cific (Figure 4d) result from enhanced ocean heat uptake during the decline phase (Fig-364

ure 5c).365

3.3 Drivers of carbon variations during [H+] extreme events366

At the global scale (Table 1), vertical and horizontal advection is the most impor-367

tant driver of CT increase during the onset of [H+] extreme events, increasing [H+] anomaly368

by 5.0 pmol kg−1 d−1 (55% of [H+] anomaly increase). In addition, reduced nonlocal KPP369

convective vertical mixing of carbon increases [H+] by 2.3 pmol kg−1 d−1 (25% of [H+]370

anomaly increase). These increases are balanced by decreases in CT anomalies from neg-371

ative anomalies in air-sea CO2 flux during the onset of [H+] extreme events (-4.2 pmol kg−1 d−1,372

-46% of [H+] anomaly increase). Negative anomalies in air-sea CO2 flux, i.e., increased373

carbon loss to the atmosphere or decreased CO2 uptake from the atmosphere (Figure 6a),374

occur when partial pressure of CO2 (pCO2) in the surface water is increased. Due to the375

high correlation between [H+] and pCO2 anomalies (Pearson correlation coefficient of376

0.99 on global average in the model), negative anomalies in air-sea CO2 flux during high377

[H+] events are expected. The contributions from vertical diffusion, local mixing and bi-378

ology are small at the global scale. The residual term for CT is larger than for T and379

mainly stems from neutral diffusion and a tendency that compensates a numerical ar-380

tifact associated with the smoothing of the free ocean surface in the model.381

At the regional scale (Figure 6), the contribution from vertical and horizontal ad-382

vection to the onset of [H+] extreme events is largest in the tropics (Figure 6k, Table 1).383

Smaller positive contributions from advection are also simulated in high-latitude regions.384

However, the advection contribution is slightly negative in the subtropics. In the ESM2M385

model, CT changes due to advection also include the diluting or concentrating effect on386

CT from precipitation minus evaporation (Supporting information text S3). Negative387

precipitation minus evaporation anomalies (i.e., more evaporation than precipitation)388

increase CT during event onset in the western tropical Pacific and Indian Ocean (Fig-389

ure S4e), while the advective increases in CT in the remaining tropics result from oceanic390

advection such as upwelling (supporting information Figure S4h), in particular in the391

eastern tropical Pacific where also advective decreases in temperature are simulated (Fig-392

ure 5k). The slightly negative contribution from advection in the subtropics is caused393

by positive precipitation minus evaporation anomalies during the onset of [H+] extreme394

events.395

The negative anomalies in air-sea CO2 flux are largest in the high latitudes (Fig-396

ure 6b). The anomalies in air-sea CO2 exchange are offset by opposing tendencies from397

nonlocal KPP convective mixing of carbon in most regions (Figure 6e). The convective398

mixing increases CT and [H+] everywhere except in the western tropical Pacific and the399

tropical Indian Ocean. Vertical diffusion and local mixing generally increase surface CT400

in the climatological mean (Figure 6g). During the onset of [H+] extreme events, neg-401

ative anomalies in vertical diffusion and local mixing counteract increases in [H+] anomaly402

in the subtropics, the mid latitudes, and most tropical regions (Figure 6h). In contrast,403

vertical diffusion and local mixing increases [H+] anomalies in the eastern tropical Pa-404

cific, and in high-latitude regions of the the North Pacific, North Atlantic, and South-405

ern Ocean. Its contribution tends to be opposite to that of temperature vertical diffu-406

sion and local mixing due to opposite vertical gradients in temperature and CT. This407

is not the case in the high-latitude regions where temperature and CT vertical gradients408

are often both positive towards depth during the winter months. The reductions in ver-409

tical diffusion and local mixing of temperature and CT (increasing temperature and de-410
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Figure 6. The decomposition of the CT term into tendency contributions. The climatological

means of the tendency contributions to the CT term (first column) as well as their contributions

to the onset (second column) and decline (third column) means of the CT term (Figure 4 e, f).
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creasing CT) in the low-to-mid latitudes coincide with negative anomalies in wind stress411

during event onset (supporting information Figure S3a, c). In the high-latitude regions412

where positive anomalies in vertical diffusion and local mixing of temperature and CT413

