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Abstract

Bayesian Active Learning (BAL) is an efficient framework for learning the parameters of a

model, in which input stimuli are selected to maximize the mutual information between the

observations and the unknown parameters. However, the applicability of BAL to experi-

ments is limited as it requires performing high-dimensional integrations and optimizations in

real time. Current methods are either too time consuming, or only applicable to specific mod-

els. Here, we propose an Efficient Sampling-Based Bayesian Active Learning (ESB-BAL)

framework, which is efficient enough to be used in real-time biological experiments. We

apply our method to the problem of estimating the parameters of a chemical synapse from

the postsynaptic responses to evoked presynaptic action potentials. Using synthetic data

and synaptic whole-cell patch-clamp recordings, we show that our method can improve the

precision of model-based inferences, thereby paving the way towards more systematic and

efficient experimental designs in physiology.

Author summary

Optimizing the design of an experiment is a critical problem in biology. However, most

experiments still rely on suboptimal designs, which may not yield sufficient information

about the studied system. Consequently, such experiments often require more observa-

tions to reach a certain result. An efficient theoretical framework to alleviate this issue is

called Optimal Experiment Design (OED), in which experimental protocols are selected

to reduce the uncertainty of inferred parameters. However, the applicability of OED

methods to actual experiments is limited: they often require computations which are too

long for sequential experiments, and do not generalize to different models. Here, we

developed a method called Efficient Sampling-Based Bayesian Active Learning (ESB-

BAL), and apply it to the problem of estimating the parameters of a chemical synapse

from its evoked postsynaptic currents. After each new observation, the optimal next stim-

ulation time can be computed using ESB-BAL. Using recordings in cerebellar brain slices,

we show that our method is fast enough to be used in real-time biological experiments
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and can significantly reduce the uncertainty of inferred parameters. Our method can be

readily used by experimentalists via a simple interface. Moreover, our proposed solution

is general enough to be applicable to different experimental settings.

Introduction

In neuroscience, machine learning, and statistics, a central problem is that of inferring the

parameters θ of a model M. For instance, in supervised learning, one may want to learn the

parameters of a Deep Neural Network (DNN) so as to minimize the difference between its

output and training labels; in this case, M represents the DNN to be trained, and θ repre-

sents its weights and biases. Similarly, in biology, the parameters of a system can be studied

by fitting a biophysical model to recorded observations. In most cases, these parameters can

be neither directly measured nor analytically computed, but can be inferred using the

recorded outputs of the system y as a response to input stimuli x. In biology, the physical

quantities of a system (e.g. an organ, a cell, or a synapse) can be estimated by deriving a gen-

erative biophysical model M of the system, and by fitting its parameters θ to the observed

responses y to experimental inputs x. By computing the likelihood of the outputs given the

inputs and the parameters p(y|x, θ), it is possible to obtain either a point-based estimate of

the parameters such as the maximum likelihood parameters θML or the maximum a posteri-

ori parameters θMAP [1], or to compute the full posterior distribution p(θ|x, y)/ p(y|x, θ)

using for instance the Metropolis-Hastings (MH) algorithm [2].

However, the accuracy of these estimates critically depends on the pair (x, y), and especially

on how the successive input stimuli x = x1:T are chosen. For instance, training a DNN on non

independent and identically distributed (i.i.d.) training examples (i.e. blocked training) will

lead to catastrophic forgetting [3]. On the other hand, most experiments in biology still rely on

pre-defined and non-adaptive inputs x1:T, which may not yield sufficient information about

the true parameters of the studied system. Consequently, experiments often require more

observations or repetitions to reach a certain result, which increases their cost, time, and need

for subjects.

An efficient framework to alleviate this issue is called Bayesian Active Learning (BAL).

Knowing the current estimate of the parameters, the experimental protocol (i.e. the next input

xt+1) can be optimized on the fly to maximize the mutual information between the recordings

and the parameters (Fig 1C). BAL is a branch of Optimal Experiment Design (OED) theory

[4–6]. It has already been used in neuroscience to infer the parameters of a Generalized Linear

Model (GLM) [7], the nonlinearity in a linear-nonlinear-Poisson (LNP) encoding model [8],

the receptive field of a neuron [9], or the parameters of a Hidden Markov Model (HMM) [10].

However, implementing BAL for biological settings can be challenging, especially for real-

time applications. Its applicability to real experiments is limited by two main drawbacks.

Firstly, it requires computing an update of the posterior distribution of parameters after each

time step, and using it to compute the expected information gain from future experiments.

This involves solving an optimization problem over a possibly high-dimensional stimulus

space: current methods are either too time consuming, or only applicable to specific models.

Secondly, to reduce computational complexity, classical implementations of BAL usually only

optimize for the immediate next stimulus input. This classical myopic approach disregards all

future observations in the experiment, and is thus possibly sub-optimal [6, 11, 12].

Our main contribution is to provide a general framework for approximate online active

learning, called Efficient Sampling-Based Bayesian Active Learning (ESB-BAL). We use
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particle filtering, which is a highly versatile filtering method [13], for posterior computation;

and propose a parallel computing implementation [14, 15] for efficient posterior update and

information computation. Whereas previous implementations of active learning either relied

on time consuming Monte Carlo (MC) methods [16, 17] or were only applicable to special

cases, such as linear models or GLM [7], our proposed solution is fast enough to be used in

real-time biological experiments and can be applied to any state-space model.

To illustrate our method, we apply it to the problem of inferring the parameters of a chemi-

cal synapse with Short-Term Depression (STD). Upon the arrival of a presynaptic action

potential, vesicles from a pool of N independent release sites will fuse with the presynaptic

plasma membrane with a probability p, each of these release events giving rise to a quantal cur-

rent q [18, 19]. In addition, synaptic transmission is also dynamic. Short-term depression

occurs when the inter-stimulation interval (ISI) is shorter than the time needed for synaptic

vesicle replenishment [20]. A synapse exhibiting STD can thus be described by its parameters

N, p, q, and by its depression time constant. These parameters can be inferred using excitatory

postsynaptic currents (EPSCs) recorded from the postsynaptic cell and elicited by stimulating

the presynaptic axon. The accuracy of these estimates critically depends on the presynaptic

stimulation times: if inter-stimulation intervals are longer than the depression time constant,

STD will not be precisely quantified. But if the stimulation frequency is too high, the pool of

presynaptic vesicles will be depleted, leading to poor parameter estimates [21, 22]. Synaptic

characterization is thus a relevant example application for ESB-BAL, as it requires careful

Fig 1. A: Model of binomial synapse with STD. In chemical synapses, the presynaptic terminal is characterized by the presence of N vesicles containing

the neurotransmitter molecules, nt of them being in the readily-releasable state [23]. Upon the arrival of a presynaptic spike, these vesicles will

stochastically fuse with the plasma membrane and release their neurotransmitters into the synaptic cleft. After spike t, kt vesicles (out of the nt available

ones in the readily-releasable pool) release their neurotransmitters with a probability p. Neurotransmitters will bind to postsynaptic receptors: a single

release event triggers a quantal response q. The total recorded postsynaptic current yt (i.e. the output of the system) is the sum of the effects of the kt
release events. After releasing, vesicles are replenished with a certain time constant τD, which determines short-term depression. B: Modelisation of the

synapse an an IO-HMM [10]. C: Bayesian Active Learning applied to biology. At each time step, the response of the system (e.g. here a synapse) to

artificial stimulation is recorded. This observation yt is used by the filter to compute the posterior distribution of parameters p(θ|x1:t, y1:t). Given this

posterior, the controller then computes the next input x∗tþ1
to maximize the expected gain of information of the next observation. In classical

experiment design, the inputs x1:T are defined and fixed prior to the recordings.

https://doi.org/10.1371/journal.pcbi.1011342.g001
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tuning of the inputs x1:T, which in this case correspond to the inter-stimulation intervals (i.e.

input xt is the time interval between stimulation numbers t − 1 and t); but it is also a challeng-

ing one: computation needs to be faster than the typical ISI, which can be on the order of a few

milliseconds. Using synthetic data, we show that our method allows to significantly reduce the

uncertainty of the estimate in comparison to classically used non-adaptive stimulation proto-

cols. We also show that the rate of information gain (in bit/s) of the whole experiment can be

optimized by adding a penalty term for longer ISIs. Lastly, we extend active learning to non-

myopic designs. Using recordings from cerebellar mossy fiber to granule cell synapses from

acute mouse brain slices, we show that our framework is sufficiently efficient for optimizing

not only the immediate next stimulus, but rather the future stimuli in the experiment.

Results

A general setting for Bayesian Active Learning

When using active learning in sequential experiments, three key elements need to be defined

(Fig 1C):

1. The system to be studied: it is described by a generative model M, which parameters θ can

be inferred from its observed responses y1:T to a set of T input stimuli x1:T. Given the sto-

chastic nature of most systems studied in biology, the random variable Y1:T corresponding

to the observations can take various values y1:T according to a distribution p(y1:T|x1:T, θ). In

our application example of BAL, the system will be a model of binomial neurotransmitter

release (see Section The system: A binomial model of neurotransmitter release).

