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A B S T R A C T   

Background: Obesity-associated chronic inflammation mediates the development of adverse cardiometabolic 
outcomes. There are sparse data on associations between severe obesity and inflammatory biomarkers in 
adolescence; most are cross-sectional and limited to acute phase reactants. Here, we investigate associations 
between adiposity measures and inflammatory biomarkers in children and adolescents with severe obesity both 
cross-sectionally and longitudinally. 
Methods: From the Childhood Overweight Biorepository of Australia (COBRA) study, a total of n = 262 partic-
ipants, mean age 11.5 years (SD 3.5) with obesity had measures of adiposity (body mass index, BMI; % above the 
95th BMI-centile, %>95th BMI-centile; waist circumference, WC; waist/height ratio, WtH; % total body fat, %BF; 
% truncal body fat, %TF) and inflammation biomarkers (glycoprotein acetyls, GlycA; high-sensitivity C-Reactive 
Protein, hsCRP; white blood cell count, WBC; and neutrophil/lymphocyte ratio, NLR) assessed at baseline. 
Ninety-eight individuals at mean age of 15.9 years (3.7) participated in a follow-up study 5.6 (2.1) years later. 
Sixty-two individuals had longitudinal data. Linear regression models, adjusted for age and sex for cross-sectional 
analyses were applied. To estimate longitudinal associations between change in adiposity measures with 
inflammation biomarkers, models were adjusted for baseline measures of adiposity and inflammation. 
Results: All adiposity measures were cross-sectionally associated with GlycA, hsCRP and WBC at both time points. 
Change in BMI, %>95th BMI-centile, WC, WtH and %TF were associated with concomitant change in GlycA and 
WBC, but not in hsCRP and NLR. 
Conclusion: GlycA and WBC but not hsCRP and NLR may be useful in assessing adiposity-related severity of 
chronic inflammation over time.  
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Introduction 

Obesity in childhood and adolescence is a leading modifiable risk 
factor for adult morbidity including hypertension, dyslipidaemia and 
type 2 diabetes mellitus (T2DM), and for premature cardiovascular 
disease (CVD) [1] and CVD mortality [2,3]. Children and adolescents 
with more severe obesity also have a higher prevalence of other CVD risk 
factors [4], including increased blood pressure, type 2 diabetes, and 
higher levels of apolipoprotein B (apo-B)-containing lipoproteins. 
Although mechanisms are incompletely understood, stress related to 
adipose tissue expansion [5] and dietary factors activating peripheral 
immune cells [6] contribute to chronic inflammation. Acute and chronic 
inflammatory pathways are well-established drivers for CVD events [7, 
8], and many of those pathways are part of an obesity-related metabolic 
inflammation that links excessive adiposity with obesity-related adverse 
outcomes [9,10]. 

High-sensitivity C-reactive protein (hsCRP) [11] is the most widely 
used inflammatory marker for CVD risk stratification, but there is little 
evidence for a causal link between hsCRP and atherosclerosis [12,13]. 
White blood cells (WBC) and neutrophil/lymphocyte ratio (NLR) 
showed modest improvement in prediction compared to traditional CVD 
risk factors for 10-year CVD risk [14]. Recently, glycoprotein acetyls 
(GlycA), a nuclear magnetic resonance (NMR) signal in human blood, 
has been described as a superior marker of cumulative and chronic 
inflammation [15,16]. GlycA is a composite measure of circulating 
plasma proteins (including alpha-1-acid glycoprotein, alpha-1 anti-
trypsin, alpha-1 antichymotrypsin and haptoglobin) which received 
N-acetyl-glycosylation on their glycan portions [17]. Glycoproteins 
contributing to the GlycA signal were first denoted as part of an in-
flammatory acute-phase response, however GlycA has subsequently 
been associated with a range of chronic inflammatory conditions 
including obesity [18], as well as cognitive decline, cancer, and 
CVD-related [19] and all-cause mortality [20]. 