are simulated (Figures 5h and 6h), also wind stress and mixed layer depth (not shown)414

are increased during event onset, in particular during winter (supporting information Fig-415

ure S3c). The increased wind stress may be the reason for enhanced vertical mixing dur-416

ing event onset in these regions.417

Biological activity generally reduces CT everywhere, because biological production418

outweighs decomposition at the surface (Figure 6m). During the onset of [H+] extreme419

events, increases in biological production decrease [H+] anomaly in the tropics (Table 1),420

while reductions in biological production increase [H+] anomaly in the mid-to-high lat-421

itudes (Figure 6n). In the tropical regions, increased nutrient concentrations are simu-422

lated during OAX events (not shown), which may cause increased phytoplankton growth423

there. In the mid-to-high latitudes, low biological production may be connected to nu-424

trient limitation and / or low phytoplankton biomass due to enhanced zooplankton graz-425

ing under the elevated temperatures.426

During the decline phase of [H+] extremes, CT anomaly decreases almost in the427

entire ocean (Figure 4f). This decrease is mainly due to loss of carbon to the atmosphere428

(Figure 6c), which remains similarly strong as during the onset phase. In the tropical429

ocean, biological production continues to decrease CT anomaly during event decline (Fig-430

ure 6o), and also advection reduces CT anomaly during event decline there (Figure 6c).431

The convective mixing term balances the carbon losses from air-sea gas exchange and432

counteracts [H+] event decline everywhere in the ocean (Figure 6f), and also vertical dif-433

fusion and local mixing increases [H+] anomaly during event decline in most regions (Fig-434

ure 6i). These increases in vertical mixing, simultaneously also causing temperature de-435

creases in the low-to-mid latitudes (Figure 5i), may be connected to the anomalous heat436

losses to the atmosphere (Figure 5c), causing loss of buoyancy.437

3.4 Seasonal variations in drivers of [H+] extreme event onset438

Next, we analyze if the drivers of [H+] extreme event onset differ between summer439

and winter season. At the global scale, the changes in [H+] anomaly per day during ex-440

treme event onset are by a factor of two larger during hemispheric summer (April to Septem-441

ber on the northern and October to March on the southern hemisphere) than during hemi-442

spheric winter (October to March on the northern and April to September on the south-443

ern hemisphere; grey bars in Figure 7a). This difference arises from distinct drivers of444

[H+] extreme events during individual seasons. Globally, temperature changes are the445

dominant driver for event onset during the summer months, with 11.8 pmol kg−1 d−1 for446

temperature vs 1.0 pmol kg−1 d−1 for CT. In contrast, CT changes become more impor-447

tant in winter, with 3.9 pmol kg−1 d−1 for CT vs 2.7 pmol kg−1 d−1 for temperature (Fig-448

ure 7a).449

In the tropics, temperature and CT are both important drivers during hemispheric450

summer, but CT is the dominant driver during hemispheric winter (Figure 7b). The smaller451

contribution from temperature in winter is due to lower net ocean heat uptake and in-452

creased heat loss from vertical diffusion and local mixing and advection. The larger con-453

tribution from CT in winter, on the other hand, is due to larger surface CT increases from454

advection as well as vertical diffusion and local mixing (supporting information Figure S4b).455

In the subtropics, temperature is the dominant driver of [H+] event onset through-456

out the year, while the contributions from the other drivers are negligible both in sum-457

mer and winter (Figure 7c). The overall larger [H+] increases during event onset in sum-458

mer result from a larger reduction in heat loss from vertical diffusion and local mixing459

in summer (supporting information Figure S4c).460
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Figure 7. The contributions to [H+] extreme event onset (light and dark grey bars) from

T (light and dark orange), CT (light and dark green), and AT and S (light and dark purple).

Results are shown separately for hemispheric summer (April to September on the northern hemi-

sphere and October to March on the southern hemisphere; light colors) and hemispheric winter

(remaining months; dark colors). The definition of regions is shown in Figure 4a. Errors of the

decomposition are not shown as they are very small (see Table 1).