2. A filter that computes the posterior distribution of the parameters given the previous

inputs and observations p(θ|x1:t, y1:t): after each new input xt+1 and observation yt+1, it is

updated to obtain p(θ|x1:t+1, y1:t+1) (see Section The filter: Online computation of the poste-

rior distributions of parameters).

3. A controller that computes the next optimal input stimuli x∗tþ1
so as to maximize a certain

utility function, which is often defined as the mutual information between the parameter

random variable Θ and the response random variable Yt+1 given the experimental inputs

Ixtþ1
ðY; Ytþ1jhtÞ, where ht = (x1:t, y1:t) is the experiment history (see Section The controller:

Computation of the optimal next stimulation time).

Throughout the paper, we use upper-case notations for random variables, and lower-case

notations for the specific values they might take (Table 1). For instance, Θ is the random var-

iables corresponding to the hidden parameters of the system, while θ describes a specific

value of these parameters. Similarly, Yt is the random variable corresponding to the output

of the system at time step t, while yt is the actual value observed at time step t. Hence, H(Θ)

will represent the entropy of the random variable Θ, while p(Θ = θ) is the probability of Θ
taking the specific value θ. For simplicity, we will often use the shorter notation p(θ) for

p(Θ = θ). This distinction is crucial e.g. in Eq 3, to distinguish the conditional entropy

Hxtþ1
ðYjht;Ytþ1Þ ¼

R
dytþ1pðytþ1jht; xtþ1ÞHxtþ1

ðYjht;Ytþ1 ¼ ytþ1Þ from its value given a spe-

cific realization of the future observation Hxtþ1
ðYjht;Ytþ1 ¼ ytþ1Þ.

In synaptic characterization, inputs correspond to a set of T stimulation times x1:T and

observations correspond to recorded excitatory postsynaptic currents (EPSCs) y1:T. In case of

successive experiments [9], the mutual information between the parameters and the next

observation Yt+1 conditioned on the experiment history ht is:

Ixtþ1
ðY; Ytþ1jhtÞ ¼ HðYjhtÞ � Hxtþ1

ðYjht;Ytþ1Þ ð1Þ

PLOS COMPUTATIONAL BIOLOGY Bayesian Active Learning for synaptic characterization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011342 August 21, 2023 4 / 27

https://doi.org/10.1371/journal.pcbi.1011342


where H(Θ|ht) is the entropy of Θ given the experiment history up to time step t:

HðYjhtÞ ¼ �

Z

dypðyjhtÞlog pðyjhtÞ ð2Þ

and

Hxtþ1
ðYjht;Ytþ1Þ ¼

Z

dytþ1pðytþ1jht; xtþ1ÞHxtþ1
ðYjht;Ytþ1 ¼ ytþ1Þ ð3Þ

is the conditional entropy of Θ given the future observation random variable Yt+1. Since the

actual value of the future observation is unknown, we take the average over yt+1 of the condi-

tional entropy Hxtþ1
ðYjh;Ytþ1 ¼ ytþ1Þ conditioned on a certain value yt+1. As the predictive dis-

tribution depends on the unknown parameters, we also have to take an average over θ, using

the current posterior distribution p(θ|ht) at time t [7]:

pðytþ1jht; xtþ1Þ ¼

Z

dypðytþ1jht; xtþ1; yÞpðyjhtÞ ð4Þ

The goal of Bayesian active learning is to select the next stimulation to maximize the mutual

information between the parameters and all future observations:

x∗tþ1
¼ arg max

xtþ12Stþ1

max
n

max
xtþ2:tþn2Stþ2:tþn

Ixtþ1:tþn
ðY; Ytþ1:tþnjhtÞ ð5Þ

Table 1. Notations.

Indices:

t � T Number of observations

i�Mout Number of outer particles

j�Min Number of inner particles

Parameters:

N Number of presynaptic independent release sites [-]

p Release probability upon the arrival of a presynaptic spike [-]

q Quantum of postsynaptic current elicited by one release event [A]

σ Standard deviation of the recording noise [A]

τD Time constant of synaptic vesicle replenishment [s]

Random variables:

θ Vector of unknown parameters

Yt Output of the system at time t
Functions:

pθ(�) Probability distribution conditioned on Θ = θ
I(�;�) Mutual information

H(�) Differential entropy

Others:

xt Input to the system at time step t (tth inter-spike interval)

yt Recording at time step t (tth EPSC amplitude)

ht History of observations (x1:t, y1:t)

M Generative model of the studied system

nt Number of vesicles in the readily-releasable state immediately

before spike t
kt Number of released vesicles after spike t

https://doi.org/10.1371/journal.pcbi.1011342.t001
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where Stþ1 is the set of possible inputs at time step t + 1 and Stþ2:tþn is the set of possible proto-

cols for the stimulations from time step t + 2 to t + n. This set of protocols includes all the stim-

ulation constraints, e.g. the remaining time of the experiment or the minimal inter-

stimulation time. Optimizing all future inputs is an intractable problem (especially for online

applications), since the algorithmic complexity scales exponentially with the number of obser-

vations n. For this reason, BAL only optimizes for the next stimulus (an approach referred to

as a myopic design) (see Fig 1C):

x∗tþ1
¼ arg max

xtþ12Stþ1

Ixtþ1
ðY; Ytþ1jhtÞ ð6Þ

Different methods have been proposed to compute Eq 6. Monte Carlo (MC) methods [16]

or a variational approach [17] can be employed, but they usually require long computation

times that can be impractical if the time between successive experiments is short. Closed-form

solutions or approximations can be computed only for some special cases, such as linear mod-

els or GLM [7].

The system: A binomial model of neurotransmitter release

To illustrate our ESB-BAL framework, we apply it to the problem of estimating the parameters

of a chemical synapse, represented as a state-space model with unobservable hidden states and

input-dependent state transitions. A classical used model to describe the release of neurotrans-

mitters at chemical synapses is called the binomial model [1, 2, 19–21, 24, 25]. According to

this model, a synapse is described as an Input-Output Hidden Markov Model (IO-HMM [10])

with the following parameters (units are given in square brackets, see also Fig 1A):

• N (the number of presynaptic independent release sites [-]);

• p (their release probability upon the arrival of a presynaptic spike [-]);

• q (the quantum of current elicited in the postsynaptic cell by one release event [A]);

• σ (the standard deviation of the recording noise [A]);

• τD (the time constant of synaptic vesicle replenishment [s]).

The variables nt and kt represent, respectively, the number of available vesicles in the readily-

releasable state at the moment of spike t (with 0� nt� N), and the number of vesicles (among

nt) released after spike t (with 0� kt� nt). For simplicity, we use the notations pθ(�) = p(�|θ)

with θ = [N, p, q, σ, τD], and zt≔ (nt, kt) to refer to the hidden variables at time step t.
To summarize, the synapse is modelled as an IO-HMM, where:

• The input xt refers to the time interval since the previous stimulation, i.e., to the inter-spike

interval;

• The hidden state variable zt≔ (nt, kt) encompasses both the number of available vesicles

immediately before spike t (nt 2 {0, . . ., N}) and the corresponding number of released vesi-

cles (kt 2 {0, . . ., nt});

• The observable variable yt is the recorded value of the postsynaptic current due to spike t. De

facto, the postsynaptic is continuously monitored: the specific value yt is computed as the

peak amplitude following spike t (see Materials and methods).

The probability of recording a set of T EPSCs pθ(y1:T) is computed as the marginal of the

joint distribution of the observations y1:T and the hidden variables z1:T, i.e.

pyðy1:TÞ ¼
P

z1:T
pyðy1:T ; z1:TÞ, where the joint distribution pθ(y1:T, z1:T) = pθ(y1:T, n1:T, k1:T) is
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given by

pyðy1:T; n1:T ; k1:TÞ ¼ pyðy1jk1Þpyðk1jn1Þpyðn1Þ
YT

t¼2

pyðytjktÞpyðktjntÞpyðntjnt� 1; kt� 1; xtÞ ð7Þ

where

pyðytjktÞ ¼ N ðyt; qkt; s
2Þ ð8Þ

is the emission probability, i.e. the probability to record output yt knowing that kt vesicles

released neurotransmitter; pθ(kt|nt) is the binomial distribution and represents the probability

that, given nt available vesicles, kt of them will indeed release neurotransmitter:

pyðktjntÞ ¼
nt

kt

 !

pktð1 � pÞnt � kt ð9Þ

Finally, pθ(nt|nt−1, kt−1, xt) represents the process of vesicle replenishment. During the time

interval xt, each empty vesicle can refill with a probability pðxtÞ ¼ 1 � exp � xt
tD

� �
such that the

transition probability pθ(nt|nt−1, kt−1, xt) is given by:

pyðntjnt� 1; kt� 1; xtÞ ¼
N � nt� 1 þ kt� 1

nt � nt� 1 þ kt� 1

 !

pðxtÞ
nt � nt� 1þkt� 1ð1 � pðxtÞÞ

N� nt ð10Þ

One can note that nt = nt−1 − kt−1 + vt, where vt� Bin(N − nt−1 + kt−1, π(xt)) is the number

of refilled vesicles during the time interval xt. Eqs 7 to 10 define the observation model of the

studied system (see Fig 1), i.e. the probability of a set of observations y1:T given a vector of sti-

muli x1:T and a vector of parameters θ.

