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ABSTRACT
The deployment of Internet of Things (IoT) temperature sensors
in urban areas is essential for the monitoring and understanding
of the thermal environment. However, accurate temperature mea-
surements can be compromised by factors such as direct sunlight,
leading to overheating and inaccurate readings. We propose a Ma-
chine Learning-based approach that addresses this challenge by
dynamically ventilating the sensor environment using small fans,
enabling accurate and energy-efficient temperature measurements.
This paper focuses on two interconnected problems: predicting
steady-state temperature using a limited window of initial tempera-
ture measurements and investigating the impact of ventilation time.
We employ various DNNs suitable for low-power IoT sensor devices
to predict temperature using multivariate time series from different
sensors and compare their accuracy. Furthermore, we highlight the
tradeoff between prediction accuracy, which is correlated to the
length of the observed input sequence, and energy consumption
dependent on ventilation time. By adopting advanced prediction
techniques, we can develop efficient IoT systems for accurate and
energy-efficient environment monitoring in smart cities.

CCS CONCEPTS
• Information systems → Sensor networks; • Computing
methodologies→ Neural networks; Distributed artificial in-
telligence; • Hardware → Temperature monitoring.
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1 INTRODUCTION
Deploying Internet of Things (IoT) devices, particularly temperature
sensors, in urban areas has revolutionized our ability to monitor
and understand the dynamic thermal environment. These sensors
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play a crucial role in applications such as urban planning, building
management, and environmental monitoring for smart cities [1].
However, their accuracy can be compromised by local factors such
as direct sunlight, which can cause the sensors to overheat and
yield inaccurate temperature readings. To address this challenge, we
introduce a Machine Learning (ML)-based approach for ventilating
the sensor environment using small fans, enabling accurate and
energy-efficient temperature measurements.

This paper focuses on two interconnected problems that arise
in the context of the IoT temperature sensors. Firstly, we aim to
predict the final temperature at a steady state after an extended
ventilation time, leveraging only a limited window of temperature
and humidity measurements taken during the initial ventilation
phase. This approach enables us to conserve energy by activating
the fan for a shorter duration, thus reducing the overall power
consumption of the sensor device.

Secondly, we delve into the issue of determining the optimal
ventilation time that maximizes the amount of data observed and
subsequently enhances the accuracy of temperature prediction at
steady-state. This exploration needs to strike a balance between
energy consumption and prediction accuracy. Longer ventilation
times yield more comprehensive datasets that have the potential to
yield more accurate predictions of the final, steady-state tempera-
ture [2]. Several time series analysis studies have shown that longer
input sequence length allows Deep Neural Networks (DNN) models
to capture enough historical context, trends, and seasonality in the
data, enhancing the predictive capabilities [3]. Conversely, shorter
ventilation times save energy but provide a more limited dataset
and observation sequence length, compromising prediction accu-
racy. Thus, the ventilation period significantly affects the energy
consumption for the sensor devices, which introduces a tradeoff
between prediction accuracy and energy consumption.

Efficiently addressing these challenges holds significant practical
implications. Optimizing energy consumption can extend the opera-
tional lifespan of IoT monitoring systems and reduce their environ-
mental impact. Moreover, accurate temperature measurements are
vital for various applications, including energy-efficient building
management, climate change mitigation, and urban planning [4].
While previous studies have explored aspects of temperature pre-
diction and energy optimization in IoT systems, few have focused
on the interaction between these two aspects in the context of IoT
temperature sensors in urban environments.

In this paper, we propose an ML-based approach for accurate
and energy-efficient temperature monitoring in urban areas while
offering valuable insights into optimizing energy efficiency and pre-
diction accuracy. We utilize a range of DNNs suitable for low-power
IoT sensor devices to predict temperature using a limited multivari-
ate time series of initial temperature and humidity sensor values
and assess their accuracies. Moreover, we emphasize the tradeoff
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between prediction accuracy, which is affected by the length of
the observed input sequence, and energy consumption, which is
influenced by ventilation time. By adopting prediction techniques,
we can develop more efficient environmental monitoring systems
that achieve both accuracy and energy efficiency in smart city IoT.