In the Southern Ocean, the drivers during summer show similarities to subtrop-461

ical regions, characterized by a large positive temperature contribution and a much smaller462

and negative CT contribution (Figure 7d). The large positive temperature contribution463

is due to reduced vertical diffusion and local mixing with colder subsurface waters, as-464

sociated with reduced winds (supporting information Figure S3a), and due to net ocean465

heat uptake. The negative CT contribution is caused by reduced mixing with carbon-466

rich subsurface layers and due to air-sea CO2 loss (supporting information Figure S4d).467

The regime is distinctly different during winter, where carbon increases are the main driver468

of event onset while temperature increases are only of secondary importance (Figure 7d).469

The increase in carbon is mainly caused by an increase in vertical diffusion and local mix-470

ing with carbon-rich subsurface layers that is associated to enhanced winds (support-471

ing information Figure S3c). It is counteracted by amplified air-sea CO2 loss to the at-472

mosphere. The smaller positive contribution from temperature increases in winter is caused473

by enhanced vertical mixing and diffusion, transporting heat from the warmer subsur-474

face to the surface (see also Section 3.2; supporting information Figure S4d).475

3.5 Drivers of extremes in ΩA476

At the global scale, the onset of surface low ΩA extremes is mainly caused by an477

increase in CT, which accounts for 65% of the total decrease in ΩA (Figure 8a,b; sup-478

porting information Table S1). This is in contrast to high [H+] extremes, for which tem-479

perature accounts for 80% of the total increase in [H+]. The increase in CT during low480

ΩA extremes is primarily due to increased local vertical mixing and diffusion (Figure 8d),481

which is counterbalanced by enhanced biological activity, which decreases CT (Figure 8f),482

as well as anomalous outgassing of CO2 (Figure 8c). In addition, the decrease in total483

alkalinity (Figure 8g) and decrease in temperature from air-sea heat loss (Figure 8h,i)484

contribute to the decrease in ΩA during event onset.485

At the regional scale, the primary driver of the onset of low ΩA extremes is the in-486

crease in CT over most of the tropics and the Southern Ocean (Figure 8b; supporting487

information Table S1). The increase in CT contributes 71% to the total decrease in ΩA488

in the tropics and 99% in the Southern Ocean. These increases in CT are caused by en-489

hanced vertical mixing and diffusion (Figure 8d), as well as advection of carbon-rich wa-490

ters (Figure 8e). However, these increases in CT in the tropics and the Southern Ocean491

are somewhat counterbalanced by decreases in carbon from anomalous CO2 outgassing492
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(Figure 8c). Enhanced biological activity also decreases carbon in the tropics (Figure 8f).493

In the western tropical Pacific, the decrease in CT is driven by the decrease in AT (Fig-494

ure 8g) resulting from enhanced precipitation (supporting information Figure S9b). De-495

creases in AT are also contributing to the decreases in ΩA in the subtropical regions, pre-496

sumably due to enhanced vertical mixing with low-AT subsurface waters. In addition,497

decreases in temperature from air-sea heat loss contribute to the decreases in ΩA in the498

subtropics (Figure 8i).499

The global decline of surface low ΩA is mainly caused by decreases in CT (predom-500

inantly from biological uptake of carbon), increases in AT, and a smaller contribution501

from increasing temperatures that are caused by surface warming (supporting informa-502

tion Table S1).503

Figure 8. The ΩA anomaly change during the onset phase of low ΩA events, the contributions

from the T, CT, and AT terms, and the most important tendency contributions to these. (a) The

simulated change in ΩA anomalies during the onset phase. (b-f) The contribution from the CT

term (b) and its air-sea CO2 exchange (c), local vertical mixing and diffusion (d), advection (e),

and biology (f) contributions. (g) The AT term, and (h) the T term and its contribution from

air-sea heat exchange (i). The salinity term and the other tendency contributions are smaller and

not shown (see also supporting information Table S1). Blue colors indicate a decrease in ΩA and

thus an intensification of low ΩA extremes.
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Figure 9. Overlap percentage of high [H+] and low ΩA extremes. It is calculated as the num-

ber of days with co-occurring high [H+] and low ΩA extremes divided by the number of days

with high [H+] or low ΩA extremes (10% of days). Cold and warm colors indicate that the events

coincide less and more frequent than by chance, respectively.