The filter: Online computation of the posterior distributions of parameters

To be applicable for online experiments, the filtering block, which will compute the posterior

distribution of parameters p(θ|ht), needs to satisfy two requirements:

1. It must be sufficiently versatile to be applied to different systems and models;

2. It must be online (i.e. its algorithmic complexity should not increase with the number of

observations) [26].

A promising solution is particle filtering [27], and especially the Nested Particle Filter

(NPF) [13]. This algorithm is asymptotically exact and purely recursive, thus allowing to

directly estimate the parameters of a HMM as recordings are acquired.

The NPF relies on two nested layers of particles to approximate the posterior distributions

of both the static parameters θ of the model and of its hidden states zt. A first outer filter with

Mout particles is used to compute the posterior distribution of parameters p(θ|ht), and for each

of these particles, an inner filter with Min particles is used to estimate the corresponding hid-

den states zt (so that the total number of particles in the system is Mout �Min). After each new

observation, these particles are resampled based on their respective likelihoods, hence updat-

ing their posterior distributions (S1 Fig).

The NPF was originally proposed for static HMMs, in which the state transition probability

p(zt+1|zt, θ) is supposed to be constant. Here, we extend it to the more general class of Input-

Output Hidden Markov Models (IO-HMMs, also called GLM-HMMs in neuroscience, see

[10]), in which the state transition probability at time step t depends on an external input xt.

PLOS COMPUTATIONAL BIOLOGY Bayesian Active Learning for synaptic characterization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011342 August 21, 2023 7 / 27

https://doi.org/10.1371/journal.pcbi.1011342


For instance, state transition in our model of synapse is not stationary, but depends on the ISI

xt.

The filter (Algorithm 1) relies on the following approximation to recursively compute the

likelihood of each particle. Once the observation yt has been recorded, the likelihood of particle

y
i
t, with i 2 f1; :::;Moutg, depends on

pðyi
tjy1:tÞ / pðytjy1:t� 1; y

i
t; xtÞpðy

i
tjy1:t� 1Þ ð11Þ

with

pðytjy1:t� 1; y
i
t; xtÞ ¼

X

zt� 1:t

pðytjzt; y
i
tÞpðztjzt� 1; y

i
t; xtÞpðzt� 1jy1:t� 1; y

i
tÞ ð12Þ

If the variance of the jittering kernel κ (which mutates the samples to avoid particles degen-

eracy and local solutions, see Materials and methods) is sufficiently small, and hence if

y
i
t � y

i
t� 1

, the approximation pðzt� 1jy1:t� 1; y
i
tÞ � pðzt� 1jy1:t� 1; y

i
t� 1
Þ allows to approximate Eq 12

as pðytjy1:t� 1; y
i
t; xtÞ �

P
zt� 1:t

pðytjzt; y
i
tÞpðztjzt� 1; y

i
t; xtÞpðzt� 1jy1:t� 1; y

i
t� 1
Þ, and hence to recur-

sively compute Eq 11. In practice, the different terms in Eq 12 are computed as such:

pðytjzt; y
i
tÞ corresponds to the Likelihood step of Algorithm 1; pðztjzt� 1; y

i
t; xtÞ corresponds to

the Propagation step; and pðzt� 1jy1:t� 1; y
i
tÞ corresponds to the distribution of hidden states at

time t − 1.

Contrary to previous methods for fast posterior computation that were only applicable to

specific models [7], our filter can be applied to any state-space dynamical system, including

non-stationary and input-dependent ones. Moreover, it does not require to approximate the

posterior as a Gaussian nor require a time consuming (and possibly unstable) numerical opti-

mization step, while being highly parallelizable and efficient [14, 15].

Algorithm 1: Particle filtering for computing one step update of the posterior distribution

of parameters

Input: fyit� 1
g

1�i�Mout
, fni;jt� 1;k

i;j
t� 1g1�j�Min

, xt, yt;
for i in 1 . . . Mout do
Jittering: update the outer particles y

i
t ¼ kðy

i
t� 1
Þ;

for j in 1 . . . Min do
Propagation: Draw ni;jt � pðni;j

t jn
i;j
t� 1;k

i;j
t� 1; y

i
t;xtÞ and ki;j

t � pðki;j
t jn

i;j
t ; y

i
tÞ

Likelihood: compute ~wi;j
t ¼ pðytjn

i;j
t ;ki;jt ; y

i
tÞ;

end
Normalization: ~wi;j

t  ~wi;j
t =
P

j ~wi;j
t ;

Inner particles resampling: resample fni;j
t ;ki;jt g1�j�Min

based on
f~wi;j

t g1�j�Min
;

end
Compute wi

t ¼
1

Min

P

j
~wi;j
t ;

Normalization: wi
t  wi

t=
P

iw
i
t

Outer particles resampling: resample fyitg1�i�Mout
and fni;jt ;ki;jt g1�j�Min

based
on fwi

tg1�i�Mout
;

Output: fyitg1�i�Mout
, fni;j

t ;ki;jt g1�j�Min

The controller: Computation of the optimal next stimulation time

The objective of experiment design optimization is to minimize the uncertainty of the esti-

mates (classically quantified using the entropy) while reducing the cost of experimentation

(defined as the number of required trials, samples, or observations). The optimal next stimulus

x∗tþ1
that will maximize the mutual information (i.e. minimize the uncertainty about θ as
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measured by the entropy) can be written from Eqs 1, 3, and 6 as

x∗tþ1
¼ arg min

xtþ12Stþ1

Z

dypðyjhtÞ

Z

dytþ1pðytþ1jht; xtþ1; yÞHxtþ1
ðYjht;Ytþ1 ¼ ytþ1Þ ð13Þ

Eq 13 requires to compute two (possibly high-dimensional) integrals over θ and yt+1, for

which closed-form expressions only exist for specific models. To avoid long MC simulations,

we propose to use mean-field computations and to replace integrals by point-based approxi-

mations. Firstly, instead of computing the full expectation over p(θ|ht), we set θ to its MAP

value ŷt. Other estimators, such as the mean posterior value ŷt ¼
R

dypðyjhtÞy (which can be

conveniently approximated as ŷ t �
1

Mout

PMout
i¼1

y
i
t), can be used. For parameters taking integer

values, like N, this mean posterior can be rounded to the nearest value. Eq 13 thus becomes

x∗tþ1
� arg min

xtþ12Stþ1

Z

dytþ1 pðytþ1jht; xtþ1; ŷtÞHxtþ1
ðYjht;Ytþ1 ¼ ytþ1Þ ð14Þ

Depending on the nature of the studied system and on the time constraints of the experi-

ment, different estimators can also be used, such as e.g. ŷt ¼ arg max
y
pðyjhtÞ. It is important

to note that the posterior distribution p(θ|ht) is only reduced to a Dirac distribution δ(θ − θt)

here (in order to obtain a point-based estimate of θ and to simplify the computation of the

integral over yt+1), but not for computing the computational entropy Hxtþ1
ðYjht;Ytþ1 ¼ ytþ1Þ

(see below). Secondly, instead of computing the full expectation over the future observation,

we set yt+1 to its expected value; Eq 13 thus becomes

x∗tþ1
� arg min

xtþ12Stþ1

Hxtþ1
ðYjht;Ytþ1 ¼ EðYtþ1jht; xtþ1; ŷtÞÞ ð15Þ

In the general case, EðYtþ1jht; xtþ1; ŷtÞ can be computed using Bayesian Quadrature [28].

More specifically, for our model of a chemical synapse, an analytical formulation for the

expected value EðYtþ1jx1:tþ1; ŷtÞ can be efficiently derived using mean-field approximations

(see Section Mean-field approximation of vesicle dynamics). For each candidate xt+1 in a given

finite set Stþ1, the entropy HðYjht; xtþ1;Ytþ1 ¼ EðYtþ1jht; xtþ1; ŷtÞÞ can be computed using

Algorithm 1.

Finally, for computational efficiency reasons, instead of actually computing the posterior

entropy, we are using an upper bound of this posterior entropy at any time step t, i.e.
1

2
logj2peStj, where St is the covariance matrix of the particles fy

i
tg1�i�Mout

. Indeed, the maxi-

mum entropy distribution for a given covariance matrix St and a given mean μt is precisely the

Gaussian distribution N ðmt;StÞ for which the entropy is 1

2
logj2peStj. It should be remem-

bered that the in the limit of large amount of data, the posterior distribution will converge to a

Gaussian distribution [29]. As a consequence the upper bound will be tight after a large num-

ber of observations. Note that this cost function has been previously used in Bayesian Active

Learning [10]. Hence, the entropy in 15 is approximately minimized by minimizing the deter-

minant of the covariance matrix of the particles drawn from

pðYjht; xtþ1;Ytþ1 ¼ EðYtþ1jht; xtþ1; ŷtÞÞ:

Hxtþ1
ðYjht;Ytþ1 ¼ EðYtþ1jht; xtþ1; ŷtÞÞ �

1

2
log j2peStþ1j ð16Þ
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First setting: Reducing the uncertainty of estimates for a given number of

observations

From the experimentalist point of view, a highly relevant question is how to optimize the

stimulation protocol such that the measured EPSCs are most informative about synaptic

parameters. Previous studies showed that some stimulation protocols are more informative

than others, but ignored the temporal correlations of the number of readily-releasable vesi-

cles [30] or did not compute which protocol would be most informative [1]. In classical

deterministic experiment protocols, the stimulation times x1:T are defined and fixed prior to

the recordings. By contrast, active learning optimises the protocol on the fly as data are

recorded.