Studies in adolescents investigating cross-sectional and longitudinal 
relationships of adiposity measures with GlycA and other inflammatory 
biomarkers are scarce. Obesity in childhood strongly tracks into 
adolescence and adulthood [21]. Better understanding of the inflam-
matory associations of obesity earlier in life may help guide develop-
ment and assessment of earlier intervention. Here, we investigated the 
relationship between adiposity measures (body mass index, BMI; the 
severity of obesity in percentage above the BMI-centile threshold, %>

95th BMI-centile; waist circumference, WC; waist to height ratio, WtH; 
body fat, %BF; truncal fat, %TF) and inflammatory biomarkers (GlycA, 
hsCRP, WBC and NLR) in early and late adolescence, and whether 

longitudinal changes in adiposity measures were reflected in concomi-
tant changes in these inflammatory biomarkers. 

Methods 

Study population 

Participants were enrolled in the Childhood Overweight Bio-
repository of Australia (COBRA) study. COBRA is comprised of a total of 
438 children and adolescents with obesity (BMI ≥95th centile using US 
Centres for Disease Control (CDC) growth reference charts [22]), 
recruited at the Royal Children’s Hospital (Melbourne, Australia) 
Weight Management Service between 2009 and 2018 [23]. From 
COBRA participants, a total of 262 individuals had an initial blood 
sample collected for the analysis of inflammation biomarkers at base-
line. COBRA participants, who consented for recontact for further 
studies, were asked to participate for a follow-up cardiovascular risk 
study. From the initial COBRA cohort, a total of 98 adolescents (up to 25 
years of age) consented for follow-up (Fig. 1). A total of 62 individuals 
had data on adiposity and inflammatory biomarkers assessed at both 
timepoints with a mean interval of 5.6 years. Written informed consent 
was obtained from the participant aged >18 years or their legally 
authorised representative if <18 years. Assent was additionally obtained 
from all participants aged >14 years. The study protocol was in accor-
dance with Helsinki principles and was approved by the Royal Chil-
dren’s Hospital Human Research Ethics Committee (HREC Ref. # 
28081Q). 

Adiposity and socioeconomic status 

At both time points, identical protocols were used for anthropo-
metric measurements: height, weight, BMI, %>95th BMI-centile, WC, 
WtH, %BF and %TF. Participants wore light clothes and no shoes during 
these measurements. Weight (kg), %BF and %TF were measured with a 
four-point bio-impedance device (Tanita Corporation, Tokyo, Japan). 
Fat percentage measurements have been validated in children aged 5 or 
older [24], so measurements from any participants <5 years of age were 
excluded. WC was measured midway between iliac crest and lower end 
of ribs to the nearest 0.5 cm with a non-stretchable meter. Height (m) 
was measured using a Harpenden stadiometer (Holtain Ltd., Crymych, 
Dyfed, UK). WtH ratio was calculated as WC divided by height in cen-
timetres. BMI was calculated as weight divided by height squared. %>

95th BMI-centile was derived from CDC reference charts matched for 
age and sex [22]. Briefly, %>95th BMI-centile is a continuous measure 

Fig. 1. Flowchart of participants from COBRA cohort that had available inflammation data for this study at each time point (double-bordered boxes).  
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starting from the 95th BMI-centile, and is a ratio of the individual’s BMI 
divided by the relevant 95th BMI-centile for an age- and sex-matched 
individual multiplied by 100 %: e.g. the 95th BMI-centile for a male 
adolescent aged 14 years is 26 kg/m2, such that if this participant’s BMI 
was 32 kg/m2, the %>95th BMI-centile is (32/26) x 100 % = 123 %). 
The %>95th BMI-centile has advantages for tracking longitudinal 
changes in severity of obesity compared to BMI z-score, particularly in 
paediatric populations with severe obesity [25]. Severe obesity is 
defined as ≥120 %>95th BMI-centile [26]. Pubertal development was 
assessed at baseline and follow-up by an experienced paediatrician using 
Tanner staging: Tanner 1 was considered pre-pubertal, Tanner 2 or 3 
was peri-pubertal, and Tanner 4 or 5 was post-pubertal [27]. Socio-
economic status was assessed at baseline using the 2016 Socio-Economic 
Indexes for Areas (SEIFA) [28] Index of Relative Socioeconomic Disad-
vantage (IRSD), which is based on residential postcode. A lower IRSD 
score indicates a greater level of disadvantage. 