4 Discussion and conclusions504

We provide a first assessment of the drivers of surface high [H+] and low ΩA ex-505

treme events using high-frequency output of a comprehensive Earth system model. The506

results of this modeling study suggest that rising temperatures from enhanced net ocean507

heat uptake and reduced heat loss through vertical mixing are the primary drivers of high508

[H+] events in the subtropical regions and mid-to-high latitudes during summer. In trop-509

ical regions, simulated high [H+] events as well as low ΩA events are often driven by in-510

creases in dissolved inorganic carbon due to advection. In mid-to-high latitudes during511

winter, we also find increased vertical mixing with carbon-rich and often warmer sub-512

surface waters to be an important factor for the onset of high [H+] events.513

Recent studies have investigated the biogeochemical imprint of the 2013-2015 ma-514

rine heatwave in the North Pacific, known as the Blob. While extremely high [H+] was515

identified, the levels of ΩA were not lower than usual, despite both being referred to as516

OAX events (Gruber et al., 2021; Mogen et al., 2022). Our study offers an explanation517

for this apparent contradiction: high [H+] events are often driven by temperature increases,518

in particular in the North Pacific region where the Blob occurred (Figure 3c), which sug-519

gests that the Blob was indeed an [H+] extreme. On the other hand, low ΩA events usu-520

ally coincide with periods of decreasing temperature (Figure 7e) and thus unlikely to co-521

incide with MHWs.522

The main driver of low ΩA extremes in the model is an increase in CT resulting523

from vertical mixing, diffusion, and advection, particularly in the tropics and the mid-524

to-high latitudes (Figure 7d,e). Similarly, advective increases in CT were also identified525

as the main driver of [H+] in the tropics, and vertical diffusion and local mixing was iden-526

tified as an important driver of [H+] extremes in the mid-to-high latitudes, in particu-527

lar during winter (section 3.3). The resemblance in the driving mechanisms in these re-528

gions reflects in relatively frequent co-occurrence of simulated high [H+] and low ΩA ex-529

tremes: 26% of high [H+] extreme days overlap with low ΩA extreme days in the trop-530

ics and 31% of event days overlap in the Southern Ocean (Figure 9), in particular dur-531

ing winter where 43% of event days coincide. In contrast, the driving mechanisms di-532

verge in the subtropics, reflected in a relatively low overlap of event days of only 11%533

there (Figure 9).534
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Our study suggests that temperature increase is the main driver of [H+] extremes535

in the subtropics, which may share similar physical drivers to those of marine heatwaves.536

Using the same GFDL ESM2M model, Vogt et al. (2022) found that air-sea heat fluxes537

were the main factor responsible for temperature increases during the onset of marine538

heatwaves, particularly in the subtropical oceans, offset by temperature decreases result-539

ing from reduced nonlocal-KPP convective mixing (Figure 1 in Vogt et al., 2022). Our540

findings are thus consistent with those of Vogt et al. (2022) for the subtropical oceans.541

During the onset period, anomalous air-sea heat flux was identified as the primary driver542

of [H+] increase, and likewise, during event decline, air-sea heat flux was the main driver543

of [H+] decrease (Figure 5b, c; Table 1). Moreover, reduced convective mixing from the544

nonlocal KPP parameterization was identified as the primary inhibiting factor during545

the onset period, and to a lesser extent, also an important factor for event decline (Fig-546

ure 5k, l; Table 1). Given the similarity in the main drivers of [H+] extremes and ma-547

rine heatwaves in the subtropical ocean, one can expect that these two univariate extreme548

events often co-occur. This is indeed the case. Burger et al. (2022) found observation-549

based evidence for this co-occurrence, indicating that the subtropical oceans are a hotspot550

for compound high [H+] and high temperature extremes.551

The processes responsible for preconditioning [H+] extremes, i.e., for increasing [H+]552

anomaly before crossing the 90th percentile threshold, have not been analyzed yet. How-553

ever, the simulated drivers during this preconditioning phase are often similar to those554

during event onset, with temperature increases from air-sea heat flux dominating in the555

subtropical oceans and advective increases in carbon dominating in the tropical oceans556