Results for a simulated experiment with ground-truth parameters N* = 7, p* = 0.6, q* = 1

pA, σ* = 0.2 pA, and t∗D ¼ 0:25s (i.e. the same set of parameters θ* used in [2]) are displayed in

Fig 2A. Here, we compare ESB-BAL to three deterministic protocols:

• in the Constant protocol, the synapse is probed at a constant frequency, i.e. xt = cst;

• in the Uniform protocol, ISIs are uniformly drawn from a set S of candidates xt consisting of

equidistantly separated values ranging from xmin = 0.005s (i.e. one order of magnitude

shorter than the shortest ISI used in [1]) to xmax, i.e. xt � Uniformð½0:005; xmax�Þ;

• finally, in the Exponential protocol, ISIs are drawn from an exponential distribution with

mean τ. Such a protocol has been shown to provide better estimates of synaptic parameters

compared to periodic spike trains with constant ISI [1, 30].

Fig 2. First setting: reducing the uncertainty of estimates for a given number of observations. A: Entropy of the posterior distribution of θ vs.

number of observations for different stimulation protocols. Synthetic data were generated from a model of synapse with ground truth parameters N* =

7, p* = 0.6, q* = 1 A, σ* = 0.2 A, and t∗D ¼ 0:25s [2]. Traces show average over 400 independent repetitions. Shaded area: standard error of the mean. B:

RMSE for the same simulations. C: Histograms and scatter plot of the ISIs and the corresponding computation times for the ESB-BAL simulations.

Note that the median computation time (horizontal red line) of 74ms corresponds to the time required to test 64 candidate intervals: hence, each tested

interval takes approx. 1.16ms.

https://doi.org/10.1371/journal.pcbi.1011342.g002
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The efficiency of these deterministic protocols will depend on their respective parametriza-

tions. To conservatively assess ESB-BAL, we optimize the values of xt, xmax, and τ so that the

Constant, Uniform, and Exponential protocols have the best possible performance for the used

ground-truth parameters θ*. S2 Fig. shows the average final entropy decrease (i.e. the informa-

tion gain) after 200 observations using the Constant (top), Uniform (middle), or Exponential
(bottom) protocol, for different values of their hyperparameters. These deterministic protocols

(with their optimal respective parametrizations) are then compared to ESB-BAL.

For the different protocols, the average (over 100 independent repetitions) joint differential

entropy of the posterior distribution of parameters is plotted as a function of the number of

observations (Fig 2A). ESB-BAL allows to reduce the uncertainty (as measured by the entropy)

of the parameter estimates for a given number of observations. It should be noted that it is

compared to deterministic protocols whose respective hyperparameters have been optimized

offline, knowing the value of θ*. In real physiology experiments, classical protocols are non-

adaptative and are defined using (possibly sub-optimal) default parameters. In contrast, in

active learning the protocol is optimized on the fly as data are recorded, and its performance

will not depend on a prior parametrization. Approximate optimal design via ESB-BAL thus

outperforms the best possible Constant, Uniform, and Exponential protocols. Interestingly, it

also outperforms a non-parametric optimized design (S3 Fig).

We also verify that ESB-BAL does not lead to biased estimates of θ, as its average RMSE out-

performs that of other protocols (Fig 2B). Moreover, for each protocol, we assess whether esti-

mated parameters are a good match to held-out data. An estimate of the parameters ŷt is

obtained after t = 100 observations, and its likelihood is computed for observations up to

t = 200. The inset in Fig 2B shows the mean negative log-likelihood of ŷt for 50 repetitions of

the protocols in Fig 2A: Constant (blue), Uniform (orange), Exponential (green), and ESB-BAL

(grey). Results show no significant differences in the goodness of fit of estimated parameters

for held-out data for the Uniform, Exponential, and ESB-BAL protocols. Interestingly, the Con-
stant protocol yields a higher likelihood, but a higher RMSE, for estimated parameters. This

means that, for this protocol, estimated parameters are a good fit to data, but that the said data

are not informative enough to accurately infer the ground-truth values of the parameters.

Finally, we verify that ESB-BAL is sufficiently fast for online applications, as computation

time exceeds the ISI in only a small proportion of cases (Fig 2C). Similar results can be

observed for different sets of ground-truth parameters θ* (S4 Fig) or when only optimizing for

the entropy of a specific parameter (S5 Fig).

The computational efficiency of ESB-BAL is achieved through approximations in the com-

putations required to implement the controller. To assess the effect of the sample approxima-

tions made in Eqs 14 and 15 on accuracy, we compared ESB-BAL to exact active learning, in

which Eq 13 is computed exactly using MC samples (Fig 3). In ESB-BAL (MC θ), samples to

compute the expectation over θ are drawn from p(θ|ht), and corresponding point-based esti-

mates of yt+1 are computed using Eq 23, as in Eq 15. Further, in ESB-BAL (MC θ, y) samples

used to compute the expectation over yt+1 are drawn by randomly sampling from the inner

particles (see Materials and methods). This shows that the approximations used in Algorithm

2 to make active learning online have only a small effect on performance.

Second setting: Reducing the uncertainty of estimates for a given

experiment time

Active learning allows, for a given number of observations, to improve the reliability of the

estimated parameters. However, in its classical implementation, only the next stimulus input is

optimized, disregarding all future observations in the experiment (see the approximation
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made from Eqs 5 to 6). This myopic approach is thus sub-optimal. Moreover, neurophysiology

experiments are not only constrained by the number of observations, but also by the total time

of the experiment. Since cell viability and recording stability may become limiting during an

experiment, the total time of an experimental protocol xtot ¼
PT

t¼1
xt also needs to be

accounted for. Here, to account for the total time of the experiment, and to globally optimize

the information gain per unit of time, we can go back to the mutual information expression in

Eq 6 and use the chain rule to rewrite it as the following sum:

Ixtþ1:tþn
ðY; Ytþ1:tþnjhtÞ ¼ Ixtþ1

ðY; Ytþ1jhtÞ þ
Xn

i¼2

Ixtþ1:tþi
ðY; YtþijYtþ1:tþi� 1; htÞ ð17Þ

where the first term on the r.h.s of Eq 17 is the “myopic term” that has been kept in Eq 6 while

the second one is the “non-myopic term” and describes the information gain due to all the

future events (from t + 2 to t + n), but still depends on xt+1. Computing this “non-myopic

term” is computationally prohibitive. However, instead of simply ignoring it, we can approxi-

mate it. If we make the (rather strong) assumption that the future information gain is obtained

at a constant rate η (in bits per seconds), then the information gain during the remaining time

xtot �
Ptþ1

i¼1
xi is given by Zðxtot �

Ptþ1

i¼1
xiÞ ¼ � Zxtþ1 þ c where the constant c is independent

of xt+1. With this assumption, we can express the updated formulation of active learning (see

original formulation in Eq 13) as

x∗ðZÞtþ1 ¼ arg min
xtþ12Stþ1

Hxtþ1
ðYjht;Ytþ1Þ þ Zxtþ1 ð18Þ

where ηxt+1 acts as penalty term for longer ISIs. The effect of the assumed future information

rate η on the entropy of the posterior distribution of the parameters is displayed in Fig 4A. As

expected, adding a penalty term to Eq 13 reduces the precision of the inferred parameter. The

loss of information gain increases with the penalty weight η. However, increasing η also

increases the speed of information gain, as seen in Fig 4B. Depending on the available time for

Fig 3. Assessing the effect of point-based approximations on the accuracy of ESB-BAL. Same setting as in Fig 2. In ESB-BAL (MC θ), the integral

over θ in Eq 13 is computed using MC samples instead of the point-based approximation described in Eq 14. In ESB-BAL (MC θ, y), both integrals over

θ and yt+1 in Eq 13 are computed using MC samples instead of the point-based approximations described in Eqs 14 and 15.

https://doi.org/10.1371/journal.pcbi.1011342.g003
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the experiment, it is thus possible to tune η so as to find a trade-off between long-term preci-

sion (Fig 4A) and information rate (Fig 4B).