Inflammatory markers 

Blood samples at baseline and follow-up were processed to serum 
within 2 h and stored at − 80 ◦C. Blood was not collected at baseline or at 
follow-up if the participant was known to have a current infection based 
on history and clinical examination. Serum GlycA was quantified using a 
nuclear magnetic resonance metabolomic platform (Nightingale Health, 
Helsinki, Finland) as previously described [29]. hsCRP was measured 
using ELISA (R&D Systems, Minneapolis, Minnesota), according to 
manufacturer’s instructions. Baseline and follow-up measurements of 
hsCRP were performed with the same assay. Measurements equal to 
0 (below the limit of detection) for hsCRP were replaced with values 
equal to half the lowest non-zero measurement (considered as the lower 
limit of detection) (n = 5 at baseline and n = 1 at follow-up). Partici-
pants with hsCRP greater than 20 mg/L were excluded from the main 
analyses (n = 8 at baseline, n = 0 at follow-up), as high hsCRP levels 
suggest acute inflammation, usually infection. Sensitivity analyses 
including participants with hsCRP >20 mg/L did not alter the findings 
(data not shown). WBC and differentials were measured in a clinical 
laboratory prior to blood processing using standard analysis. 

Statistical analyses 

Descriptive analyses of continuous variables were reported as mean, 
standard deviation (SD) and minimum-maximum (min-max) range, and 
categorical variables were reported as absolute numbers and percent-
age. To ensure representativeness of participants and generalizability of 
the findings within the COBRA cohort, demographic characteristics 
(age, sex) and age-standardized measures of adiposity and inflammation 
biomarkers were compared between i) participants with longitudinal 
data and participants with only baseline data, ii) participants with 
longitudinal data and participants with only follow-up data, and iii) 
between participants with only follow-up data and participants with 
only baseline data. Inflammation markers were natural log-transformed 
for correlation and regression analyses. Spearman’s correlations (rho) 
were calculated between values of inflammatory marker across both 
time points. Linear regression modelling was used to investigate asso-
ciations between adiposity measures (exposure) and inflammatory 
biomarker (outcome) cross-sectionally, adjusted for age at the relevant 
timepoint and sex. For the models investigating change between time 
points, the follow-up adiposity measure was the independent variable of 
interest, and the follow-up inflammation measure the dependent vari-
able, adjusted for corresponding baseline measures, sex and age at each 
time point. 

Analyses were performed in R (v3.6.1) [30]. Estimated effect sizes 
are reported in natural units. For % >95th BMI-centile, we reported 
steps of 5 % units. In figures, WtH units have been multiplied by ×0.01 
to facilitate shared axes. In secondary analyses, sex-stratified models, 
and additional adjustment of models for socioeconomic and pubertal 

status were evaluated. We also considered adiposity-by-sex and 
adiposity-by-pubertal status interaction effects on inflammatory 
outcome measures. 

Results 

At baseline, there were 262 participants, mean age 11.5 years (SD 
3.5), BMI 32.7 kg/m2 (SD 7.4), and at follow-up 98 participants, mean 
age 15.9 years (SD 3.7), BMI 35.6 kg/m2 (SD 7.9), with data for at least 
one adiposity and one inflammatory measure (Table 1). A total of 62 
participants had data at both time points (mean interval 5.6 years, SD 
2.1, range 1.9–9.1) (Table 1). Participants with data at both time points 
were younger at baseline than those with only baseline data (mean age 
10.6 years, n = 62 vs. 11.7, n = 200), but otherwise did not differ by sex, 
age-standardised measures of adiposity, or inflammation at baseline. 
Participants with data at both time points did not differ from those with 
only follow-up data across any measures used in this study. Participants 
who had data at follow-up were younger at baseline than those without 
(mean age 10.4 years, n = 98 vs. 11.7, n = 200), but did not differ by 
age-standardised characteristics. 