The remainder of the present article is organized as follows.
Section 2 presents the relevant related works. Section 3 presents
the system model and describes the proposed method. Section 4
provides the evaluation. Section 5 concludes the paper.

2 RELATEDWORKS
ML has been applied to environmental sensing in various studies,
considering the tradeoff between information accuracy and energy
expenditure. One study [5] explored the application of modern
techniques, including ML, for enhancing reliability and reducing
costs in environmental monitoring IoT. The authors [6] proposed a
real-time, power-efficient environmental monitoring system and
studied coverage quality and deployment mechanisms.

Temperature prediction and energy optimization in IoT systems
have been widely studied, but limited research has specifically fo-
cused on the interaction between these aspects in the context of
IoT temperature sensors in urban environments. Traditional ap-
proaches, such as autoregressive integrated moving average models
and exponential smoothing methods, have shown reasonable accu-
racy but may not capture the complex dynamics of urban tempera-
ture variations [7]. ML algorithms were used with multi-temporal
data capture changes in environmental parameters to understand
climate variables [8, 9]. In the context of collaborative sensing and
communication systems, distributed learning methods are proposed
to improve the efficiency of IoT systems [10, 11].

More recently, ML techniques, particularly Deep Learning (DL)
models, have gained attention for temperature prediction [4, 8].
However, these studies have primarily focused on general tempera-
ture prediction without considering the specific challenges in urban
environments and the energy efficiency aspect. On the other hand,
energy optimization in IoT systems has been a significant research
area, aiming to prolong the operational lifespan of sensor devices
and reduce energy consumption using various techniques.

While temperature prediction and energy optimization have
been individually explored, their interaction in the context of im-
proving sensormeasurements in urban environments remains largely
unexplored. The tradeoff between accuracy and energy consump-
tion, specifically in relation to ventilation time, has not been in-
vestigated. Therefore, this paper aims to bridge this gap by inves-
tigating the interaction between these two aspects and proposing
an approach to achieve accurate and energy-efficient temperature
monitoring in urban environments.

3 MACHINE LEARNING-BASED ENERGY
OPTIMISATION FOR SMART CITY
TEMPERATURE SENSORS

3.1 System Model
Our system contains a set Φ of devices with constrained computa-
tion, communication, and energy resources, whose task is monitor-
ing environmental variables over a large geographical extension

Figure 1: System Model.

periodically. Each device 𝜙 ∈ Φ is endowed with a set of 𝑛 sensors
that can measure environmental variables such as temperature and
humidity. We assume that each device performs a measurement
periodically and transmits it to a central server via a long-range
wireless link (e.g., LoRa) for visualization and processing.

The sensors might be located in environmentally challenging
situations, such as under direct sunlight or intense humidity, which
might bias their measurements. To mitigate such potential biases,
the device initiates a ventilation operation on the sensor at the mo-
ment of performing a measurement to disperse excess heat from the
sensor casing. We assume that sensors are self-contained and can-
not access the wired power grid of data connectivity, therefore, the
fan is powered with the limited energy of the onboard battery. After
a fixed ventilation period of 𝑡 ∈ N time slots, the device records the
measurement and transmits it to the central server. We assume that
the ventilation period 𝑡 is sufficient to measure the environmental
conditions accurately and without biases. Specifically, 𝑡 is predeter-
mined by a sensor bench-marking process in variable controlled
lab environments, where the device is heated and subsequently
ventilated until the sensor readings do not change further.

