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Heart-lung interactions occur due to the mechanical influence of intrathoracic
pressure and lung volume changes on cardiac and circulatory function. These
interactions manifest as respiratory fluctuations in venous, pulmonary, and arterial
pressures, potentially affecting stroke volume. In the context of functional
hemodynamic monitoring, pulse or stroke volume variation (pulse pressure
variation or stroke volume variability) are commonly employed to assess
volume or preload responsiveness. However, correct interpretation of these
parameters requires a comprehensive understanding of the physiological
factors that determine pulse pressure and stroke volume. These factors include
pleural pressure, venous return, pulmonary vessel function, lung mechanics, gas
exchange, and specific cardiac factors. A comprehensive knowledge of heart-lung
physiology is vital to avoid clinical misjudgments, particularly in cases of right
ventricular (RV) failure or diastolic dysfunction. Therefore, when selecting
monitoring devices or technologies, these factors must be considered. Invasive
arterial pressure measurements of variations in breath-to-breath pressure swings
are commonly used to monitor heart-lung interactions. Echocardiography or
pulmonary artery catheters are valuable tools for differentiating preload
responsiveness from right ventricular failure, while changes in diastolic
function should be assessed alongside alterations in airway or pleural pressure,
which can be approximated by esophageal pressure. In complex clinical scenarios
like ARDS, combined forms of shock or right heart failure, additional information
on gas exchange and pulmonary mechanics aids in the interpretation of heart-
lung interactions. This review aims to describemonitoring techniques that provide
clinicians with an integrative understanding of a patient’s condition, enabling
accurate assessment and patient care.
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Introduction and clinical assessment

Heart-lung interactions describe cardio-circulatory phenomena that are caused by the
breathing pattern. The source of these phenomena is the coupling of the respiratory rate and
heartrate, and thereby arterial and venous pulse pressures (Fisher et al., 2022). In contrast to
some monitoring techniques in the field of intensive care medicine, which may be highly
elaborate and technical, clinical assessment of respiratory rate and pulse pressure is simple.
Several forms of heart-lung interactions are easily recognized from observation and bedside
examination. An excellent clinical example is pulsus paradoxus - a drop of arterial pressure
upon inspiration of more than 10 mmHg - which may occur in cardiac tamponade, severe
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airflow obstruction in acute asthma, tension pneumothorax, or
severe RV failure. Another phenomenon is respiratory sinus
arrhythmia (Sarkar et al., 2018). Palpation of the arterial pulse
pressure can be aided by observing the pulse oximeter, where
PPV can be visualized directly on the monitor without the need
for an invasive pressure monitoring (Hartert et al., 1999). Other
examples of heart-lung interactions are the reaction of the jugular
vein and the arterial pulse to the Müller or Valsalva maneuvers
(forced inspiration or expiration against a closed airway,
respectively). In patients with decompensated left heart failure,
the jugular vein collapses and the arterial pressure drops during a
Müller maneuver, while a Valsalva maneuver will distend the jugular
veins and increase the arterial pulse pressure (Buda et al., 1979;
Marantz et al., 1990). These phenomena result from changes in
intrathoracic and pericardial pressures and are physiologically
linked through complex interactions with pre- and afterload
(Grubler et al., 2017).

The clinician should remember that heart-lung interactions are part
of normal physiology, occurring also in health. However, these
phenomena are exaggerated under pathological conditions and can
be provoked by changes in intrathoracic pressures, which makes them
potentially useful in a clinical scenario of impaired hemodynamics. In
the intensive care patient, intrathoracic pressure changes are mainly
caused by mechanical ventilation. Within the framework of functional
hemodynamic monitoring (Pinsky, 2014a) and depending on the
clinical context, heart-lung interactions may provide diagnostic clues
on the patient’s cardio-circulatory status. Advanced monitoring
techniques gather information on the underlying pathophysiology of
the observed phenomenon and enable the clinician to diagnose and
treat the patient correctly.