At each timepoint (baseline and follow-up), log-transformed in-
flammatory markers were positively correlated with each other (base-
line: Spearman’s rho 0.23 – 0.39, p = <0.001 – 0.001, Supplementary 
Table S1; follow-up: Spearman’s rho 0.25 – 0.44, p = <0.001 – 0.02, 
Supplementary Table S2). The correlation of inflammation markers 
longitudinally from baseline to follow-up was highest for WBC (rho =
0.49, p = 0.002) and GlycA (rho = 0.38, p = 0.003), followed by NLR 
(rho = 0.29, p = 0.09) and hsCRP (rho = 0.16, p = 0.22). 

At baseline, all adiposity measures (BMI, %>95th BMI-centile, WC, 
WtH, %BF and %TF) were positively associated with GlycA, hsCRP and 
WBC in age- and sex-adjusted models (Fig. 2A, Supplementary 
Table S3). At baseline, only the %> 95 BMI-centile was associated with 
NLR. At follow-up, all adiposity measures were associated with GlycA, 
hsCRP and WBC (Fig. 2B, Supplementary Table S3), and the %> 95th 
BMI-centile, %BF and %TF were associated with NLR. 

In models of change in adiposity and inflammation between time 
points, increases in all adiposity measures were associated with an in-
crease in WBC, and all except %TF were associated with GlycA (Fig. 3, 
Supplementary Table S3). 

In sex-stratified models, generally similar patterns of associations 
between adiposity and inflammation markers were observed. Cross- 
sectional associations of BMI and the %> 95th BMI-centile with NLR 
at baseline appeared to be specific to males. Associations between lon-
gitudinal change in adiposity and change in GlycA appeared to be 
stronger for males for the majority of adiposity measures, while asso-
ciations of change in adiposity and change in total white blood cell count 
were generally more evident in females (Supplementary Fig. S1, S2). 

Additional adjustment for socioeconomic or pubertal status did not 
alter the results (data not shown). There was minimal evidence for 
adiposity-by-sex or adiposity-by-pubertal-status interaction effects on 
inflammation for any time period (data not shown). 

Discussion 

In this study of adolescents with severe obesity, we report evidence 
for cross-sectional associations between higher adiposity and higher 
inflammation (for GlycA, WBC, hsCRP and NLR) at baseline and at 
follow-up, and longitudinal associations between change in adiposity 
and change in inflammation over a mean of 5.6 years (for GlycA and 
WBC, but not for hsCRP or NLR). These findings suggest that GlycA and 
WBC, but not hsCRP or NLR, reflect longitudinal change in adiposity- 
associated inflammation. 

Several factors may contribute to the observed differences in the 
performance of GlycA versus hsCRP with respect to adiposity-related 
chronic inflammation. First, GlycA represents units of glycoprotein N- 
acetyl methyl groups, which are attached to the glycan portions of many 
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acute phase proteins during the process of glycosylation. The main 
purpose of glycosylation is to increase protein stability by protecting 
from degradation over a longer period [31]. In contrast, the plasma 
half-life of hsCRP is approximately 19 h, and its levels are largely 
determined by rate of synthesis [32], which in turn is driven by the 
intensity of the inflammatory response to the underlying, acute, path-
ological process [33]. 

Secondly, GlycA is a composite measure of a number of glycosylated 
acute phase proteins, thereby cumulatively reflecting many aspects of 
innate humoral immune pathways [34]. The most abundant of these 
acute phase proteins include alpha-1-acid glycoprotein, alpha-1 anti-
trypsin and haptoglobin [19]. Levels of serum amyloid A, hsCRP (as in 
this study) and tumor necrosis factor alpha [35] may also contribute to 
the GlycA level, but the degree of glycosylation of these proteins is low 

and their concentrations are much lower compared to levels of 
alpha-1-acid glycoprotein, alpha-1 antitrypsin and haptoglobin, so their 
contribution to the GlycA signal is considered neglibile [35]. 

