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Heat-related mortality has been identified as one of the key climate extremes
posing a risk to human health. Current research focuses largely on how heat
mortality increases with mean global temperature rise, but it is unclear how
much climate change will increase the frequency and severity of extreme
summer seasons with high impact on human health. In this probabilistic ana-
lysis, we combined empirical heat-mortality relationships for 748 locations
from47 countrieswith climatemodel large ensemble data to identify probable
past and future highly impactful summer seasons. Across most locations, heat
mortality counts of a 1-in-100 year season in the climate of 2000 would be
expected once every ten to twenty years in the climate of 2020. These return
periods are projected to further shorten under warming levels of 1.5 °C and
2 °C, where heat-mortality extremes of the past climatewill eventually become
commonplace if no adaptation occurs. Our findings highlight the urgent need
for strong mitigation and adaptation to reduce impacts on human lives.

Extreme heat is associated with substantial impacts on human
health1–4. In the past, extreme heatwaves in under-prepared commu-
nities havebeen responsible for several thousandsof deathswithin just
a fewweeks5–7. With anthropogenic climate change already accounting
for roughly a third of heat-related deaths8, the risk of deadly heat is
projected to further increase as the climate continues to warm
rapidly9–11. While several studies have projected future heat-related
mortality, they were based on a selected set of deterministic scenarios,
and estimated future heat mortality levels as the mean of a given cli-
mate period or scenario12–14. These approaches do not capture the full
suite of possible climate futures and may under-represent the poten-
tial risk for heat-related mortality, which can be driven by rare but
extreme years. At the same time, probabilistic projections of extreme
heat often lack the additional step of quantifying the corresponding
human impacts, including the health impacts15,16. To allow for a more
comprehensive risk assessment of highly impactful events for human

health, we apply a probabilistic approach to the quantification of
future heat-related mortality risk. Such probabilistic risk assessments
are widespread in the risk assessment of natural hazards, such as
flooding17 or tropical cyclones18, as knowledge of the magnitude and
probability of potential impacts are key to prepare for and adapt to
climatic extremes19. Our analysis is performed for 748 locations from
47 countries for which the Multi-Country Multi-City (MCC) Colla-
borative Research Network collected observed daily mortality and
temperature data during recent decades (Table 2). Using this data, we
quantify empirical exposure-response functions20 which we combine
with output from five single-model initial-condition large ensembles
(SMILEs)21 by using the natural catastrophe risk platform CLIMADA22.
The SMILE climate model output is generated by running a single cli-
mate model multiple times with perturbed initial conditions but fol-
lowing the same radiative forcing scenario. This creates diverging
weather and climate patterns for each model run, resulting in an
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ensemble spread that displays the internal climatic variability. The
variability within the ensemble allows us to explore physically plau-
sible extreme years and is thus well suited to estimate tail-risks.

This study quantifies not only the magnitude of potential future
heat-related excess mortality, but also the frequency, which can be
valuable to decision makers, as the ability to withstand climatic
extremes is often based on past experience23,24. Our use of the city (or
small region) as the unit of analysis is also administratively relevant
for adaptation planning25,26. We focus on heat, since this is the
emerging risk that health departments need to prepare for, but note
that cold-related mortality is higher throughout many locations in
our data set.

Results
Heat-mortality associations and exceedance frequency curves
We first modelled the relationship between mean daily temperature
and mortality in each of the 748 locations (Table 2). The relationships
areexpressed as relative risk and interpreted as the change inmortality
risk at specific temperature values against an optimum temperature
(the so-called temperature of minimum mortality, MMT)8,13,20. As
described in more detail in the Methods, these functions reflect the
complex relationship between temperature and all-cause mortality by
accounting for the delayed and nonlinear impact that heat has on
human health. The exposure-response functions are then used to
calculate the fraction of deaths attributable to heat based on the
estimated risk corresponding to the mean temperature value on each
day. Heat-related mortality corresponds to the average fraction of
daily deaths attributed to heat during days with mean temperature
above the MMT. As Fig. 1a–c shows, temperature-mortality associa-
tions tend to be U-shaped, but still differ (sometimes substantially)
from city to city, including in the MMT, which is generally higher in
hotter cities. To derive the probabilistic projections of heat-related
mortality, we hold these estimated relationships constant for all time
periods, which enables a straightforward comparison of the potential
impact of different levels of warming on mortality, but does not
account for demographic changes (especially population ageing) or
adaptation. We hence compute heat mortality by multiplying the day-
of-year average mortality counts from the empirical data in each
location by the relative risk associated with the (projected) tempera-
ture for that day and summarize it to annual levels (Methods). This
approach estimates heat-related deaths while also preserving the
annual cycle of mortality. The same method was used in foregoing
studies to derive heat-mortality estimates for different scenarios and
study periods8,12.