The explanatory model: optimal
monitoring within the framework of
venous return and cardiac function

To understand heart-lung interactions, one must briefly review
Guyton’s framework of venous return (Guyton et al., 1957): the outflow
from the heart is completely dependent on the inflow (Starling, 1918).
The inflow—that is venous return—depends on the elastic recoil and
the volume in the vascular system (Moller et al., 2019). The volume and
elastic recoil create the mean systemic filling pressure (MSFP), which
pushes the blood towards the right atrium (Magder, 2016). The right
atrial pressure (RAP) acts as a back pressure to venous return (Moller
et al., 2017). As with any system of related pressure and flow, the flow to
the right atrium is opposed by the resistance to venous return (RVR)
(Berger et al., 2016a; Bloch et al., 2016; Berger et al., 2019; Moller et al.,
2019). The mean systemic filling pressure is the equilibrated vascular
pressure of the systemic circulation at zero flow (Magder and De
Varennes, 1998). A central function of the RV is to actively lower right
atrial pressure to facilitate the return of blood, while the left ventricle
pumps the blood back to the volume reservoir in the vascular system.
This can be expressed in a simple term (VR: venous return, CO: cardiac
output, MSFP: mean systemic filling pressure, RVR: resistance to
venous return):

CO � VR � MSFP − RAP

RVR

In a venous return curve, right atrial pressure is plotted against
venous return. When venous return and cardiac function curves
(Starling curve, Figure 1) are superimposed, it becomes apparent
that the right atrial (or central venous pressure) serves as the
equilibrium point for any given cardiovascular state. With this
graphical framework, changes in inflow to the heart explain the
heart-lung interactions. When right atrial pressure rises during
positive pressure ventilation, venous return and thereby stroke
volume must fall. The cardiac function curve shifts to the right
(red arrow Figure 1A) resulting in higher RAP and lower cardiac
output (and thus venous return). As the venous return curve
intersects the cardiac function curve at its steep part, volume
expansion (increase in MSFP, dotted blue line Figure 1A) will
increase stroke volume (Moller et al., 2019). This situation would
be considered as “volume responsive” or “limited by venous return”.
If the venous return curve intersects the Starling curve at its flat part
(higher venous return and lower RAP, green line Figure 1A), volume
expansion will cause minimal increase in stroke volume. As most
ICU patients are volume unresponsive (Cecconi et al., 2015), one
must always consider the factors shown in panel B of Figure 1.
Breath-to-breath increases in afterload (or decreases in inotropy, red
dotted line Figure 1B) may flatten the cardiac response curve,

FIGURE 1
The superimposition of a Starling curve and a venous return
curve provides a graphical solution to the question if a patient’s
circulation is limited by venous return or cardiac function. This
explains the key factors of heart-lung interactions: (A) Effect of
volume expansion on normal Starling curve (volume responsive or
limited by venous return situation) (B) Effect of volume expansion on
flattened and steepened Starling curve (cardiac limited situation).
Details are found in the text.
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particularly in scenarios of RV failure or pulmonary hypertension,
and may mimic cyclic changes in stroke volume (Vieillard-Baron
et al., 1999; Daudel et al., 2010; Valenti et al., 2021). Such patients
would be considered “cardiac limited”, and their hemodynamic state
would not benefit from volume expansion (no increase in venous
return through rightward shift of venous return curve, Figure 1B).
Administration of inotropic therapy to restore the cardiac function
curve may allow the patient to benefit from increases in MSFP
(green dotted line, Figure 1B). In conclusion, the extent of pulse
pressure or stroke volume variation in itself is not sufficient to
correctly diagnose the underlying condition and apply the correct
treatment strategy (Sondergaard, 2013).

The optimalmonitoring tool for the comprehensive assessment and
interpretation of a patient showing heart-lung interactions would
provide a prospective, combined image of venous return and cardiac
function. This is not available. Of the variables necessary to plot a
venous return function, only cardiac output (which equals venous
return) and central venous pressure (e.g., right atrial pressure) are often
assessed in shocked ICU patients. In order to fully assess the venous
return function, resistance to venous return and mean systemic filling
pressure should be available. Mean systemic filling pressure can be
measured during circulatory standstill (Repesse et al., 2015; Repesse
et al., 2017), but only surrogate measures can make their way to the
bedside. Versprille and others developed a method of constructing
venous return curves by progressively increasing airway pressures with
consecutive inspiratory hold maneuvers (Versprille and Jansen, 1985;
Hartog et al., 1996), which allows to extrapolate mean systemic filling
pressure. The method was later refined by the research group of Maas
and others (Maas et al., 2009; Maas et al., 2011; Maas et al., 2012;
Persichini et al., 2012; Wijnberge et al., 2022). With this method, the
expected hemodynamic responses according to the physiological
framework of venous return, could be confirmed following volume
expansion and vasoconstriction in patients after cardiac surgery, and
during septic shock (Maas et al., 2009; Wijnberge et al., 2022; van den
Berg et al., 2002; Aya et al., 2017; Cecconi et al., 2013), but the
extrapolated values of MSFP may be inaccurate (Berger et al.,
2016b). The underlying volume state (i.e., the state of interest)
influences the accuracy of the measurements (Berger et al., 2016b;
Werner-Moller et al., 2019), which may render this method invalid at
the bedside (Moller and Berger, 2023). Parkin and Leaning developed a
simple formula to calculate an analogue for mean systemic pressure
(Pmsa) based on the readily available variables of right atrial pressure,
mean arterial pressure and cardiac output (Parkin and Wright, 1991;
Parkin et al., 1994; Parkin, 1999; Parkin and Leaning, 2008; Sondergaard
et al., 2016). Themethod also allows for quantitative assessment of heart
efficiency and the effect of volume expansion (Gupta et al., 2015;
Sondergaard et al., 2016) and was validated with good accuracy and
precision against a zero-flow reference method (Werner-Moller et al.,
2022).