(supporting information Table S2 and supporting information Figure S10). Therefore,557

this study’s results on the driving mechanisms of [H+] extreme event onset often also ap-558

ply to the preceding preconditioning phase.559

Even though we consider our results as robust, a number of caveats need to be dis-560

cussed. The analysis of OAX event drivers relies on data from an Earth system model,561

as certain processes cannot be independently validated with observational-based data562

due to its limited availability. The robustness of our results depends therefore on the Earth563

system model’s accuracy in simulating the physical and biogeochemical processes that564

lead to [H+] and ΩA variations and extremes. As these processes also drive spatial vari-565

ability patterns in [H+] and ΩA, a first step is to evaluate simulated variability patterns566

in the seasonal anomalies of [H+], ΩA, and the underlying physical fields T and S against567

observation-based data (Section 2.2). Overall, we found a good agreement both in the568

magnitude of variability and in spatial differences for all variables. However, simulated569

variability in [H+] anomalies in high latitude regions is lower than in the observation-570

based data, associated with a low bias in simulated variability of CT anomalies. The iden-571

tified lack in simulated CT variability in these regions suggests a too small contribution572

from CT variations and a too large contribution from temperature variations to [H+] dy-573

namics and thus onset and decline of [H+] extremes (also found for CMIP6-type mod-574

els in Burger et al. 2022), regionally reinforced by a positive bias in simulated temper-575

ature variability in the Southern Ocean. The identified drivers of ΩA extremes are less576

affected by these biases, since ΩA is less dependent on the balance between temperature577

and CT variability. Furthermore, simulated salinity and thus freshwater variations are578

too large in the western tropical Pacific and Indian Ocean. As a result, evaporation and579

precipitation may be less important drivers of [H+] and ΩA extremes in these regions580

than identified here. To better constrain the simulated physical and biogeochemical pro-581

cesses, it would be beneficial to compare the identified drivers for the GFDL ESM2M582

model to those from other Earth system models that can provide the required diagnos-583

tic output.584

Another shortcoming is that the ocean model used in this study has a relatively585

coarse spatial resolution and cannot explicitly simulate small-scale circulation features,586

such as meso- and submesoscale dynamics (S. M. Griffies et al., 2015). Our analysis may587
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therefore underestimate the impact of these small-scale circulation features on the on-588

set and decline of OAX events. Additionally, the coarse resolution of the ocean model589

limits our analysis to the open ocean, and higher resolution ocean model including im-590

proved biogeochemistry would be needed to more accurately represent the drivers in coastal591

areas (Turi et al., 2018; Terhaar et al., 2019). It should be also noted that the present592

study focused on the analysis of the mean driving processes over the onset and decline593

periods of OAX events. However, individual extreme events may be governed by differ-594

ent processes. For example, the drivers in a region can vary between seasons (discussed595

in Section 3.4), and different types of extremes, characterized by different combinations596

of drivers, can also occur during the same season (Vogt et al., 2022). The mean process597

contributions to OAX event onset and decline shown in this study therefore character-598

ize average extremes event in a region and season. Finally, this study analyzes the drivers599

of OAX events under preindustrial stationary climate conditions. However, ongoing ocean600

warming and acidification may modify the primary drivers of OAX events, as the back-601

ground ocean carbon and temperature fields on which the drivers act, as well as the drivers602

themselves, may change with climate change. To address this limitation, future research603

should extend our analysis to simulations that include the climate change signal.604

In conclusion, our modeling results highlight the crucial role of temperature in driv-605

ing [H+] extremes, particularly during summer and in the subtropical oceans. This is606

primarily attributed to anomalous air-sea heat fluxes and vertical mixing of heat. Fur-607

thermore, our results indicate that changes in dissolved inorganic carbon are the dom-608

inant driver of low ΩA extremes, as well as for high [H+] extremes in equatorial regions609

and high latitudes during winter, thereby designating these regions as hotspots of com-610

pound high [H+] and low ΩA extremes. Our findings enhance our current understand-611

ing of OAX events in the global ocean and provide a first foundation for regional pre-612

dictions of such events.613
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Bednaršek, N., Feely, R. A., Reum, J. C. P., Peterson, B., Menkel, J., Alin, S. R.,640