To characterize probabilistic mortality impacts, we plot impact
exceedance frequency curves, which relate the magnitude of impacts
(here annual heat-mortality fractions) to its frequency of occurrence.
Specifically, we express the frequency through a “return period”,
defined as the inverse of the cumulative occurrence probability. A 1-in-
100 year heat-mortality level—i.e. a 100 year return period—thus refers
to themortality that is exceeded by 1% ofmodeled years within a given
climate period for each of the five SMILEs. We do this annually for
every model for the four 20-year climate periods that represent mean
warming levels in the year 2000 (0.7 °Cofwarming abovea 1850–1900
reference period), the year 2020 (1.2 °C warming), as well as for 1.5 °C
and 2.0 °C of warming. This approach hence yields up to 1680
(depending on the number of ensemble members per SMILE) equally
probable years for each climate period and model.

The impact exceedance frequency curves at each of the four dif-
ferent warming levels are displayed for three selected locations,
representing different continents and climate zones, in Fig. 1d–f. Heat-
related mortality in 2003 in Paris, which included the record breaking
European summer, amounted to 5.9% (95%CI: 4.7–7.3%) of total annual
mortality (an estimated 2718 (2142–3371) deaths in the city), a level
expected to occur only about once every 100 years in the climate of

2000 (Fig. 1e). However, we find that in the climate of 2020, the same
mortality impacts would be expected every 18 years (model IQR:
16.6–20.4), which is in line with previous studies27. At 2.0 °C, this level
of mortality would be the norm and expected to occur every few years
if no adaptation to extreme heat occurs.

In 2014, São Paulo experienced heat-related mortality of 1.7%
(0.7–2.8%) of total mortality, or 1296 deaths (556–2095, in line with
ref. 28), a burden that would be expected every 134 (67–217) years in
the climateof 2000; the returnperioddecreases to 18 years (17.0–19.6)
in the climate of 2020, 11 years (8.0–13.1) at 1.5 °C and 5 years (2.7–5.5)
at 2.0 °C (Fig. 1d). Return periods for Bangkok similarly shorten with
increasing levels of warming.

To summarize, the impact exceedance frequency curves con-
sistently project a rapid reduction in return periods of heat-related
mortality; the mortality fractions experienced during past extreme
years should be expected much more frequently (shift along the x-
axis). The curves also show that heat impacts increase, both for fre-
quent (1-in-10) and extreme (1-in-100) years (i.e., shift along the y-
axis). Figure 1g–i reports the estimated mortality fraction from heat
that would occur in a 1-in-100 year for each SMILE separately. This
fraction would more than double in all three example cities if global
mean temperatures rose from 0.7 °C to 2.0 °C above pre-industrial
levels, albeit with uncertainty due to different warming rates of the
climate models, internal climate variability (inner whisker of the grey
ticks) and the epidemiological uncertainty within the relative risk
associations (outer whisker), as displayed by the shaded area (95%CI)
in Fig. 1a–c. The internal climate variability is assessed by boot-
strapping the ensemble members for each model-specific exceen-
dance frequency curve. Overall, these results show that ongoing,
rapid shifts in mean and extreme temperatures limit the utility of
past observations for assessing the risk of even present-day or near-
future heat risks.

Changes in return periods across the globe
In Fig. 2, we display the new return period for all 748 locations of the
annual heat-mortality level of a 1-in-100 year season in the climate of
2000. Despite regional differences, the results show a strong short-
ening of return periods throughout the globe. Changes are especially
pronounced on the US Atlantic and Gulf coast as well as the Latin
American Pacific coast, theMediterranean region, theMiddle-East and
South-East Asia. The changes in return periods over Europe show a
North-South gradient with stronger shifts in Southern Europe, despite
more pronounced warming over Northern Europe29. This impact gra-
dient is also present in related studies13 and highlights the importance
of incorporating location-specific exposure-response relationships
into this risk analysis. Uncertainties in vulnerability are generally
higher in locations where the annual temperature range is less than
10 °C, including and especially in (sub-)tropical locations. This induces
larger uncertainties when extrapolating the relative risk curve to
higher temperatures (see e.g. Bangkok, Fig. 1c).