The sensor device is also able to record the sensor values during
the ventilation period. Without loss of generality, we assume that a
ventilation period is divided into time slots where a measurement
is carried out. For each ventilation operation, the time slots are
indexed starting from the beginning of ventilation, i.e., the first
measurement is 𝑥1,𝑖 and the last measurement is 𝑥𝑡,𝑖 .We denote
𝑋𝑖 = (𝑥1, . . . , 𝑥𝑡 )𝑖 ∈ R𝑛×𝑡 as the measurement time-series for the
𝑖-th measurement, and we assume that its values at every time
slot during the ventilation period are recorded and saved on the
device’s local storage. Let us denote X = (𝑋1, . . . , 𝑋𝑚) as the set of
all measurements collected by the sensor devices.

The central server periodically collects measurements from the
sensor devices for processing and analysis via the long-range wire-
less network or manual collection. We index each measurement
sent to the server by a device as 𝑦𝑖 . Since the ventilation process
is only aimed at improving the quality of the measurements, the
sensor device does not need to send the entire measurement time
series (i.e., recorded during the ventilation process) to the server.
Thus only the last sensor measurements recorded at the end of the
ventilation period are sent to the server, i.e.,𝑦𝑖 = 𝑥𝑡,𝑖 (last value of
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Figure 2: Sensor Device.

the measurement time-series). Let us denote 𝑌 = (𝑦1, . . . , 𝑦𝑚) as the
set of all measurements collected by the server.

We assume that the device fan’s average power consumption
𝑃 (𝜙) for device 𝜙 is constant over time. Empirical results show that
the device uses the majority (over 70%) of its energy for the venti-
lation process; therefore, our approach focuses on optimizing the
ventilation energy. We define the average energy consumption for a
single measurement sent to the server by device𝜙 as 𝐸 (𝜙) = 𝑡𝜏𝑃 (𝜙),
where 𝜏 is the duration of one time slot in seconds. Figure 1 repre-
sents our model of the system. Each sensor device has a processor
capable of executing small DNN models. Figure 2 shows a picture
of the sensor node equipped with a small solar panel. The sensors,
control module, and small fan are housed within a ceramic casing
with a design commonly used for environmental sensors [12].

3.2 Problem Formulation
Devices’ local energy storage is a precious resource, as it determines
the devices’ lifetime and therefore impacts the frequency of battery
replacement by operators. In this work, we aim to devise a solution
to reduce the device’s energy consumption by reducing the ventila-
tion time 𝑡 , while maintaining accurate measurement information
about 𝑥𝑡,𝑖 = 𝑦𝑖 at ventilation convergence. We propose using a
multivariate time-series DNN model to predict the sensor measure-
ments (e.g., the temperature) at the end of a ventilation period for
the 𝑖-th measurement (i.e., 𝑥𝑡,𝑖 ) by observing a smaller sample of
temperature and humidity measurements (i.e., (𝑥1, . . . , 𝑥𝑡 ′ )𝑖 , with
𝑡 ′ < 𝑡 ), which consequently reduces energy consumption.

Several studies have shown that the dataset volume and the
length of the observed time series (i.e., measurement time-series)
have a significant impact on the prediction accuracy [2, 13]. When
the observed part of the time series is short, the model may not have
access to enough historical context to make accurate predictions.
On the other hand, longer input sequence length allows the model to
capture input sequence length, trends, and seasonality in the data,
enhancing the predictive capabilities [3]. In such cases, the model
learns from a larger historical data set and potentially uncovers
more complex relationships within the time series. However, the
ventilation period duration significantly increases the energy con-
sumption 𝐸 (𝜙) for the sensor device 𝜙 , which introduces a potential
tradeoff between the measurements’ prediction accuracy and the
energy needed to perform the measurement.

Figure 3: 1-Dimensional Convolutional Neural Networks.

Figure 4: Feed Forward Neural Network.