Monitoring of arterial and central
venous pressure swings

One of the first descriptions of heart lung interactions goes back
to the 18th century, when Sir Stephen Hales placed a glass tube into
the jugular vein of a mare and observed a cyclic change of the blood
column during respiration (Sette et al., 2012). Ever since, invasive

pressure measurements have been a cornerstone for heart-lung
interactions, where the pulse pressure variation serves as a
surrogate for the stroke volume variation caused by heart-lung
interactions. As invasive monitoring of central venous and
arterial pressure still constitutes the best practice standard for
shocked patients in the ICU (Cecconi et al., 2014), these swings
will be readily observable, with most research interest and clinical
attention given to the arterial pressure. However, interpretation is
only possible in patients without spontaneous respiration (Jardin,
2004; Magder, 2004). Most commonly, the arterial pressure swings
are taken as signs of overt or relative hypovolemia or volume
responsiveness. At this point, we must remember a first caveat: a
circulation which is not cardiac limited will always be fluid
responsive (Magder, 2004). Fluid responsiveness is neither a
pathological condition, nor does it indicate that fluid
administration is necessary or beneficial. The question of fluid
responsiveness must be preceded by a clinical assessment of
whether fluid expansion and/or increased flow is at all warranted
(Magder, 2004; Takala, 2016).

Based on experimental work by Morgan et al. (1966), Perel et al.
(1987), Michard et al. (2000) showed in a landmark paper that
arterial pulse pressure variability over the respiratory cycle predicted
fluid responsiveness (defined as a pulse pressure variability of >13%
for an increase in cardiac output of 15%) in septic patients with
circulatory failure.

Pulse pressure variation (PPV) is a dynamic test: a reproducible
change in the pleural pressure over the respiratory cycle elicits a
response from the cardiovascular system. The introduction of
dynamic testing was a major advance, since static one-point
measurements like central venous or pulmonary artery occlusion
pressure was proven unreliable for the prediction of volume
responsiveness (Osman et al., 2007; Marik and Cavallazzi, 2013).
Assessment of PPV inspired a high research interest and was
developed further to include additional monitoring modalities
like stroke volume variability (SVV) from pulse contour analysis
or analysis of pulse-oximetry plethysmograms, and specific
maneuvers to increase the diagnostic yield, discussed below.

The central physiological rationale behind these techniques is the
cyclic increase in RAP caused by an increase in pleural pressure from
mechanical inspiration. This immediately lowers venous return (Moller
et al., 2017) and RV stroke volume. This smaller stroke volume is
forwarded to the left ventricle, where the lower pulse pressure appears
during expiration. This idea fits well with the isolated concept of venous
return, but it neglects all factors from the right heart, cardiac valves and
pulmonary factors (Sondergaard, 2013). The meta-analytic pooled
sensitivity and specificity reached almost 90% for volume
responsiveness (albeit with tidal volumes larger than 8 mL/kg, which
is not currently standard of care) (Yang and Du, 2014) and may be
increased with provocation maneuvers. In situations of lung protective
ventilation, a stepwise increase of the tidal volume (tidal volume
challenge) or the end-expiratory occlusion test may increase the
diagnostic performance for pulse pressure or stroke volume
variation (Monnet et al., 2009; Wang et al., 2023).