Thirdly, levels of hsCRP are predominantly induced by measures 
interleukin-6 on hepatocytes [36], whereas acute phase proteins 
contributing to the GlycA signal are produced by the liver and neutro-
phils [19,37]. 

GlycA and hsCRP have clinical utility in risk stratification for CVD 
and mortality [15,20] and each are independently associated with later 
CVD after mutual adjustment [38], suggesting they capture different, 
albeit overlapping inflammatory pathways. Here, adiposity measures 
were cross-sectionally associated with both GlycA and hsCRP, whereas 
an increase or decrease in adiposity over a mean interval of 5.6 years 
was only associated with a concomitant change in GlycA. Longitudinal 

Table 1 
Characteristics of total cohort at baseline and follow-up and subgroup with longitudinal data.   

Total Cohort Subgroup with longitudinal data  

Baseline Follow-up (mean 4.4 y difference) Baseline Follow-up (mean 5.6 y difference)  

N n (%) N n (%) N n (%) N n (%) 
Sex 262  98  62  62  

female  140 (53 %)  47 (48 %) 30 48 30 48 
male  122 (47 %)  51 (52 %) 32 52 32 52 

Pubertal stage 260  98  60  62  
pre-pubertal  108 (42 %)  8 (8 %)  27 (45 %)  5 (8 %) 

peri-pubertal  66 (25 %)  16 (16 %)  16 (27 %)  7 (11 %) 
post-pubertal  86 (33 %)  74 (76 %)  17 (28 %)  50 (81 %)  

N mean (SD) N mean (SD) N mean (SD) N mean (SD) 
Age (years) 262 11.5 (3.5) 98 15.9 (3.7) 62 10.6 (3.5) 62 16.2 (3.6) 
Height (m) 262 1.5 (0.2) 98 1.7 (0.1) 62 1.5 (0.2) 62 1.7 (0.1) 
Weight (kg) 262 79.4 (31.3) 98 101.8 (30.5) 62 73.3 (30.5) 62 105.3 (31.4) 
Body mass index (kg/m2) 262 32.7 (7.4) 98 35.6 (7.9) 62 31.2 (6.6) 62 36.6 (8.1) 
% > 95th BMI-centile 262 136.7 (22.4) 98 129.7 (26.1) 62 135.2 (21.2) 62 132.0 (26.7) 
Waist circumference (cm) 217 101.4 (20.2) 77 105.2 (16.3) 50 96.0 (18.7) 48 106.8 (17.4) 
Waist to height ratio 217 0.7 (0.1) 77 0.6 (0.1) 50 0.6 (0.1) 48 0.6 (0.1) 
Body fat (%) 218 42.5 (8.3) 96 40.3 (9.7) 49 41.3 (7.1) 60 41.2 (10.1) 
Truncal fat (%) 210 36.5 (8.9) 96 36.3 (9.5) 48 34.6 (7.4) 60 37.4 (9.8) 
GlycA (mmol/L) 259 1.32 (0.17) 98 1.11 (0.11) 60 1.33 (0.19) 62 1.11 (0.11) 
high-sensitivity CRP (mg/L) 258 3.47 (3.50) 98 1.96 (2.22) 60 2.89 (3.23) 62 2.06 (2.57) 
White cell count (109/L) 188 7.55 (1.90) 90 7.33 (1.78) 41 7.81 (2.08) 58 7.36 (1.74) 
Neutrophiles 191 3.93 (1.46) 90 4.19 (1.31) 41 4.07 (1.73) 58 4.23 (1.24) 
Lymphocytes 190 2.84 (0.86) 90 2.43 (0.71) 40 2.99 (0.86) 58 2.43 (0.69) 
Neutrophil/Lymphocyte 189 1.47 (0.64) 90 1.82 (0.69) 39 1.45 (0.72) 58 1.84 (0.72) 

Participant characteristics of the total cohort at baseline and follow-up in the left column. Participant characteristics of the subgroup with longitudinal data at baseline 
and follow-up in the right column. Results are provided in mean, standard deviation (SD) for continuous variables and in absolute number of individuals (n) and the 
proportion in percentage (%). The % > 95th BMI-centile indicates the severity of obesity based on the age- and sex-adjusted 95th BMI-centile (i.e., the threshold for 
obesity) as described in the methods section. Pubertal status was determined according to Tanner stages: Pre-pubertal: Tanner stage 1; Peri-pubertal: Tanner stage 2 & 
3; Post-pubertal: Tanner stage 4 & 5. BMI: body mass index; GlycA: Glycoprotein acetyls. 