We aim to build a function 𝑓 (𝑋𝑖 ) that takes in input a multi-
variate time series 𝑋𝑖 = (𝑥1, . . . , 𝑥𝑡 ′ )𝑖 , with 𝑡 ′ < 𝑡 , and predicts
the value 𝑥𝑡,𝑖 = 𝑦𝑖 as 𝑦𝑖 = 𝑓 (𝑋𝑖 ). To simplify notation, and with-
out loss of generality, we focus on a simpler subproblem where
the predicted measurement 𝑦𝑖 is the last temperature value. Let us
denote 𝑌 = 𝑓 (X) as the set of predicted measurements. We out-
line a regression problem where our goal is to minimize the aver-
age prediction loss L(𝑌,𝑌 ) between the ground truth of collected
measurements 𝑌 and their model prediction 𝑌 . In our solution,
we consider the root mean squared error (RMSE) as loss function

L(𝑌,𝑌 ) =

√︃
1
𝑚

∑𝑚
𝑖=1 𝑙 (𝑦𝑖 , 𝑦𝑖 ) =

√︃
1
𝑚

∑𝑚
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2. RMSE mea-

sures the squared root of the mean of the deviation squares, which
quantifies the difference between the predicted values and the ac-
tual ones. On the other hand, the energy consumption required
to perform the measurement of the sensor values depends on the
input sequence length (i.e., the period of ventilation for collecting
the measurement time series). Thus, the energy 𝐸 (𝜙) = 𝑡 ′𝜏𝑃 (𝜙) is
required to collect the multivariate time series 𝑋𝑖 = (𝑥1, . . . , 𝑥𝑡 ′ )𝑖 .

In this study, we perform an offline parameter analysis to find
the optimal ventilation time (i.e., the optimal input sequence length
𝑡 ′ for the observed multivariate time series) to strike a balance
between energy consumption and prediction accuracy.

3.3 DNN Prediction of Temperature Sensor
Values Using Multivariate Time-Series

We utilize the DNNs, Long Short-Term Memory (LSTM), Feed
Forward Neural Network (FFNN), and Convolutional Neural Net-
works (CNN), for temperature values prediction using time series.
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Figure 5: Long-Short Term Memory Network.

LSTM is a type of recurrent neural network (RNN) architecture
that is specifically designed to capture long-term dependencies
and process sequential data (Figure 5). It overcomes the limitations
of traditional RNNs, which struggle with long-term dependencies
due to the vanishing gradient problem.LSTMs have a memory cell
that can store information for extended periods, allowing them to
capture and retain long-term dependencies in the input data. This
is crucial for time series data, where the previous inputs can have
a significant impact on future predictions. LSTMs can effectively
handle multivariate time series inputs, where multiple variables or
features are observed simultaneously at each time step by capturing
complex relationships between different variables. LSTMs have
fewer parameters compared to other deep learning architectures,
making them computationally efficient and plausible for low-power
IoT sensors that typically have limited computational resources [14,
15]. Moreover, LSTMs can process sequential data in an incremental
and online manner, which is desirable for low-power sensors.

1D CNN is a type of neural network architecture commonly
used for processing one-dimensional sequential data, such as time
series [16]. While CNNs are widely known for their effectiveness
in computer vision tasks, they can also be applied to time series
analysis (Figure 3). 1D CNNs employ convolutional filters that slide
over the input sequence, extracting local patterns and features. This
localized feature extraction is advantageous for time series data, as
it enables the network to identify meaningful patterns at different
time scales. 1D CNNs can handle multivariate time series inputs,
where multiple variables are observed simultaneously at each time
step by capturing cross-variable interactions and extracting relevant
features from the input. 1D CNNmodels can be deployed directly on
IoT sensors or edge devices, eliminating the need for transmitting
raw sensor data.