So far, we made the strong assumption that η is constant which is problematic for two rea-

sons. Firstly, it is not accurate (the posterior entropy doesn’t decay linearly in time, as seen on

Fig 4B) and secondly, it requires to chose η before the start of the experiment. To circumvent

both issues at the same time, we implemented an adaptive estimation of the information rate:

Ztþ1 ¼ a
DHt

xt
þ ð1 � aÞZt ð19Þ

where ΔHt = H(Θ|ht−1) − H(Θ|ht) is the gain in entropy and α is the learning rate of the esti-

mated information rate ηt. As we can see in Fig 4, the adaptive estimated information rate pro-

vides a better performance than a fixed η.

Third setting: Batch optimization and application to neural recordings

To reduce computational complexity, classical implementations of sequential experiment

design usually only optimize for the immediate next observation, as in Figs 2, 3, and 4. How-

ever, it might be critical for some systems to optimize not only the next stimulus, but rather

the next n stimuli of the experiment altogether (see Eq 5) [6, 12]. Synaptic characterization is a

telling example: indeed, STD can only be observed for specifically organized batches of stimu-

lation times, where the pool of presynaptic vesicles is first depleted by high-frequency stimula-

tions and its refilling rate then probed using increasing ISIs. Moreover, it should be noted that,

depending on the experimental set-up, optimizing batches of future stimuli is often simpler

than optimizing each future stimulus. Indeed, some experimental apparatuses (such as the

amplifiers used for synaptic stimulation), do not allow for online closed-loop input computa-

tion, but only accept programmed batches of inputs. Batch optimization thus allowed to cir-

cumvent hardware limitations.

When probing the presynaptic cell, neuroscientists usually use repetitions of a spike train

consisting of a tetanic stimulation phase (sustained high-frequency stimulation used to deplete

Fig 4. Second setting: reducing the uncertainty of estimates for a given experiment time (effect of penalizing long ISIs on parameter estimates

uncertainty and rate of information gain). A: Posterior entropy H(Θ|ht) as a function of the stimulation number t for different values of η in Eq 18.

Same settings as in Fig 2. B: Same results, but displayed as a function of time. Inset: slope of the entropy vs. time curves (i.e. information rate) vs. η after

10 seconds.

https://doi.org/10.1371/journal.pcbi.1011342.g004
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the presynaptic vesicles) followed by recovery spikes at increasing ISIs to probe the STD time

constant [31]. These spike trains (especially the duration and frequency of the tetanic phase,

and the ISI between recovery spikes) are usually not optimized, and are held constant through-

out an entire experiment. Here, we show that ESB-BAL can be used to extend active learning

to non-myopic designs (i.e. the optimization is not restricted to the timing of the next event,

but takes into account the n next input simuli). Such an approach has already been proposed

to enable the selection of maximally informative stimulus sequences, hence avoiding the draw-

backs of selecting only one stimulus at a time [11].

It should be stressed here that systematically searching over an n-dimensional space is com-

putationally prohibitive when n is large. As a consequence, we restricted the optimisation to a

low-dimensional subspace parametrised by 3 parameters ðm; f ; xlastÞ, see caption of Fig 5A for

more details. Candidate batches are defined as such:

• n is the total number of stimulations;

• m< n is the number of spikes in the tetanic stimulation phase;

• f is their frequency;

• xlast characterizes the distribution of the recovery spikes (see Materials and methods for

details).

A set of candidate batches Stþ1:tþn is thus defined by spanning different values for m, f, and

xlast. Algorithm 3, which is a generalization of Algorithm 2, is used to select the next batch of n
stimuli x∗tþ1:tþn in the set Stþ1:tþn. Every n observations, Hxtþ1:tþn

ðYjht;Ytþ1:tþnÞ is computed

using n iterations of the filter (i.e. Algorithm 1), in order to pick the optimal next batch x∗tþ1:tþn

that minimizes the quantity Hxtþ1:tþn
ðYjht;Ytþ1:tþnÞ (i.e. the posterior entropy over the

Fig 5. Third setting: batch optimization. A: Schematic of how elements in Stþ1:tþn in Algorithm 3 are defined. They are chosen to span 3 parameters: the

number m< n of spikes in the tetanic stimulation phase, the frequency f of spikes in the tetanic stimulation phase, and the duration of the final recovery ISI xlast.

B: Simulated experiment with ground-truth parameters N* = 47, p* = 0.27, q* = 2.65 pA, σ* = 1.32 pA, and t∗D ¼ 0:17s (i.e. the MAP values from one example

cell studied in Fig 6B).

https://doi.org/10.1371/journal.pcbi.1011342.g005
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parameters at time step t + n given all observations up to time t):

x∗tþ1:tþn ¼ arg min
xtþ1:tþn2Stþ1:tþn

Hxtþ1:tþn
ðYjht;Ytþ1:tþnÞ ð20Þ

Fig 5B shows results from a simulated experiment comparing 4 different protocols:

• The Deterministic (long) protocol consists of repetitions of a spike trains made of m = 100 sti-

muli at f = 100Hz (tetanic phase) followed by 6 recovery pulses at increasing intervals. There-

fore, the long protocol consists of n = 106 spikes;

• The Deterministic (short) protocol is similar to Deterministic (long), except that its tetanic

phase only consists of m = 20 pulses instead of 100 (hence consisting of n = 26 spikes);

• ESB-BAL (myopic) optimizes each stimulus, as in Figs 2, 3, and 4;

• ESB-BAL (batch) performs batch optimization, as detailed above: every n observation, the

next batch of n stimuli x∗tþ1:tþn is computed in the set Stþ1:tþn.

Several observations can be made. Firstly, the Deterministic (long) protocol is outperformed

by its short counterpart, as the latter yields a larger entropy decrease for a given number of

stimulations. Intuitively, this highlights that, apart from the first spikes, the tetanic phase (simi-

larly to the Constant stimulation from Fig 2) brings little information about the unknown

parameters, and that a few high-frequency stimulations followed by recovery spikes are

enough to efficiently probe the synapse. Secondly, batch optimization outperforms myopic

optimization, showing that synaptic parameter inference benefits from optimizing not only

the next stimulus, but rather the next n stimuli of the experiment altogether. Finally, ESB-BAL
(batch) does not outperform the Deterministic (short) protocol, which is likely due to the fact

that the latter has been specifically tailored for studying STD and has been defined and opti-

mized through trial and error. Note that the posterior entropy may increase during the tetanic

stimulation phase, as explained in Section Particle filtering for synaptic characterization.

We validate our method by applying it to EPSC recordings from mossy fiber to granule cell

synaptic connections in acute mouse cerebellar slices (Fig 6A), which depressed nature (S6

Fig) makes them a good match for our theoretical model. Each synapse was stimulated using

successively the Deterministic (long), Deterministic (short), and ESB-BAL (batch) protocols. For

each stimulation protocol, the posterior distribution of the parameters was computed offline

using the Metropolis-Hastings algorithm. Fig 6B shows, for different numbers of observations

t, the information gain when comparing the Deterministic (long) protocol to ESB-BAL (i.e. the

entropy after the deterministic protocol minus the entropy after ESB-BAL) across all studied

synapses: a positive value signifies a lower entropy when using ESB-BAL. Our experimental

results are in line with simulations (Fig 5B), as ESB-BAL outperforms the Deterministic (long)
protocol at the beginning of the experiment (i.e. when t is low), but not the Deterministic
(short) protocol (S7 Fig).

Discussion

We developed a method called Efficient Sampling-Based Bayesian Active Learning (ESB-BAL)

for approximate optimal experimental design. Using particle filtering, ESB-BAL selects the

next experimental design to maximize the approximate mutual information between the out-

put of the experiment and the constants of the studied system. To validate it, we apply ESB-

BAL to the problem of estimating the constants of a chemical synapse from its postsynaptic

currents evoked by presynaptic stimulations. After each new observation, the optimal next

stimulation time can be computed using ESB-BAL. Using synthetic data and synaptic whole-
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cell patch-clamp recordings in cerebellar brain slices, we show that our method is efficient and

fast enough to be used in real-time biological experiments and can reduce the uncertainty of

inferred parameters.

For illustrative purposes, we applied ESB-BAL to the specific problem of estimating the

parameters characterizing a chemical synapse. However, we argue that our framework is suffi-

ciently general and efficient to be applicable to a broad range of systems and domains of

research. Especially, our extension of the Nested Particle Filter can be applied to any state-

space system, even time-variant ones. Moreover, as the Nested Particle Filter is robust to time-

varying parameters and model uncertainties [13], we believe that our proposed solution will be

especially relevant for neurophysiology experiments or for clinical applications, for instance

Fig 6. Application to neural recordings. A: Left: Mossy fiber to granule cell synaptic connections from acute cerebellar slices of mice were studied. Each of

them was stimulated using successively deterministic protocols and ESB-BAL. Right: examples of postsynaptic current traces recorded from a granule cell upon

extracellular mossy fiber stimulation. B: Information gain when comparing the Deterministic (long) protocol to ESB-BAL (i.e. the entropy after the

deterministic protocol minus the entropy after ESB-BAL) across all studied synapses. A positive value for ΔEntropy signifies a lower entropy when using

ESB-BAL. Results displayed for different numbers of observations t. Test: regression analysis (p = 0.0381) comparing entropies after Deterministic (long) and

ESB-BAL for t = 52 to t = 104 (see Materials and methods for details).

https://doi.org/10.1371/journal.pcbi.1011342.g006
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for optimizing Deep Brain Stimulation (DBS) for the treatment of Parkinson’s Disease

[32, 33].