Overall, our results show that the potential for increased risks
from heat-related mortality is not only a concern for the future, but
something that has already manifested over the past two decades. In
addition, Fig. 2 highlights how limiting long-term warming to 1.5 °C
would entail a substantially lower risk than what is projected for a 2 °C
world. Even so, for most locations, the extreme years of the past will
become commonplace in the near future, requiring substantial adap-
tation to avoid large-scale harm.

Uncharted territories ahead
In addition to the changes in the frequency of extreme years, the
increases in the magnitude of mortality of low probability (1-in-100
year) seasons is also of high relevance to societies anddecisionmakers.
Heat-mortality during extreme seasons can amount to more than 10%
of total deaths in several locations even under moderate climate
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scenarios, according to the multi-model mean (Fig. 3), which repre-
sents a doubling or even tripling of mortality impacts during extreme
seasons. The risk is especially pronounced throughout Europe, South-
East Asia and the Latin American Pacific coast. Furthermore, locations
with a historically lowburdens of heatmortality are projected to suffer
potentially high death counts during an extreme season, again high-
lighting the value of a probabilistic risk perspective as these types of
extreme seasons areof special relevance to societies. Still, for locations
in Central America, inlandUS, NorthWestern Europe and South Africa,
the risk is less pronounced, even under climate change. However we
note that the latter (South Africa) may be due in part to data artifacts30

and warn against interpreting those results as definitively implying
low-risk.

Worsening the odds of heat-mortality
Wewant to highlight twomainfindings fromour study. First, we found
thatwhatused to be extreme (1-in-100 year) heat-mortality seasons are
becoming frequent, and need to be expected every 2–5 years in most
locations. Second, with non-linear effects, both in new climatic
extremes, as well as in the vulnerability of communities to heat,
unprecedented impacts on populations health need to be expected
when assuming no adaptation. We found that mortality levels in Paris
that were expected to be exceeded once in 100 years in 2000 are
exceeded 5 times in 100 years in the 2020 climate, 10 times in a 1.5 °C
world and 27 times in a 2 °C hotter world (Fig. 4). This increase in
probability of mortality levels is even larger for seasons that were
highly unlikely in 2000 (1-in-500 year seasons) as they need to be

Fig. 1 | Risk of heat mortality for São Paulo, Paris and Bangkok. Risk of heat
mortality for São Paulo (Brasil, a, d, g), Paris (France, b, e, h) and Bangkok (Thailand,
c, f, i). a–c Relative risk of mortality relative to the location-specific minimum mor-
tality temperatures reported as best linear unbiased predictions (BLUPs) with 95%
confidence interval (shaded area). Vertical dotted lines show the log-linear extra-
polation used for projections when future temperatures exceed current tempera-
tures. Dashed vertical lines show present-day 99th percentile temperatures. d–f
Impact exceedance frequency curves of annual heat mortality fractions for the
observed years (black line,markers denote individual years), as well as the climate of

2000 (warming level of 0.7 °C), the climate of 2020 (warming level of 1.2 °C), 1.5 °C
warming and 2 °C warming. The modelled impact exceedance frequency curves are
reported as the median value over the five single-model initial-condition large
ensembles (SMILEs). g–i Modelled magnitude of the annual heat mortality fraction
from a 1-in-100 year season for different warming levels. Results are displayed for
each SMILE (bars) including uncertainty estimates depicted with the 95% empirical
confidence intervals accounting for the internal climate variability (inner whisker)
and imprecision of the exposure-response associations (outer whisker). The black
horizontal line denotes the median estimate for each global warming level.
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expected 14 times in 100 years in a 2 °C hotter world, thus increasing
their likelihood by a factor of 69. Hence, even under warming levels in
line with the Paris agreement (1.5–2 °C), non-extreme seasons are
becoming increasingly rare for most locations while uncharted terri-
tories are first becoming the new extremes and then eventually
regular.

