

Gravity field recovery based on GPS data of CubeSats from the Spire constellation

T. Grombein^{1,2}, D. Arnold², C. Kobel², M. Lasser², A. Jäggi²

¹ Geodetic Institute, Karlsruhe Institute of Technology ² Astronomical Institute, University of Bern

Introduction

- Can CubeSats serve as gravity field sensors?
 - A huge number of (commercial) CubeSats is collecting GPS data
 - Tracking data allows to recover large-scale gravity field information
 - Big potential to increase the spatial-temporal coverage
 - However: dual-frequency GPS receivers are needed
- Spire Global constellation
 - More than 100 CubeSats in low Earth orbit (LEO)
 - High-quality dual-frequency GPS receivers
 - Different orbital characteristics

10 x 10 x 34 cm, 4.7 kg

Introduction

- Can CubeSats serve as gravity field sensors?
 - A huge number of (commercial) CubeSats is collecting GPS data
 - Tracking data allows to recover large-scale gravity field information
 - Big potential to increase the spatial-temporal coverage
 - However: dual-frequency GPS receivers are needed
- Spire Global constellation
 - More than 100 CubeSats in low Earth orbit (LEO)
 - High-quality dual-frequency GPS receivers
 - Different orbital characteristics

10 x 10 x 34 cm, 4.7 kg

Case study based on 6 months of GPS data from 9 Spire CubeSats

Geodetic Institute (GIK)

Method

Orbit and gravity field recovery

- Celestial Mechanics Approach (Beutler et al., 2010)
- Two-step procedure
 - 1) GPS tracking data → Kinematic orbit positions
 - 2) Kinematic orbit positions → Gravity field recovery

Processing with the Bernese GNSS software

- GNSS products of the CODE analysis center
- In-flight calibrated phase center variation (PCV) maps
- Unmodeled forces are absorbed by empirical parameters

Geodetic Institute (GIK)

Data overview (May – Oct 2020)

Selected Sp	oire CubeS	ats	Altitude	Inclination	Sampling		
	FM099	FM101	FM102		~ 505 km	~ 97.5°	1s
FM103	FM104	FM106	FM107	FM108	~ 530 km	~ 97.5°	1s
		FM115			~ 570 km	~ 37.0°	1s

Spire GPS data quality

Carrier phase residuals of kinematic orbit determination

Spire GPS data have frequent gaps

Spire GPS data quality

Carrier phase residuals of kinematic orbit determination

Higher noise level compared to scientific LEO missions

Spire kinematic orbit positions

Daily availability of derived kinematic positions

Total availability over 6 months

FM099	FM101	FM102	FM103	FM104	FM106	FM107	FM108	FM115
64 %	73 %	69 %	66 %	74 %	81 %	79 %	82 %	39 %

Monthly Spire-based gravity fields

Combinations at normal equation level using variance component estimation (VCE)

Difference degree amplitudes

Differences w.r.t. monthly ITSG-Grace2018 solutions

(Mayer-Gürr et al., 2018)

Difference degree amplitudes

700 km Gauss filtered

Difference degree amplitudes

Artifacts in Est/West-direction are correlated with locations of yaw flips (under investigation)

Difference degree amplitudes

Difference degree amplitudes

Difference degree amplitudes

FM099

FM104

Difference degree amplitudes

Solutions based on 9 CubeSats can reach a quality level comparable to Swarm-B

Quality of Spire gravity field solutions

Weighted RMS values of geoid height differences

700 km Gauss filtered

Quality of Spire gravity field solutions

Weighted RMS values of geoid height differences

700 km Gauss filtered

Swarm-Spire combinations

Combination of Swarm with Spire solutions

Difference degree amplitudes

Combination of Swarm with Spire solutions

Difference degree amplitudes

Geoid height differences

RMS improvement: ~ 10%

Combination of Swarm with Spire solutions

Difference degree amplitudes

Summary and outlook

Main findings

- GPS data of Spire CubeSats allow to recover monthly gravity field solutions
- Individual CubeSat solutions cannot compete with scientific LEO missions
- Accumulation of CubeSat solutions significantly increases the quality
- Solutions based on 9 CubeSats can improve selected coefficients of a Swarm model

Next steps

- Process Spire data of further CubeSats and longer time spans
- Analysis on the impact of low-inclined CubeSats
- Feasibility to increase the temporal resolution (< 1 month)

Thank you for your attention

Contact: grombein@kit.edu

We acknowledge the support from Spire Global and the provision of Spire data by ESA

References

Beutler G, Jäggi A, Mervart L et al. (2010): The celestial mechanics approach: theoretical foundations, Journal of Geodesy 84(10):605–624, DOI: 10.1007/s00190-010-0401-7

Mayer-Gürr T, Behzadpur S, Ellmer M et al. (2018): ITSG-Grace2018 - Monthly, Daily and Static Gravity Field Solutions from GRACE. GFZ Data Services, DOI: 10.5880/ICGEM.2018.003