The critical care physician is well advised to interpret PPV and
provocation tests, with a second caveat: as the entire pulmonary
compartment including the RV lies before the measurement of
systemic arterial PPV, it signals a preload dependency of the left
ventricle (Magder, 2007) - but not of the entire circulation. Factors
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TABLE 1 Monitoring tools presented within their respective category and their advantages and disadvantages. Distinguishment between preload and afterload
causes of PPV as well as degree of invasiveness were rated by the authors using the following scale (--) strongly disagree, (−) partially disagree, (0) no statement
possible, (+) partially agree, (++) strongly agree.

Monitoring tool Parameters Advantages Disadvantages Distinguishes
preload and

afterload causes
of PPV

Degree of
invasiveness

Pulse palpation Qualitative assessment of
pulse pressure

Readily available Observer dependent, no
quantification of PPV, does not
allow differentiated
interpretation

-- --

Jugalar vein
distension/collapse

Qualitative assessment of
preload conditions

Readily available Observer dependent, no
quantification of PPV, does not
allow differentiated
interpretation

-- --

Oxymetry swing Qualitative assessment of
pulse pressure

Readily available Observer dependent, no
quantification of PPV, does not
allow differentiated
interpretation

-- --

Right atrial pressure/
central venous
pressure

Quantitative assessment of
right ventricular diastolic
function and backpressure to
venous return

Readily available in the ICU.
Reflects the equilibrium point
of the cardiac function curve
and venous return curve

Static measurement does not
allow assessment of fluid
responsiveness. Measurement
may be inaccurate if not leveled
precisely

- +

Mean systemic
pressure analogue,
Pmsa

Quantitative assessment of
the volume state (i.e., stressed
volume), venous return
driving pressure, and derived
variables such as heart
efficiency [Eh=(Pmsa-CVP)/
Pmsa]

Allows assessment of the
systemic volume state, the
venous return function, and a
derived global measure of
heart efficiency

Calculated value dependent on
multiple, possibly inaccurate
measurements (CVP, ABP, CO)

+ ++ (CO
necessary)

Pulse pressure
variation (systemic)

Quantitive assessment of
pressure swings in arterial
tracing

Readily available in the ICU.
Values are given in
percentages and can be traced
over time

Assessment between right
ventricular failure and low
volume states may be difficult

-- +

Pulmonary artery
catheter

Quantitative assessment of
afterload conditions (PAP),
left ventricular diastolic
function (LVEDP), cardiac
output and right ventricular
ejection fractions

Full assessment of right
ventricular function and
afterload conditions as well as
left ventricular filling
pressures; may help detect
causes of cardiogenic shock if
applied correctly

Not readily available and invasive
procedure with associated risks if
not applied regularly

++ ++

Transpulmonary
thermodilution

Quantitative assessment of
cardiac output, pulse contour
analysis (stroke volume) and
volumetric measure of
central filling conditions

Accuracy of stroke volume
assessment by pulse pressure
contour analysis is enhanced
by intermittent calibration
using thermodilution. A
volumetric measure of central
volume state is appealing

Indices are global and do not
allow differentiation of causes of
PPV. May become inaccurate at
extreme conditions

- +

Echocardiography Qualitative and quantitative
assessment of biventricular
systolic and diastolic
function, structural
abnormalities including
valvular function and cardiac
output

Comprehensive assessment of
biventricular systolic and
diastolic function, diagnosis of
relevant structural
abnormalities. Allows
quantitative assessment of
loading conditions and output

Point-of-care assessment without
option to monitor cardiovascular
function continuously. Does not
give information on vascular
state and venous return function.
Indices may be load dependent

+ --

Vexus Score
(Ultrasound)

Qualitative assessment of
volume state with regards to
right ventricular dysfunction

Allows assessment of right
ventricular filling conditions
in combination with volume
state. May facilitate
deresuscitation and can be
tracked over time