Discussion
In this work we combined state-of-the-art techniques from climate
change epidemiology with the latest approaches in climate science to
quantify extreme seasons. Our results align well with related work

although a direct comparison of numbers is hampered by different
selection of reference scenarios, time scales or geographical scope27,31.
As an example, the change in return period of the mortality counts
during the 2003heatwave in Paris was estimated to decrease from 1-in-
300years, in aworldwithnoanthropogenic climate change to a 1-in-70
years in the actual climate of 200327, which alignswell with ourfindings
(Fig. 1). Looking solely at climatic variables, the rapid reduction of
return periods of such heatwaves were reported early on32, estimating
the 2003 temperature anomaly over Southern Europe to occur every
other year (1-in-2 years return period) by 2040. Similarly, Christidis
et al.33. found a tenfold decrease of the return period of extremely hot

Fig. 2 | Changes in return periods of a 1-in-100-year season in the 748 locations.
Changes in return periods for the climate of 2020 (warming level of 1.2 °C, a), at
1.5 °C warming (b) and at 2.0 °C warming (c) compared to the risk in the climate of
2000 (0.7 °C warming). The figure displays the new return period of the location-

specific 1-in-100-year heat-mortality level of 2000. The colour-scale is logarithmic.
The grey dots denote locations with inconclusive results due to their spread in
uncertainty.
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European summers between the 1990s and the early 2000s (from 1-in-
50 years to 1-in-5 years), again aligning well with our findings. Similar
results were obtained using SMILE data34, where the return period of a
monthly temperature extreme of a 1-in-100 year event in a 1.5 °C world
is reduced to a roughly 1-in-10 year event in a 2 °Cworld, whilst the new
1-in-100 year events of the 2 °C world represent unchartered terri-
tories. Our analysis identifies several regions with a pronounced
shortening of return periods of extreme seasons. For tropical regions
this is largelydue to the small seasonality and year-to-year variability of
temperature which therefore leads to large shifts in return periods of
extremes in a hotter climate35. In Southern Europe, Japan and along the
US Atlantic and Gulf coast, the projected reduction in return periods is
furthermore driven by demographic influences, such as the aging of
societies and the heightened vulnerability of populations to heat.

These results highlight a need to incorporate possible extreme
scenarios and storylines of unprecedented heatwaves into the plan-
ning of public health policies as the experience frommortality impacts

of past summer season is likely to underestimate the actual risk of heat
mortality in the rapidly changing climate. Currently, most (European)
heat-health warning systems focus on issuing warnings to relevant
authorities and vulnerable people duringor slightlybefore theonset of
a heatwave36. However, in contrast to other climatic extremes, such as
floods, only few authorities systematically plan for rare but extreme
seasons36.

We acknowledge some limitations of this study. First, despite
having access to what is, to our knowledge, the most comprehensive
data set for climate change epidemiology, our geographical scope is
somewhat limited and overrepresents Western regions compared to
other parts of the world. This is potentially problematic, as severe heat
is expected to increase strongly in many tropical regions (especially
also in Western and Eastern Africa and India11) with highly limited
(financial) capacity for adaptation. However, given the highly location-
specific risk-response curves, we refrained from extrapolating to these
regions. In addition, impacts are analyzed for each location as a whole,

Fig. 4 | Schematic display of internal variability of heat related mortality for
Paris (France). Each circle contains 100 points representing the climatic variability
of the given warming level. The points denote the return period based magnitude

ofmortality of the climate of the year 2000 for a 1-in-10 year season (orange), a 1-in-
100 year season (violet), a 1-in-500 year season (black) and more frequent seasons
(yellow).

Fig. 3 | Heat-mortality fraction of a 1-in-100-year season in the 748 locations.
Heat-mortality fraction of a 1-in-100 year season. Rates are displayed for the climate
of 2000 (a), 2020 (b), 1.5 °C (c) and 2.0 °C warming (d). For each location, shares