FFNN, also known as Multi-Layer Perceptrons (MLPs), is a neu-
ral network where information flows in one direction (Figure 4).
FFNNs can capture complex nonlinear relationships between in-
put features and output predictions. This is beneficial for time
series data, as it often contains patterns and dependencies that can
be effectively captured by the nonlinear activation functions in
FFNN. FFNNs have been proven to be universal function approxi-
mators, meaning they can approximate any continuous function
given enough hidden units. This property allows FFNNs to learn
and model the underlying patterns in time series data, making them
suitable for a wide range of time series prediction tasks [17]. FFNNs

typically have a simpler structure compared to most DNN architec-
tures, resulting in a smaller number of parameters making FFNNs
computationally efficient, which is advantageous for low-power
sensor devices.

4 EVALUATION
4.1 Experimental Setup
We developed the ML models in Python, utilizing the deep learning
frameworks Tensorflow and Keras. The key metric of the evalua-
tion is the accuracy of the temperature prediction determined by
the error of the regression output of the DNN models for variable
input sequence length. We then visualize the accuracy and energy
consumption tradeoff for the variable input sequence lengths. Fur-
thermore, we compare the accuracy of the multivariate time series
approach to a univariate time series approach. We released the
source code and trained models on a public GitHub repository1.

4.2 Dataset
We collected measurements from a real-world deployment of envi-
ronmental sensors in the city of Bern, Switzerland. Our proposed
approach can be applied to determine the tradeoff between the
accuracy of temperature measurements and reducing the energy
consumption for a single sensor; hence, without loss of generality,
the evaluation is conducted on a dataset from a single sensor. Over-
all, we acquired 3697 measurements, each long 𝑡 = 138 s. To correct
the measurements, we set the maximum ventilation duration of
138 seconds, during which the multivariate time series of humidity
and temperature sensor values are recorded together with their cor-
responding timestamps. The sensor values are recorded at a fixed
frequency. To promote our findings’ reproducibility, we publicly
release the collected dataset on Zenodo2.

Figure 6 shows a summary of the dataset used for the evaluation
with different characteristics depending on the time of the day the
measurements were carried out. Figure 6 (a) temperature varia-
tions without ventilation and after a 120 s ventilation for different
hours of the day. The largest gap is observed around noon due to
the sun’s overheating action on the sensor casings. Figure 6 (b)
shows sampled temperature time series (curves) recorded during
the ventilation process for 138 seconds, with 𝑡 = 138 (i.e., one record
per second), at different times of the day. Figure 6 (c) shows some
scaled temperature and humidity values for corresponding mea-
surements. The data shows a correlation of the pattern between
the two features that indicate interactions and dependencies be-
tween temperature and humidity. This pattern can be leveraged by
a multivariate approach as complementary information for a more
comprehensive and accurate understanding of the time series.

From this raw data, we created the training and test sets through
data augmentation to simulate time series of different lengths.
Namely, for each measurement, we generated 136 samples with the
increasing length of measurement time-series, padding the residual
time-series length with zeros until reaching a time-series length of
137. We randomly select 70% of the generated dataset for training,
15% for validation, and 15% for testing, shuffling the samples to
avoid imbalances in the different parts of the dataset.
1https://www.github.com/ricsamikwa/ml-iot-smartcitytemp
2https://doi.org/10.5281/zenodo.8287290
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Figure 6: Temperature (a) variations without ventilation and after a 120 s ventilation for different hours of the day, (b) sampled
temperature curves during ventilation, and (c) scaled values for corresponding temperature and humidity measurements.

4.3 Results
Figure 7 shows the performance comparison of the selected baseline
prediction models (LSTM, 1D-CNN, and FFNN), under varying in-
put sequence lengths 𝑡 ′ of measurement multivariate time-series on
the test set. The plots indicate the root mean square error L(𝑌,𝑌 )
for all samples in the test set for various input sequence length 𝑡 ′,
and the confidence intervals show the variability of the prediction
error for each 𝑡 ′. Overall, the LSTMhas a higher prediction accuracy
compared to the 1D-CNN and the FFNN. Moreover, for lower value
input sequence length 𝑡 ′ the LSTM significantly outperforms the
1D-CNN, and FFNN). This can be attributed to the fact that LSTM
networks are designed to capture long-term dependencies in time
series effectively. Furthermore, LSTMs are good at variable-length
sequences, where the number of time steps can vary. This is more
prominent in our case since we experimented with variable input
sequence length for the multivariate time series, and we introduced
padding (with zeros), which might contribute to more noisy fea-
tures for CNN and FFNN. Moreover, the performance of the CNN
and FFNN significantly improves for longer input sequence length.
The naive estimation takes the last temperature measurement at
the end of a ventilation period 𝑡 ′ as the actual value at the end of
the curve. However, it is highly dependent on the specific range
of temperature variability for the sensor. The naive estimation is
further visualized in Figure 9.