We expect active learning to be particularly beneficial to neurophysiology experiments

involving live cells or subjects. By reducing the number of samples required to obtain a certain

result, or by improving the efficiency of information gain, we can reduce the cost of the experi-

ment and the need for animal subjects. A possible negative impact would be that improving

the relative efficiency of neurophysiology experiments may lead to a larger field of applications

and therefore a larger demand for animal experiments, analogously to Jevons Paradox [34].

Our approach has some room for improvements. An evident drawback of using particle fil-

tering is that it requires a very large number of particles to provide low variance estimates, as

the approximation error only decreases with the square root of the number of particles. More

generally, the possibility to efficiently apply particle filtering to any statistical model, irrespec-

tive of the dimensions for its state variables and observations, is still an open question, as a gen-

eral theoretical result linking convergence rate and number of states in a fixed way is lacking.

The possibility to apply our ESB-BAL framework to other models and experimental settings

should first be verified via simulations. Moreover, future theoretical work should focus on

obtaining results on the convergence of the estimators when using active learning. When

observations are independent and identically distributed (i.i.d.), active learning will give an

unbiased estimate of the parameters, whose variance will decrease with the number of observa-

tions [29]. Such theoretical results lack for systems with correlated outputs (such as the EPSCs

in the studied synapse model), possibly leading to information saturation [35] or biased

estimates.

For experimental applications, the amount of time taken to select a new stimulus is of

utmost importance. This is especially true for the system studied here, as the selected next ISI

should not be shorter than the time it took to compute it. Hence, an approximate, but fast, fil-

tering algorithm is more useful than an exact filtering method, such as the forward algorithm.

The particle nature and the recursive structure of the NPF (which makes it computationally

efficient) is enabled by approximating the filtering step (which is valid in the limit of a small

variance for the jittering kernel), as described in Section The filter: Online computation of the

posterior distributions of parameters. This comes at the cost of an approximation error that

decreases more slowly with the number of used particles than for other particle filtering

schemes, such as the SMC2 method [36]. Depending on the constraints of the experiment, this

trade-off between computational efficiency and accuracy in the estimate the posterior distribu-

tion of the parameters p(θ|ht) can be adjusted by implementing a different filtering scheme.

As an application example, we used ESB-BAL to infer the parameters of an idealized model

of chemical synapses, which relies on several assumptions and simplifications. Namely, it

assumes that the postsynaptic currents elicited by separate vesicle releases add linearly, so that

the final current after kt vesicle openings is qkt. This assumption disregards possible presynap-

tic asynchronous release and postsynaptic receptors saturation. There is evidence of linear

summation of quanta for the synapses we studied in the experiments [37], but this may not

apply to other synapses. Moreover, it also assumes that presynaptic release sites are homoge-

neous, and share the same values for p, q, and τD. Finally, it only accounts for evoked releases

and for monosynaptic connections. These assumptions have been widely used in recent mod-

els of synaptic transmission, as they allow for tractable analyses while still reflecting the actual

observed cellular dynamics [1, 2]. Future experimental work should focus on implementing

ESB-BAL for different and more complicated models of a chemical synapse, including for

instance short-term facilitation [1, 2, 21, 30, 38] or vesicle content variability [39, 40].

For some recordings in Fig 6B, the benefit of using ESB-BAL instead of a deterministic pro-

tocol might seem non-significant. For some synaptic connections (e.g. negative values in Fig
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6B), ESB-BAL even yields a higher entropy for the posterior distribution of θ. Different expla-

nations can be put forward. Firstly, it is possible that the classically used deterministic proto-

cols (20 stimuli at 100Hz followed by 6 recovery spikes at increasing ISIs, see Fig 6A) are

already well informative about the synaptic parameters. For these protocols, the tetanic stimu-

lation phase and the long inter-sweep interval allow to estimate the value of the hidden states

nt and kt with a high accuracy, which facilitates the estimation of the synaptic parameters [1].

Moreover, the recovery spikes at varying ISIs are known to be more informative about the syn-

apse’s dynamics than a constant stimulation frequency [30]. Secondly, the small benefit of

using ESB-BAL for some synaptic connections might be due to a model mismatch issue, as the

model defined by Eqs 7 to 10 might not exactly represent the ground-truth mechanisms of the

studied synapses. Although mossy fiber to granule cell synapses are believed to be good exam-

ples of depressing synapses, our simplified model disregards several aspects of synaptic trans-

mission such as facilitation, postsynaptic saturation, or presynaptic vesicles heterogeneity [37,

41, 42]. These assumptions might explain why ESB-BAL performs more consistently in simu-

lations than in real experiments.

An interesting area of future research would be to formulate Optimal Experiment Design as

an optimal control problem, using the framework of the Bellman equation [43, 44]. This

multi-stage optimization problem could be solved exactly by defining the associated Bellman

equation, in which I(Θ;Y1:T) is the objective function, current observation yt is the state, input

xt is the control, and where the optimal policy determines the next input xt+1. This approach

would allow to account for the remaining available experimental time. Active Learning has

been successfully framed as a Deep Reinforcement Learning problem to select which samples

should be used to train Natural Language Processing models when the budget for manual

annotations is limited [45]. A policy can be learned on a high-resource language (e.g. English)

and then used for another language in which annotated training samples are sparse. In biologi-

cal experiments and clinical settings, whether a policy can be learned on a cell or a subject and

applied to another needs to be investigated.

Bayesian Active Learning is an efficient framework for solving the problem of optimal

experiment design for parameters inference. Its goal is, for a given generative model M, to

optimize the accuracy of the estimates of the parameters θ of M, i.e. to minimize the entropy

of the posterior distribution pðyjx1:T; y1:T ;MÞ. But it is also possible to extend optimal experi-

ment design to model selection: in this setting, the goal is to maximize the discriminability

between competing candidate models, i.e. to minimize the entropy of pðMjx1:T ; y1:TÞ. Different

schemes for OED for model selection have been proposed (see [46] for a discussion), but their

computational complexity is a major impediment to their concrete applicability. An interest-

ing future application of ESB-BAL would be to extend it to optimal model selection.

Overall, we expect our proposed solution to pave the way towards better estimates of sto-

chastic models in neuroscience, more efficient training in machine learning, and more system-

atic and automated experimental designs.

When designing an experiment in physiology, or when training a model on data in machine

learning, it is common to choose a priori a fixed set of inputs to the studied system. The use of

such non-adaptive, non-optimized protocols often leads to a large variance of the estimated

parameters, even when using a large number of trials or data points. Bayesian active learning is

an efficient method for optimizing these inputs, but exact solutions are often intractable and

not applicable to online experiments. Here, we introduce ESB-BAL, a novel framework com-

bining particle filtering, parallel computing, and mean-field theory. ESB-BAL is general and

sufficiently efficient to be applied to a wide range of settings. We use it to infer the parameters

of a model of synapse: for this specific example, computation time is a critical constraint, since

the typical ISI is shorter than 1s, and because several future inputs need to be optimized
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together. Using synthetic data and neural recordings, we show that our method has the poten-

tial to significantly improve the precision and speed of model-based inferences.

Materials and methods

Ethics statement

Animals were treated following national and institutional guidelines. The Cantonal Veterinary

Office of Zurich approved all experiments (authorization no. ZH009/2020).

Particle filtering for synaptic characterization

Initialisation. Computing the posterior distribution of θ firstly implies to specify a prior

p(θ) from which the initial particles fy
i
0
g

1�i�Mout
will be drawn. For simplicity, we consider here

uniform priors (as in [2, 21]), although the algorithm readily extends to different choices of prior.

Similarly, initial samples for the hidden states fni;j
0 ; k

i;j
0 g1�j�Min

need to be drawn. For

i 2 f1; :::;Moutg, j 2 f1; :::;Ming, we define:

• ni;j
0 ¼ Ni (i.e. all vesicles are supposed to be in the readily-releasable state at the beginning of

the simulation);

• ki;j
0 � BinðNi; piÞ (consistently with Eq 9).

Jittering step. The parameters that we wish to infer are supposed to be constant. It is thus

impossible to define dynamics of the form pðyi
tþ1
jy

i
tÞ for the particles (as opposed to filtering

problems aiming at inferring a dynamical hidden state, as for instance in [47]). To avoid parti-

cle degeneracy, it is thus necessary to mutate particles using a jittering kernel kðy
i
t� 1
Þ. When

particles take continuous values, a classical choice for the jittering kernel is to draw the next

particle y
i
t from a Gaussian distribution with mean y

i
t� 1

and which variance is called the jitter-

ing width (see [13] for a detailed discussion). In our implementation, the range of possible val-

ues for each parameter is discretized, so that each particle corresponds to a position on the

grid of possible parameters values (same implementation as in [2]). The free parameter α in

our jittering kernel thus corresponds to the probability of moving by one bin:

y
i
t ¼ kðy

i
t� 1
Þ ¼

y
i
t� 1
; with probability 1 � a

~y i
t� 1
; with probability a

8
<

:
ð21Þ

where ~y i
t� 1

is one (randomly chosen) bin away from y
i
t� 1

.