are calculated as the heat-mortality counts during a 1-in-100 year season divided by
the mean annual mortality. The colour-scale is logarithmic.
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which leaves us agnostic to intra-community differences in vulner-
ability due to age5,37, race/ethnicity38,39, gender40 or poverty37,41. Also
important small-scale climatic differences, such as urban heat island
effects are not resolved42. This is potentially problematic, as they can
overlap with vulnerable communities39. Second, we use constant risk-
response relationship and do not account for future adaptation. For-
tunately, from a public health perspective, the evidence suggests that
communities often (though not always) adapt to warming
conditions43–45. However, for most locations the data is up-to-date and
thus well-suited to display the current-day risk, although recent sum-
mer seasons are not fully covered (Table 2). The projected warming
levels need to be expected to be reached in the near future—1.5 °C by
2030 and 2 °C by 2042 under the business-as-usual scenario SSP5-
8.529—which leaves cities little time for adaptation. Still, we therefore
refrained from displaying projections for higher warming levels
although themodelling set-up and data would allow to do so. Third, as
mentioned above, we do not account for changes in the demographic
structure of populations, such as population growth, ageing and
increased urbanization. Fourth, the risk-response curves needed to be
extrapolated to temperatures unobserved in the empirical data, which
entails uncertainty. These points mark relevant areas for future
research, especially the incorporation of changes in population as well
as adaptation into future projections of heat mortality levels. Never-
theless, trends and signals remain stable (Fig. S1, Supplementary
Information). Also, the stochastic uncertainty of exceedance fre-
quency curves is well captured within each SMILE (Fig. S2, SI). The
spreadbetweendifferent SMILEs is relatively small for past and current
risk due to the applied bias-correction but increase over time, as
themodels underlie different warming rates (Fig. S3, SI). However, the
main signals, such as changes in return periods, are remarkably stable
across all SMILEs (Fig. S4, SI).

In this study, we relied on the most expansive database on
weather and health (the MCC Collaborative Research Network data-
base), covering 134 million deaths, and data output from the large-
ensemble project, representing 234 climate model runs (or more than
1 TB of climatemodel output). We demonstrated that the probabilistic
risk of heat-mortality has already increased rapidly over the past 20
years already and is projected to further increase strongly under
higher levels of global warming. These findings highlight the urgent
need for adaptation to heat extremes. Finally, our results clearly state
that numerous lives can be saved with strong mitigation policies that
keep global warming well below 2 °C, and that efforts to limit the
increase to 1.5° are of greatest importance.

Methods
Climate model data
We used daily mean temperature data from five SMILEs: CESM1.216,
CESM1-CAM546, CanESM247, GFDL-ESM2M48 and CSIRO-Mk3.6.049,
totalling 234 climate model runs (Table 1). For all models, data is
available at least from 1950–2100. After 2005, all models follow the
representative concentration pathway RCP8.550. We used period
lengths of 20 years for each climatic reference period. 20 years are a

compromise between decreasing effects of internal variability (which
is better covered in standard 30 year periods) and a clear sign of
change (i.e. between the climate of 2000 and 2020). In order to obtain
warming-based reference periods of 0.7, 1.2, 1.5 and 2.0 °C, we calcu-
lated the mean warming of eachmodel over all ensemble members as
compared to the reference period of 1950–1969. In line with related
work51, we selected the first 20-year period in which the respective
warming level is reached, including the adjustment of 0.25 °C of
observed warming that occurred until 1950–1969 against a historic
reference period of 1850–1900 (on the basis of the observational
HadCRUT5 dataset52). Hence, the different SMILEs don’t necessarily
cover the same years for a given level of global warming, as shown in
Table 1.

Bias-correction of climate data
We bias-corrected the climate model output to align it with the
observational temperature data used to calculate the heat-mortality
relationships. For that, we took model data from the nearest-
neighbour grid-point to each MCC location and bias-corrected it
using quantile-mapping53. This leads to one correction function for
each combination of ensemble member and location. However, to
keep internal climate variabilitywithin each SMILE, thefinal SMILE- and
location-specific correction function, is the average over all individual
ensemble-member correction function. For consistency, the same
location- and SMILE specific correction function was applied for each
warming level.

Mortality data
We accessed the MCC Collaborative Research Network database for
daily mortality counts and observational daily mean temperature data
for 748 locations (http://mccstudy.lshtm.ac.uk/). Each location repre-
sents a small-scale geographic aggregation unit (city, metropolitan
area or small region).Mortality counts depict all-causeor non-external-
cause mortality (ICD-9: 0-799; ICD-10: A00-R99). Temporal data cov-
erage of locations varies between 4 and 43 years. More information
and descriptive statistics of the data is displayed in Table 2.

Assessing temperature-mortality relationships
The epidemiological analysis to assess the association between heat
and mortality in each location relies on a two-stage time-series
approach which is commonly used in multi-location time-series
studies8,12,54.