No continuous assessment. Lacks
validation in large ICU cohorts

++ --

Frontiers in Physiology frontiersin.org04

Berger et al. 10.3389/fphys.2023.1234915

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1234915


in the lung like atelectasis, changes in tidal volumes, hypoxic
vasoconstriction, and pulmonary hypertension may blunt PPV
while RV failure may cause PPV, but further volume
administration in RV failure can be detrimental (Sondergaard,
2013; Slobod et al., 2022). Therefore, RV failure and pulmonary
hypertension render PPV invalid for the prediction of volume
responsiveness (Daudel et al., 2010; Wyler von Ballmoos et al.,
2010). In such context, PPV and related techniques may rather
reflect an afterload-dependency of the RV (Vieillard-Baron et al.,
1999; Vieillard-Baron et al., 2015; Valenti et al., 2021). Several
pulmonary factors like compliance (Robotham et al., 1983; de
Waal et al., 2009; Mesquida et al., 2011), respiratory rate, tidal
volume (De Backer et al., 2005; De Backer et al., 2009; Slobod et al.,
2022), and airway driving pressure (Muller et al., 2010) influence
PPV, as will circulatory factors like the need for a sinus rhythm and
aortic elastance and thus ventricular-aortic coupling (Magder, 2010;
Sondergaard, 2013). Since the introduction of PPV derived methods
at the bedside, a complex series of clinical and physiological
conditions were identified as relevant influences. The clinician
should account for these factors before taking decisions based on
PPV (Sondergaard, 2013; Vieillard-Baron et al., 2016). In order to
assess PPV within an integrative picture, additional information
(e.g., specific monitoring) is needed.

Besides invasive arterial pressure, invasive measurement of central
venous or right atrial pressure are routinely available (Cecconi et al.,
2014). A single static measurement of CVP neither predicts blood
volume nor volume responsiveness (Marik and Cavallazzi, 2013), but
the CVP is the equilibrium or interaction point of the cardiac and
venous return function. When understood as such, changes in CVP
over time or during specific maneuvers may provide valuable
information: a healthy RV will keep central venous pressure low. An
increasing CVP therefore reflects a declining cardiac function, and/or
an increased venous return from increased blood volume or
vasoconstriction (Magder, 2017). A rapid, sustained rise in CVP
from a volume bolus, without increase in stroke volume, is a strong
indicator of right heart dysfunction and an important safety limit
against further volume expansion (Magder, 2017). The inspiratory
drop of CVP is one of the few measurements that allow estimation
of fluid responsiveness in the spontaneously breathing patient. The
absence of an inspiratory negative swing makes fluid responsiveness
unlikely (high negative predictive value), but the positive predictive
value is poor (Magder et al., 1992; Magder, 2017).

We have now an integrated assessment of arterial and central
venous pressure - one measured downstream and the other
upstream of the heart. If these measurements cannot identify the
relevant factors to assess the clinical situation, the use of more
advanced monitoring techniques is necessary.

Advanced bedside techniques:
pulmonary artery catheterization,
transpulmonary thermodilution, and
echocardiography

Even though use of the pulmonary artery catheter (PAC) has
declined over the last decades after a series of negative clinical trials
(Parker et al., 2023), it remains a cornerstone for complex
hemodynamic monitoring and is still recommended for situations

with impending right heart failure and for patients unresponsive to
initial treatment (Vieillard-Baron et al., 2016). As increases in RV
afterload are common in pulmonary diseases andmay exacerbate heart-
lung interactions (Vieillard-Baron et al., 1999; Schmitt et al., 2001;
Vieillard-Baron and Jardin, 2003; Repessé et al., 2016; Valenti et al.,
2021), the PAC’s ability to monitor RV dysfunction with an increased
ratio of CVP to pulmonary artery occlusion pressure is helpful (Monchi
et al., 1998; Osman et al., 2009). Additionally, since disturbed
gas exchange may contribute to hypoxic pulmonary vasoconstriction
- often presenting as an increased transpulmonary pressure gradient
(Bull et al., 2010) and an increased isovolumetric contraction pressure in
pulmonary artery pressure tracings (Jardin et al., 1987; Jardin et al.,
1989; Berger et al., 2014; Slobod et al., 2022) - the continuous assessment
of mixed venous oxygenation can help assess the extent of
vasoconstriction and shunt, and the contribution of venous
admixture to oxygenation disorders (Takala, 2007; Bootsma et al.,
2022). The pulmonary artery pulsatility index has rarely been
studied for heart-lung interactions but offers a theoretically
promising tool (Lim and Gustafsson, 2020; Bootsma et al., 2022). A
shortcoming of the PAC—stemming from the thermodilution
technique - is its inability to report immediate changes in stroke
volume. However, pulmonary pulse contour analysis with direct
assessment of RV stroke volume is feasible (Berger et al., 2020) and
this limitationmay be overcome by advanced PACmodels with shorter
thermodilution response times (Bootsma et al., 2022).

Monitoring tools that enhance the accuracy of continuous pulse
contour analysis by intermittent calibration using transpulmonary
thermodilution offer the advantage of beat-to-beat stroke volume
assessment. They also report volumetric preload parameters like
global end-diastolic or intrathoracic blood volumes (Reuter et al.,
2002; Reuter et al., 2010). Importantly, both derive from a
(common) global measure of indicator distribution volume and
as such are unable to distinguish between anatomical structures of
the right and left heart. Therefore, the technique cannot in itself
recognize right heart failure, which is the main imitator of fluid
responsiveness.