Fig. 2. Cross-sectional associations between adiposity measures and inflammation markers at baseline (A) and follow-up (B). Estimates are log unit change in 
inflammation marker per unit change in adiposity measure, adjusted for age and sex. Note that WtH has been scaled to x0.01 units for this figure. Closed points 
represent p < 0.05, open points are p > 0.05. Error bars are 95 % confidence intervals. 
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associations between change in adiposity and change in hsCRP were not 
evident. Together with increasing evidence for associations between 
GlycA and obesity-related adverse cardiometabolic outcomes [16,20], 
and the evidence provided in this population that change in obesity 
parallels change in GlycA, we hypothesize that GlycA may be a superior 
clinical inflammatory marker for risk stratification. However, further 
studies in different populations with larger sample size and longer 
follow-up are needed to support this hypothesis. 

Both WBC and NLR have been associated with CVD and metabolic 
risk factors [39,40], and WBC is reduced following bariatric surgery 
[41]. Here, adiposity measures were strongly associated with WBC 
cross-sectionally and longitudinally. In contrast, we only found 
cross-sectional associations between adiposity measures and NLR, with 
no evidence for longitudinal associations, consistent with adult data 
[42]. These findings suggest that in adolescents with obesity, NLR may 
have less clinical utility as an inflammatory biomarker than GlycA or 
WBC. 

A positive correlation between BMI and WBC particularly in women 
with obesity has been reported [43], in line with our results for associ-
ations between change in adiposity and change in WBC predominantly 
in adolescent females. In a study investigating 7997 adolescents (3738 
females) aged 10–18 years, individuals with obesity had higher levels of 
WBC compared to individuals with overweight or normal weight [44]. 
In addition to WBC, absolute neutrophil and lymphocyte counts are also 
increased with higher BMI in women, with a larger effect size reported 
for neutrophils than lymphocytes [45]. 

The strengths of our study are the assessment of several adiposity 
measures and inflammatory biomarkers in a unique longitudinal 
adolescent cohort with severe obesity. Our findings are relevant to the 
increasing number of children and adolescents living with obesity, 
which often persists into adulthood [46]. Limitations include firstly a 
lack of a comparison group with normal weight. Second, the number of 
participants with complete data at both time points was relatively 
modest, limiting statistical power. This attrition reflects the inherent 
difficulties in retention of adolescents in longitudinal studies [47]. The 
lack of race/ethnic diversity and sample size also limits the general-
isability of our findings and replication in other settings – particularly 
studies including ethnic minorities – is warranted. However, sensitivity 
analyses did not show differences in measures for adiposity or inflam-
mation biomarkers between subpopulations investigated at baseline, at 
follow-up, nor in longitudinal analyses. Lastly, the study design does not 
allow for causal inference between adiposity and inflammation. How-
ever, there is growing evidence for change in adiposity preceding 
concomitant change in inflammation, as shown in studies using Men-
delian randomisation to assess effects of adiposity on GlycA [18] and as 

reported for concordant reductions in GlycA after weight loss related to 
bariatric surgery [48]. 

Conclusion 

In adjusted models, all adiposity measures were associated with 
cross-sectional measures of GlycA, hsCRP, WBC and NLR in both early 
and later adolescence. Changes in adiposity measures were most evident 
with concomitant changes in GlycA and WBC (but not for the widely 
used hsCRP), suggesting that reduction in adiposity severity may be 
associated with less inflammation, and plausibly with lower subsequent 
risk of obesity-related CVD. Replication in longitudinal studies involving 
clinical CVD endpoints is warranted. 
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