& Hales, B. (2014). Limacina helicina shell dissolution as an indica-641

tor of declining habitat suitability owing to ocean acidification in the cal-642

ifornia current ecosystem. Proc. R. Soc. B , 281 (1785), 20140123. doi:643

10.1098/rspb.2014.0123644
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A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Gold-670

farb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.671
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Desmet, F., Gruber, N., Köhn, E. E., Münnich, M., & Vogt, M. (2022). Track-681

ing the space-time evolution of ocean acidification extremes in the cal-682

ifornia current system and northeast pacific. Journal of Geophysical683

Research: Oceans, 127 (5), e2021JC018159. Retrieved from https://684

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JC018159685

(e2021JC018159 2021JC018159) doi: https://doi.org/10.1029/2021JC018159686

Doney, S. C., Busch, D. S., Cooley, S. R., & Kroeker, K. J. (2020). The im-687

pacts of ocean acidification on marine ecosystems and reliant human com-688

munities. Annu. Rev. Environ. Resour., 45 (1), 83-112. doi: 10.1146/689

annurev-environ-012320-083019690

–22–



manuscript submitted to Global Biogeochemical Cycles

Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidifi-691

cation: The other CO2 problem. Annual Review of Marine Science, 1 (1), 169-692

192. doi: 10.1146/annurev.marine.010908.163834693

Doney, S. C., Lima, I., Feely, R. A., Glover, D. M., Lindsay, K., Mahowald, N., . . .694

Wanninkhof, R. (2009). Mechanisms governing interannual variability in695

upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate696

and atmospheric dust. Deep Sea Res. Part II: Top. Stud. Oceanogr., 56 (8),697

640-655. doi: https://doi.org/10.1016/j.dsr2.2008.12.006698

Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevli-699

akova, E., . . . Zadeh, N. (2012). GFDL’s ESM2 global coupled climate–carbon700

earth system models. Part I: Physical formulation and baseline simulation701

characteristics. J. Clim., 25 (19), 6646-6665. doi: 10.1175/JCLI-D-11-00560.1702

Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Maly-703

shev, S. L., . . . Zadeh, N. (2013). GFDL’s ESM2 global coupled cli-704

mate–carbon earth system models. Part II: Carbon system formulation705

and baseline simulation characteristics. J. Clim., 26 (7), 2247-2267. doi:706

10.1175/JCLI-D-12-00150.1707

Fassbender, A. J., Rodgers, K. B., Palevsky, H. I., & Sabine, C. L. (2018). Seasonal708

asymmetry in the evolution of surface ocean pCO2 and pH thermodynamic709

drivers and the influence on sea-air CO2 flux. Global Biogeochem. Cycles,710

32 (10), 1476-1497. doi: 10.1029/2017GB005855711

Fay, A. R., Gregor, L., Landschützer, P., McKinley, G. A., Gruber, N., Gehlen, M.,712

. . . Zeng, J. (2021). Seaflux: harmonization of air–sea co2 fluxes from sur-713

face pco2 data products using a standardized approach. Earth System Science714

Data, 13 (10), 4693–4710. doi: 10.5194/essd-13-4693-2021715

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E.,716

Hauck, J., . . . Zeng, J. (2022). Global carbon budget 2021. Earth System Sci-717

ence Data, 14 (4), 1917–2005. Retrieved from https://essd.copernicus.org/718

articles/14/1917/2022/ doi: 10.5194/essd-14-1917-2022719

Gnanadesikan, A., Dunne, J. P., & John, J. (2012). Understanding why the720

volume of suboxic waters does not increase over centuries of global warm-721

ing in an earth system model. Biogeosciences, 9 (3), 1159–1172. doi:722

10.5194/bg-9-1159-2012723

Good, S. A., Martin, M. J., & Rayner, N. A. (2013). EN4: Quality controlled724

ocean temperature and salinity profiles and monthly objective analyses with725

uncertainty estimates. J. Geophys. Res. Oceans, 118 (12), 6704-6716. doi:726

10.1002/2013JC009067727

Griffies, S. (2009). Elements of MOM4p1 (GFDL OCEAN GROUP TECHNICAL728

REPORT NO.6). Princeton University Forrestal Campus, 201 Forrestal Road,729

Princeton, NJ 08540-6649: NOAA/Geophysical Fluid Dynamics Laboratory.730

Griffies, S. M., Winton, M., Anderson, W. G., Benson, R., Delworth, T. L., Dufour,731

C. O., . . . Zhang, R. (2015). Impacts on ocean heat from transient mesoscale732

eddies in a hierarchy of climate models. Journal of Climate, 28 (3), 952 - 977.733

doi: https://doi.org/10.1175/JCLI-D-14-00353.1734
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