At each time step, the jittering step tends to increase the entropy of the distribution of the

particles (by mutating them). On the other hand, the resampling step (see below) tends to

reduce it, by keeping only high-likelihood particles. If the variance of the jittering kernel is suf-

ficiently high to outperform the effect of resampling, the overall entropy of the distribution of

the particles will increase (as, for instance, during the tetanic stimulation phase in Fig 5B.

Propagation step. Inner particles are redrawn based on ni;j
t � pðni;j

t jn
i;j
t� 1; k

i;j
t� 1; y

i
t; xtÞ (Eq

10) and ki;j
t � pðki;j

t jn
i;j
t ; y

i
tÞ (Eq 9).

Likelihood computation step. pðytjn
i;j
t ; k

i;j
t ; y

i
tÞ is computed according to Eq 8.

Resampling step. Particles are resampled by multinomial resampling using the algorithm

introduced in [48], which allows to draw a list of sorted numbers in a single step. Alternative

resampling schemes can also be implemented. For instance, residual and stratified resampling
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methods dominate the multinomial one in terms of conditional variance [49]. We found that

for artificial data, the stratified method leads to faster convergence of the estimates of N, q, and

σ, whereas p and τD estimates do not show a significant difference of rate of convergence (S8B

Fig), but does not significantly improve the information gain (S8A Fig).

Algorithm 2: Computation of the optimal next stimulation time for synaptic

characterization

set ŷt ¼
1

Mout

PMout
i¼1

y
i
t (mean from the current posterior estimation);

Input: Stþ1 (set of candidates xt+1);
for xt+1 in Stþ1 do

Compute EðYtþ1jx1:tþ1; ŷtÞ using Eq 23;

Compute pðYjht;xtþ1;Ytþ1 ¼ EðYtþ1jx1:tþ1; ŷtÞÞ using Algorithm 1;

Compute Hxtþ1
ðYjht;Ytþ1 ¼ EðYtþ1jx1:tþ1; ŷtÞÞ using Eq 16;

end
x∗tþ1

¼ arg minxtþ12Stþ1
Hxtþ1

ðYjht;Ytþ1 ¼ EðYtþ1jx1:tþ1; ŷtÞÞ

Algorithm 2 is slightly modified in Fig 3 for the “ESB-BAL (exact)” simulations, in which

Eq 13 is computed using MC samples instead of the point-based simplifications explained in

Eqs 14 and 15. Samples to compute the expectation over θ are drawn from the current poste-

rior distribution p(θ|ht), i.e. by random sampling from the pool of particles fy
i
tgi2f1;...;Moutg

. For

each of these samples, and for each candidate next input xt+1 in Stþ1:

• In ESB-BAL (MC θ): the corresponding value of yt+1 is computed using Eq 23, as in Eq 15;

• In ESB-BAL (MC θ, y): samples used to compute the expectation over yt+1 are drawn by ran-

domly sampling ni;j
t � pðni;j

t jn
i;j
t� 1; k

i;j
t� 1; y

i
t; xtÞ and ki;j

t � pðki;j
t jn

i;j
t ; y

i
tÞ, and using Eq 8.

Unless otherwise specified, all the simulations results were obtained with Mout = 1024 and

Min = 256 particles, and were run using a commercially available Nvidia GTX 1080 Ti GPU.

Input-Output Hidden Markov Model (IO-HMM) of synaptic transmission

In line with previous works (and especially with [1, 2]), we used a simplified Input-Output

Hidden Markov Model (IO-HMM) to describe the synapse (as explained in Section The sys-

tem: A binomial model of neurotransmitter release). Its specificity, compared to classical

HMMs, is that N is considered as a parameter to be optimized together with the other ones.

Besides, the value of N characterizes the range of values that the hidden states can have, as 0�

kt� nt� N. De facto, the exact value of N for the studied synapse is unknown, can take a

broad range of possible values [1], and needs to be inferred from the observations. Different

approaches have been used in previous works:

• In [1], the authors fixed the value for N and then estimated the other parameters using the

Expectation-Maximization (EM) algorithm. The procedure is repeated for different values of

N ranging from 1 to 100, and the set of parameters yielding the highest likelihood is selected

as the maximum likelihood estimator. In our setting, this would be equivalent to running

several instances of ESB-BAL in parallel for different values of N, which would significantly

increase the computational load.

• In [2], the authors used the Metropolis-Hastings algorithm to compute the posterior distri-

bution of the parameters, including N. In our case, we also jointly optimize all parameters,

including N. This means that, due to the jittering kernel, Ni
t might change from time to time.

As a consequence, we introduce the ReLU function to keep the value of ni;j
t positive in Algo-

rithm 1 (where Ni
t and pi

t refer to the values of N and p in particle y
i
t):
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ni;j
t  ReLUðNi

t � ni;j
t� 1 þ ki;j

t� 1Þ

ki;j  randðBinðni;j
t ; pðxtÞÞ

ni;j
t  Ni

t � ni;j
t þ ki;j

ki;j
t  randðBinðni;j

t ; pi
tÞÞ

Mean-field approximation of vesicle dynamics

Our synapse model, as defined by Eqs 7 to 10, is a Hidden Markov Model with observations yt

and hidden states zt = (nt, kt). The predictive distribution p(yt+1|ht, xt+1, θ) used in Eq 1 can be

computed using the forward algorithm: however, the algorithmic complexity of this exact fil-

tering procedure, which scales with N4, makes it impractical for closed-loop applications.

Here, we suggest that computation can be massively simplified by using a mean-field approxi-

mation of vesicle dynamics: the analytical mean and variance of hidden and observed variables

can be computed using recursive formulæ [46].

Let rt 2 [0, 1] denote the average fraction of release-competent vesicles at the moment of

spike t. Its values, given θ = [N, p, q, σ, τD] and x1:t, can be iteratively computed (see [1], Eq (7))

from the equations of the Tsodyks-Markram model [20]:

rt ¼ 1 � ð1 � ð1 � pÞrt� 1Þexp �
xt

tD

� �

ð22Þ

with r1 = 1. It follows that the expected value of the EPSC after spike t is

EðYtjx1:t; yÞ ¼ rtNpq ð23Þ

One can note that the variance of the number of available vesicles nt conditioned on the his-

tory of previous activations x1:t and on the parameter values θ can be computed similarly using

the law of total variance:

Varðntjx1:t; yÞ ¼ EðVarðntjnt� 1; kt� 1; x1:t; yÞÞ þ VarðEðntjnt� 1; kt� 1; x1:t; yÞÞ ð24Þ

Since nt = nt−1 − kt−1 + vt with vt� Bin(N − nt−1 + kt−1, π(xt)) (see Eq 10), it follows that

Varðntjx1:t; yÞ ¼ pðxtÞð1 � pðxtÞÞNð1 � rt� 1 þ prt� 1Þþ

ð1 � pðxtÞÞ
2Varðnt� 1 � kt� 1jx1:t� 1; yÞ

ð25Þ

Finally, by noting that (nt − kt)|nt� Bin(nt, 1 − p) and using again the law of total variance

to compute

Varðnt� 1 � kt� 1jx1:t� 1; yÞ ¼ EðVarðnt� 1 � kt� 1jnt� 1; x1:t� 1; yÞÞþ

VarðEðnt� 1 � kt� 1jnt� 1; x1:t� 1; yÞÞ
ð26Þ

we obtain

VarðYtjx1:t; yÞ ¼ s
2 þ q2ðNrtpð1 � pÞ þ Varðnt� 1jx1:t� 1; yÞp2Þ ð27Þ

Eqs 23 and 27 are respectively used to compute the expected value of yt given θ and x1:t

(which is used in the point-based approximation of Eq 15) and its variance (which is used to

verify the goodness of fit of our model to recorded EPSCs in S6 Fig).

Batch optimization

Each candidate batch of n stimulation times in Stþ1:tþn (Fig 5A) is described by 3 parameters:
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• m< n: the number of tetanic stimulations [-];

• f: the frequency of the tetanic stimulations [Hz];

• xlast: the time interval before the final recovery spike [s].

A train of n stimulations is thus composed of m tetanic stimulations at a frequency f, fol-

lowed by n − m recovery spikes with increasing inter-spike intervals xlast

n� m ;
xlast

n� m� 1
; . . . ; xlast

2
; xlast.

The following values were used during experiments (Fig 6): n = 26, m 2 [5, 10, 15, 20], f 2
[25Hz, 50Hz, 100Hz, 200Hz], xlast 2 [0.1s, 0.5s, 1.0s, 2.0s].

These 4 possible values for each parameter m, f, and xlast yield 64 different combinations:

Stþ1:tþn thus consists of 64 different candidate batches, from which Algorithm 3 picks the next

optimal one.

