${ }_{\text {BERLIN } 2023}$

Gravity field recovery based on GPS data of CubeSats from the Spire constellation

T. Grombein ${ }^{1,2}$, D. Arnold², C. Kobel ${ }^{2}$, M. Lasser ${ }^{2}$, A. Jäggi ${ }^{2}$
${ }^{1}$ Geodetic Institute, Karlsruhe Institute of Technology ${ }^{2}$ Astronomical Institute, University of Bern

- Can CubeSats serve as gravity field sensors?
- A huge number of (commercial) CubeSats is collecting GPS data
- Tracking data allows to recover large-scale gravity field information
- Big potential to increase the spatial-temporal coverage
- However: dual-frequency GPS receivers are needed
- Spire Global constellation
- More than 100 CubeSats in low Earth orbit (LEO)
- High-quality dual-frequency GPS receivers
- Different orbital characteristics

$10 \times 10 \times 34 \mathrm{~cm}, 4.7 \mathrm{~kg}$
- Can CubeSats serve as gravity field sensors?
- A huge number of (commercial) CubeSats is collecting GPS data
- Tracking data allows to recover large-scale gravity field information
- Big potential to increase the spatial-temporal coverage
- However: dual-frequency GPS receivers are needed
- Spire Global constellation
- More than 100 CubeSats in low Earth orbit (LEO)
- High-quality dual-frequency GPS receivers
- Different orbital characteristics

$10 \times 10 \times 34 \mathrm{~cm}, 4.7 \mathrm{~kg}$

Case study based on 6 months of GPS data from 9 Spire CubeSats

- Orbit and gravity field recovery
- Celestial Mechanics Approach (Beutler et al., 2010)
- Two-step procedure

1) GPS tracking data \rightarrow Kinematic orbit positions
2) Kinematic orbit positions \rightarrow Gravity field recovery

- Processing with the Bernese GNSS software
- GNSS products of the CODE analysis center
- In-flight calibrated phase center variation (PCV) maps
- Unmodeled forces are absorbed by empirical parameters

Data overview (May - Oct 2020)

Spire GPS data quality

- Carrier phase residuals of kinematic orbit determination

Spire GPS data have frequent gaps

Spire GPS data quality

- Carrier phase residuals of kinematic orbit determination

Higher noise level compared to scientific LEO missions

Spire kinematic orbit positions

- Daily availability of derived kinematic positions

- Total availability over 6 months

FM099	FM101	FM102	FM103	FM104	FM106	FM107	FM108	FM115
64%	73%	69%	66%	74%	81%	79%	82%	39%

Monthly Spire-based gravity fields

Combinations at normal equation level using
variance component estimation (VCE)

Spire gravity fields

- Difference degree amplitudes

Differences w.r.t. monthly ITSG-Grace2018 solutions
(Mayer-Gürr et al., 2018)

- Difference degree amplitudes
- Geoid height differences

700 km Gauss filtered

- Difference degree amplitudes
- Geoid height differences

Artifacts in Est/West-direction are correlated with locations of yaw flips (under investigation)

- Difference degree amplitudes
- Geoid height differences

3 Spire CubeSats

- Geoid height differences

- Geoid height differences

9 Spire CubeSats

Spire gravity fields

- Difference degree amplitudes

Solutions based on 9 CubeSats can reach a quality level comparable to Swarm-B

Quality of Spire gravity field solutions

- Weighted RMS values of geoid height differences

700 km Gauss filtered

Quality of Spire gravity field solutions

- Weighted RMS values of geoid height differences

700 km Gauss filtered

Swarm-Spire combinations

Combination of Swarm with Spire solutions

- Difference degree amplitudes

- Geoid height differences

Combination of Swarm with Spire solutions

- Difference degree amplitudes

Swarm-ABC + 9 Spire CubeSats

RMS improvement: ~ 10\%

Combination of Swarm with Spire solutions

- Difference degree amplitudes

Summary and outlook

- Main findings
- GPS data of Spire CubeSats allow to recover monthly gravity field solutions
- Individual CubeSat solutions cannot compete with scientific LEO missions
- Accumulation of CubeSat solutions significantly increases the quality
- Solutions based on 9 CubeSats can improve selected coefficients of a Swarm model
- Next steps
- Process Spire data of further CubeSats and longer time spans
- Analysis on the impact of low-inclined CubeSats
- Feasibility to increase the temporal resolution (< 1 month)

Thank you for your attention

Contact: grombein@kit.edu

We acknowledge the support from Spire Global and the provision of Spire data by ESA

References

Beutler G, Jäggi A, Mervart L et al. (2010): The celestial mechanics approach: theoretical foundations, Journal of Geodesy 84(10):605-624, DOI: 10.1007/s00190-010-0401-7

Mayer-Gürr T, Behzadpur S, Ellmer M et al. (2018): ITSG-Grace2018 - Monthly, Daily and Static Gravity Field Solutions from GRACE. GFZ Data Services, DOI: 10.5880/ICGEM.2018.003