Figure 8 shows the tradeoff between the prediction accuracy
(based on the RMSE) and the energy consumption on the devices
for variable input sequence lengths 𝑡 ′. The energy consumption
is shown in normalized values (𝑡 ′𝜏𝑃/𝑡𝜏𝑃 ) as a proportion of the
ventilation energy to observe the shorter input sequence of length
𝑡 ′ instead of full ventilation for the duration 𝑡 . The results indicate
that longer input sequence length 𝑡 ′ results in better prediction
accuracy. On the other hand, the energy consumption grows pro-
portionally to the length of the observed input sequence. This is a
useful indication that can be used by the application policymaker
to consider the tradeoff between energy consumption and accuracy.
In accuracy-sensitive scenarios, longer input sequence lengths of
the temperature and humidity time series can be utilized to achieve
more accurate predictions of the measurements. On the other hand,
in energy-sensitive scenarios, e.g., when the battery of the sen-
sor is low, shorter input sequence lengths can be desirable for the
prediction of the temperature values.

Figure 7: Prediction error (RMSE) for various DNN methods
under variable observed input sequence lengths.

Figure 8: Accuracy and energy consumption tradeoff.

Figure 9 shows a visualization of the prediction accuracy for
LSTM on a single ventilation curve compared with a naive ap-
proach and the full ventilation. The naive approach records the
last temperature measurement at the end of a ventilation period 𝑡 ′
as the actual value at the end of the curve. The predicted result is
closer to the actual temperature reading while utilizing the same
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Figure 9: Sample prediction for 𝑡 ′ = 50 and a naive estimation.

Figure 10: RMSE for multivariate and univariate LSTM.

amount of ventilation energy consumption as the naive approach.
When the input sequence length 𝑡 ′ approaches the end of the curve,
the naive approach is the same as full ventilation for all 138 seconds.

Figure 10 shows the RMSE for the temperature prediction using
multivariate times series (|𝑥𝑖 | = 𝑁 = 2), i.e., the model observes
both the temperature and humidity values at each time step of
the input sequence and univariate time series (|𝑥𝑖 | = 𝑁 = 1), i.e.,
the model observes only the temperature sequence for various
input sequence lengths 𝑡 ′. The prediction error is lower for the
multivariate LSTM compared to the univariate LSTM. This can be
attributed to the ability of the multivariate approach to leverage
complementary information from multiple relevant or correlated
features, such as humidity measurements in this case.

5 CONCLUSION
Our study demonstrates the feasibility of using time-series ML
methods to predict temperature using a shorter time series than
the target time, resulting in significant energy savings through re-
duced sensor ventilation time. We employed various DNNs suitable
for low-power IoT sensor devices to predict temperature using a
multivariate time series approach and compared their prediction
accuracy. Moreover, we emphasized the tradeoff between prediction
accuracy, which improves with increasing input sequences, and the
energy consumption of the sensor device, which is associated with

ventilation time. These findings highlight the potential benefits of
adopting these prediction techniques in diverse applications, facili-
tating the development of more efficient environmental monitoring
systems for urban heat environments and smart cities. Furthermore,
federated aggregation of model parameters can be applied to im-
prove performance across different geographical locations with
diverse weather conditions and seasonal variations.
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