Critical care echocardiography has become an indispensable
bedside tool for hemodynamic assessment, both for diagnosis and
monitoring (Vieillard-Baron et al., 2019). Doppler echocardiography
with measurements of pulmonary venous flow velocity and left
ventricular (LV) velocity time integrals contributed significantly to
the elucidation of the pathophysiology of heart-lung interactions.
The inspiratory increases in arterial pulse pressure are caused by
increased LV filling (Vieillard-Baron et al., 2003). For the RV, an
inspiratory drop of stroke volume is caused by increased afterload
(Vieillard-Baron et al., 1999).

Various dynamic echocardiographic tests were developed to
predict fluid responsiveness: change in the diameter of the
superior vena cava over the respiratory cycle has been proposed
as a volume gauge (Vieillard-Baron et al., 2004), but it is influenced
by thoracic compliance and may become decoupled from stroke
volume in cases of high RV afterload (Lansdorp et al., 2014; Valenti
et al., 2021). Diameter changes in the inferior cava are not valid
in situations of increased abdominal pressure (Vieillard-Baron et al.,
2018a). The sensitivity to predict fluid responsiveness for both
methods is moderate: Vignon et al. (2008) demonstrated—in a
direct comparison of both caval vein methods—“classic” arterial
pulse pressure variation and changes in the aortic flow velocity, that
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respiratory changes of the maximum aortic flow velocity had the
highest diagnostic yield and outperformed invasive pulse pressure
variation for the prediction of fluid responsiveness (Vignon et al.,
2017). VEXUS (venous excess ultrasound score) is a relatively new
approach, not based on dynamic indices, that may allow assessment
of a patient’s volume state in relation to the right ventricular
function. It is based on IVC diameter and the flow pattern of
hepatic, portal, and renal veins as well as renal arterial resistive
index and grades the level of venous congestion (Argaiz et al., 2022;
Longino et al., 2023). This promising tool may add to the integral
assessment of a patient’s hemodynamic condition but needs further
validation in critically ill patients.

Echocardiography is also a key modality for the diagnosis of
diastolic dysfunction. The role of diastolic dysfunction for heart-
lung interactions is unclear. Since all echocardiographic parameters
for diastolic dysfunction depend on cardiac loading conditions, this
interdependency should be evaluated in future research projects
(Vignon et al., 2007; Juhl-Olsen et al., 2012; Juhl-Olsen et al., 2013;
Berger et al., 2022a; Berger et al., 2022b).

A particular strength of echocardiography is its ability not only to
monitor hemodynamics, but to diagnose specific conditions like
tamponade or acute core pulmonale, which may aggravate or mimic
heart-lung interactions (Vieillard-Baron et al., 2018b; Vieillard-Baron
et al., 2020). The major differential diagnosis for the occurrence of
heart-lung interactions is volume responsiveness vs. right heart failure
(Vieillard-Baron et al., 2016), or a preload-vs. an afterload problem (18).
This includes the visualization of the diastolic interventricular
dependency with leftward septal shift and increased right ventricular
and decreased left ventricular end-diastolic volumes as key components
for the understanding of why right ventricular failure may lead to PPV.
Here, echocardiography plays a crucial role, but the clinician must
remember several caveats: there is no common echocardiographic
definition of RV failure (Vieillard-Baron et al., 2018c). Standard
measures like TAPSE may not be applicable in critically ill patients
(Vieillard-Baron et al., 2020). Since the RV works below its stressed
volume (Pinsky et al., 1992; Pinsky, 2014b; Bachmann et al., 2020), RV
dilation is a normal adaption to increased load, until the compliance
reserve is exhausted and central venous pressure rises. Table 1
summarizes the diagnostic approaches.

Conclusion

Heart-lung interactions provide valuable insights into the
pathophysiology of patients, with the potential to provide crucial
information for personalizing treatment. The best choice of
monitoring tool depends on several factors, including the clinical
scenario, the local accessibility and proficiency of a specific technique,
as well as the familiarity, training, and confidence of the clinician in
utilizing a particular method. Optimal information can be obtained
through the integration of multiple sources, employing dynamic testing
and trend analysis, and gradually advancing the monitoring process if

the initial treatment proves ineffective. When uncertainty arises, it is
essential to actively consider the possibility of RV failure.
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