First, we performed quasi-Poisson regression time series analyses
with distributed lag nonlinear models (DLNM) to estimate the
temperature-mortality association for each location55. Model specifi-
cation and parameterization is based on previous studies20,56,57, as well
as the choice of mean temperature as variable20,58–60 and tested for
their sensitivity59,61–63. Concretely, we included a natural cubic spline of
time with eight degrees of freedom per year in combination with and
indicator term for day of the week to account for long-term trends and
seasonality. The temperature-mortality curve is then modeled with a
quadratic B-spline with three internal knots placed at the 10th, 75th

Table 1 | Properties of single model initial condition large ensemble (SMILEs) used in this study

Number of
members

Model
resolution

Forcing Model time period

Climate Model 2000 (0.7 °C) 2020 (1.2 °C) 1.5 °C 2.0 °C

CESM1.2 84 1.9° × 2.5° Hist/rcp8.5 1989–2008 2006–2025 2014–2033 2027–2046

CESM1-CAM5 40 1.3° × 0.9° Hist/rcp8.5 1990–2009 2007–2026 2015–2034 2028–2047

CanESM2 50 2.8° × 2.8° Hist/rcp8.5 1982–2001 1995–2014 2003–2022 2016–2035

GFDL-ESM2M 30 2.0° × 2.5° Hist/rcp8.5 1988–2007 2010–2029 2024–2043 2042–2061

CSIRO-Mk3.6.0 30 1.9° × 1.9° Hist/rcp8.5 1996–2015 2014–2033 2022–2041 2035–2054

Table properties partly adapted from Deser et al.21.
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and 90th percentile of the location-specific observational temperature
distributions (referred to as the cross-basis function of temperature64).
In line with previous studies, we applied a natural cubic spline with
three internal knots equally distributed up to 21 days to capture the
lagged response of mortality (such as short-term harvesting and long

lagged associations). We selected the 21 days lag because we use all-
year mortality data and not only data of the hot season. Finally, we
reduced the bi-dimensional (over temperature and time) exposure-
response function into a one-dimensional (temperature only) cumu-
lative exposure-response function which expresses the location spe-
cific relative risk of mortality as a function of local daily mean
temperature (Fig. 1a–c).

Second, to make full use of the hierarchical structure of the data,
the location-specific coefficients from the first stage were pooled in a
multivariate-metaregression model65. We then derived the best linear
unbiased predictions (BLUPs) representing improved location-specific
estimates, especially for locations with a short time series or low
mortality counts. For the meta- predictors, we use country-level gross
domestic product (GDP), location specific mean and interquartile
range of temperature as well as a random termwith clusters of cities of
the same climate zone within a country66. Uncertainties of the tem-
perature- mortality relationships were quantified by generating 1000
Monte Carlo simulation samples of the sets of coefficients of the
BLUPs, assuming a normal distribution of said coefficients. Finally, the
BLUPs were log-linearly extrapolated to cover the additional range of
temperature occurring in the warming scenarios. The epidemiological
analysis was performed within the R software environment using the
open-source packages dnlm67 and mixmeta65.

Quantifying heat-related mortality
To quantify the heat-related mortality impacts, the epidemiological
analysis needs to be combined with the SMILE climate data. We com-
puted the heat-related deaths, or deaths attributed to heat, for each
location, global warming level, ensemble member and day when the
mean temperature was above MMT using the method described in
Gasparrini et al.56. and extended by Vicedo-Cabrera et al.13. for climate
change projections. For each day, the location specific daily baseline
mortality was used to extract the corresponding fraction of deaths
attributed to heat using the corresponding relative risk defined by the
BLUPs at the specific daily mean temperature value obtained from the
SMILEs. Thedaily baselinemortalitywas computed as the averagedaily
deaths for each day of the year within each location. The daily counts
are aggregated to yearly levels and subsequently the corresponding
heat-mortality fraction was computed as the percentage of heat-
related deaths over the total annual mortality. The focus on annual
levels is in contrast to relatedworkwhichonly includes the four hottest
months for each location8 but yields the advantage to capture possible
climatic shifts and a prolonging of the respective hot season. We
excluded 28 locations (mainly in South Africa) from the analysis
(Fig. 2), since the results became inconclusive as the uncertainty range
spans more than one order of magnitude of the mortality impact size.

CLIMADA
Heat mortality impacts were calculated using the CLIMADA (CLIMate
ADAptation) platform22, available on GitHub at https://github.com/
CLIMADA-project/climada_python. CLIMADA is fully open-source and
-access and a well-established risk model to model impacts of natural
catastrophes such as tropical cyclones68, flood69, windstorms70 or
wildfires71. The methodology for heat mortality was adopted from the
R based tutorial54 and translated to python. The new heat module is
integrated into the platform to benefit from its broader functionalities
such as calculation of risk metrics and adaptation options19.