Algorithm 3: Computation of the optimal next batch of ISIs
Input: Stþ1:tþn (set of candidates xt+1:t+n);
for xt+1:t+n in Stþ1:tþn do
Compute Hxtþ1:tþn

ðYjht;Ytþ1:tþnÞ using Algorithm 1;
end
x∗tþ1:tþn ¼ arg minxtþ1:tþn2Stþ1:tþn

Hxtþ1:tþn
ðYjht;Ytþ1:tþnÞ

Electrophysiological recordings

Experiments were performed in adult (> 1-month-old) male and female C57BL/6J mice (Jan-

vier Labs, France). Animals were housed in groups of 3–5 in standard cages on a 12h-light/

12h-dark cycle with food and water ad libitum. Mice were sacrificed by rapid decapitation

after isoflurane anesthesia. The cerebellar vermis was removed quickly and mounted in a

chamber filled with cooled extracellular solution. 300-μm thick parasagittal slices were cut

using a Leica VT1200S vibratome (Leica Microsystems, Germany), transferred to an incuba-

tion chamber at 35 ˚C for 30 minutes, and then stored at room temperature until experiments.

The extracellular solution (artificial cerebrospinal fluid, ACSF) for slice cutting and storage

contained (in mM): 125 NaCl, 25 NaHCO3, 20 D-glucose, 2.5 KCl, 2 CaCl2, 1.25 NaH2PO4, 1

MgCl2, bubbled with 95% O2 and 5% CO2. Slices were visualized using an upright microscope

with a 60×, 1 NA water-immersion objective, infrared optics, and differential interference con-

trast (Scientifica, UK). The recording chamber was continuously perfused with ACSF supple-

mented with 10 μM D-APV, 10 μM bicuculline, and 1 μM strychnine. Experiments were

performed at room temperature (21–25 ˚C). Patch pipettes (open-tip resistances of 3–8 MO)

were filled with solution containing (in mM): 150 K-D-gluconate, 10 NaCl, 10 HEPES, 3

MgATP, 0.3 NaGTP, 0.05 ethyleneglycol-bis(2-aminoethylether)-N,N,N’,N’-tetraacetic acid

(EGTA), pH adjusted to 7.3 using KOH.

Voltage-clamp recordings were done using a HEKA EPC10 amplifier controlled via Patch-

master software (HEKA Elektronik GmbH, Germany) essentially as described in [50]. Voltages

were corrected for a liquid junction potential of +13 mV. Extracellular mossy fiber stimulation

was performed using square voltage pulses (duration, 150 μs) generated by a stimulus isolation

unit (ISO-STIM 01B, NPI) and applied through an ACSF-filled pipette. The pipette was

moved over the slice surface close to the postsynaptic cell while applying voltage pulses until

excitatory postsynaptic currents (EPSCs) could be evoked reliably. Care was taken to stimulate

single mossy fiber inputs. EPSCs were recorded at a holding potential of –80 mV; data were

low-pass filtered at 2.9 kHz and digitized at 20–50 kHz. Train stimulation protocols comprised

bouts of 20 or 100 MF stimulations at 100 Hz, followed by single pulses to monitor recovery

from short-term depression (intervals: 25 ms, 50 ms, 100 ms, 300 ms, 1 s, 3 s). The interval

between subsequent train recordings was at least 30 s. For OED experiments, custom protocols
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were generated online as file templates for use with Patchmaster. EPSCs were quantified as

peak amplitudes from a 300-μs baseline before onset.

To facilitate the definition of the range of possible values for parameters q and σ (and espe-

cially to avoid running an experiment with too narrow ranges), recorded EPSC amplitudes

were normalized by dividing them by their maximum value. Analyses are thus performed by

assuming q 2 [0, 1] and σ 2 [0, 1].

Data were collected from 12 synaptic connections, each of them being successively stimu-

lated with the Deterministic (long), Deterministic (short), and ESB-BAL protocols. To accurately

compare the effect of ESB-BAL to this of deterministic protocols, it is important to ensure that

the synapse (and especially the strength of the synaptic connection) has not changed between

successive protocols (as synaptic strength can rapidly change in between stimulation protocols

due to synaptic plasticity). For each protocol, the mean value of the first EPSC of each batch is

computed, and the relative difference of this value for a pair of protocols is used to assess the

drift between these protocols. For a given synapse, pairs of protocols (i.e. Deterministic (long)
vs. ESB-BAL and Deterministic (short) vs. ESB-BAL) for which this drift exceeded 10% were

discarded, hence effectively leaving 5 pairs of protocols in Fig 6B and 7 in S7 Fig.

EPSC quantification

Data were sampled at 20.000Hz. To quantify EPSC peak amplitudes, we first used a boxcar

smoothing of raw data with a 5-point (i.e. 250μs) window. EPSC peak amplitude was then

defined as the difference between the mean of a 0.4-ms baseline after the stimulation artifact

and the minimum in the following 4-ms time window. Due to the synaptic delay, the EPSC

starts about 800μs to 1ms after the stimulation, thus allowing to compute the baseline between

the stimulation artifact and the EPSC onset. This has advantages in high-frequency stimulation

trains, when the preceding EPSC may not have decayed to baseline.

Statistical testing

Linear regression is used to measure the effect of ESB-BAL compared to a deterministic proto-

col. For data shown in Fig 6B, entropy (dependent variable) is regressed against the categorical

variable corresponding to the used protocol (ESB-BAL or deterministic). t-test is then per-

formed on the fitted slope coefficient.

Supporting information

S1 Fig. Examples of posteriors obtained using the filter (Algorithm 1). Upper left panel:

train of synthetic EPSCs generated from the model described in Section The system: A bino-

mial model of neurotransmitter release. Other panels: posterior distributions of the parameters

after 230 stimulations. Ground-truth values used to generate the EPSCs are displayed as red

vertical lines.

(TIFF)

S2 Fig. Average final entropy decrease (i.e. information gain) after 200 observations using

the Constant (top), Uniform (middle), or Exponential (bottom) protocol, for different val-

ues of their hyperparameters. Ground truth parameters used are N* = 7, p* = 0.6, q* = 1 A, σ*
= 0.2 A, and t∗D ¼ 0:25s [2]. Vertical red lines indicate the ground truth value t∗D ¼ 0:25s used

for simulations. Optimal values for xt, xmax, and τ are used in Fig 2. For the hyperparameter

xmax, values up to 2s are spanned to ensure that the mean of the Uniform distribution will span

values from 0 to 1s.

(TIFF)
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S3 Fig. Comparison of ESB-BAL to an optimized non-parametric fixed design. In previous

analyses, our adaptative design (ESB-BAL) was compared to parametric fixed designs (Con-

stant, Uniform, and Exponential). Although intuitive, these parametric fixed protocols may

not accurately represent the most informative fixed design. The best fixed ISI distribution can

be computed non-parametrically by randomly drawing ISIs from the list of previous ISIs com-

puted via ESB-BAL. We thus obtain a fixed and non-parametric optimized design. Results

show that this best fixed design (purple) performs similarly to the best exponential design

(green) and is still outperformed by ESB-BAL (black).

(TIFF)

S4 Fig. Same setting as in Fig 2 but for ground truth parameters N* = 10, p* = 0.85, q* = 1

A, σ* = 0.2 A, and t∗D ¼ 0:2s.

(TIFF)

S5 Fig. Same setting as in Fig 2 but when optimizing solely for the marginal posterior dis-

tribution of τD.

(TIFF)

S6 Fig. The binomial model provides a good fit to recorded EPSCs. Postsynaptic responses

to presynaptic stimulations were recorded in mossy fiber to granule cell synaptic connections

from acute cerebellar slices of mice. EPSCs amplitudes are computed from raw traces, as

detailed in Materials and methods. In this trace example, the presynaptic axon was stimulated

using repetitions of a deterministic train of spikes composed of 20 stimulations at 100Hz

(tetanic stimulation) followed by 6 recovery spikes at increasing ISIs. This trace illustrates the

short-term depression of the studied synapses, visible in the lower EPSCs amplitudes following

the first spike in the tetanic phase, and in the increasing amplitudes during the recovery phase.

The goodness of fit of the binomial model (described in Section The system: A binomial

model of neurotransmitter release) is assessed by comparing its prediction to recorded EPSCs.

For a given synapse, we first obtain maximum a-posteriori estimates of its parameters θ using

Metropolis-Hastings samples (as in [2]). Second, at each time step t, the value of the expected

EPSC yt and its variance given θ and x1:t can be computed using Eqs 23 and 27. This prediction

from the model (mean: orange solid line; shaded area: 3 standard deviations) can then be com-

pared to actual recordings (blue solid line).

(TIF)

S7 Fig. Same setting as in Fig 6B but comparing Deterministic (short) and ESB-BAL
(batch).

(TIF)

S8 Fig. Comparison of the effect of Multinomial and Stratified resampling. Same setting as

in Fig 2. Simulations used either the Multinomial or Stratified schemes for particles resampling

(see Section Particle filtering for synaptic characterization). Although the Stratified resampling

scheme improves the convergence of the parameters (B), it does not significantly improve the

information gain (A).
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