Impact exceedance frequency curves
Return levels and return periods of heat-related mortality in each
location and for each SMILE are empirically estimated in the following
way: (1) Daily heat-related mortality numbers are calculated for each
ensemble member using the approach described above and aggre-
gated to annual levels (2) This yields N = nmember × 20 annual heat-
related mortality impacts for each 20-yr period. E.g. for the CanESM2

Table 2 | Summary of the mortality data for the 748 locations

Region Country Locations (n) Data period Total
deaths (’000)

Australia Australia 3 1988–2009 1178

South
America

Argentina 3 2005–2015 686

Brazil 18 1997–2018 3895

Chile 4 2008–2014 325

Colombia 5 1998–2013 957

Costa Rica 1 2000–2017 31

Ecuador 2 2014–2018 112

France Guiana 1 2000–2015 7

Paraguay 1 2004–2019 48

Peru 18 2008–2014 633

Uruguay 1 2012–2016 154

Central
America

France
Caribbean

2 2000–2015 46

Guatemala 1 2009–2016 63

Mexico 10 1998–2014 2980

Panama 1 2013–2016 11

Puertorico 1 2009–2016 27

North
America

Canada 26 1986–2015 3734

USA 210 1973–2006 38,028

South Africa South Africa 45 1997–2013 7776

Southern
Europe

Greece 1 2001–2010 288

Italy 11 1996–2007 820

Portugal 6 1980–2018 1925

Spain 52 1990–2014 3017

Central
Europe

Czech Republic 4 1994–2015 712

France 18 2000–2015 1754

France Reunion 1 2000–2015 14

Germany 12 1993–2015 3106

Moldova 4 2003–2010 60

Romania 8 1994–2016 951

Switzerland 8 1995–2013 244

Northern
Europe

Estonia 5 1997–2018 168

Finland 1 1994–2014 153

Ireland 6 1984–2007 1058

Netherland 4 1995–2016 3050

Norway 1 1969–2018 271

Sweden 3 1990–2016 717

UK 70 1990–2016 6167

Middle-
East Asia

Iran 2 2004–2013 818

Israel 1 1985–2020 351

Kuwait 1 2000–2016 74

South-
East Asia

Philippines 13 2011–2019 821

Thailand 61 1999–2008 1802

Taiwan 3 1994–2014 1210

Vietnam 2 2010–2013 108

East Asia China 14 2004–2006 1095

Japan 47 1972–2015 39,918

South Korea 36 1997–2018 3070

Total 748 134,433
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this results in N = 1000 (=50 × 20) possible years. (3) The empirical
probability of occurrence for any given year in this period can thus be
expressed as p = 1/N, as all of these years can be treated with equal
probability of occurrence and are independent of one-another. Hence,
within the CanESM2, each modelled year has a probability of occur-
rence of 0.1% (=1/1000) (4) The return periods are then quantified by
calculating the cumulative probabilities of exceedance of impact
levels: v(x) = 1/T(x), where v(x) is the exceedance frequency of impact x
and T(x) the corresponding return period22. Thus, an impact
level with a cumulative probability of being exceeded by 10%
of all modelled years refers to the impact of a 10-year return period
(T(x) = 10 y = 1/10% y−1). In our example of the CanESM2, this corre-
sponds to the year with the 100th largest impact within a given climate
period (v(x) = 10%y−1 = 100*0.1%y−1). (5) The exceedance frequencies
shown in this study (Fig. 1), are expressed as median values over all
SMILEs. Hence, each large ensemble is weighted equally, irrespective
of its member size. Quantification of model agreement and uncer-
tainties can be found in the supplementary information.

Data availability
The SMILE climate model output is available via https://www.cesm.
ucar.edu/projects/community-projects/MMLEA. The output of the 84-
member ensemble of the CESM1.2 used in this analysis is available at
https://data.iac.ethz.ch/Fischer_et_al_2021_RecordExtremes. A subset
of daily mortality data is available at https://doi.org/10.48350/155666.

Code availability
All code necessary to reproduce the analysis is made available on
https://github.com/samluethi/ProbaHeat and permanently stored at
https://doi.org/10.5281/zenodo.8074922.
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